metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Deca­carbonyl-1κ3C,2κ3C,3κ4C-μ-hydrido-1:2κ2H:H-(μ-quinoline-2-thiol­ato-1:2κ2S:S)diosmium(I)osmium(0)(3 OsOs)

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China, and bKey Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Department of Chemistry, Yunnan University, Kunming 650091, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn

(Received 14 January 2008; accepted 20 February 2008; online 2 April 2008)

The title compound, [Os3(C9H6NS)H(CO)10], contains a nearly equilateral triangle of Os atoms. Two of the Os atoms are bridged by an S atom of the quinoline-2-thiol­ate ligand. Ten carbonyl groups complete the cluster, resulting in a distorted octa­hedral geometry for each Os atom. The hydride atom, which was located in a difference Fourier map and refined isotropically, bridges the shortest Os–Os edge.

Related literature

For related literature, see: Begum et al. (2007[Begum, N., Das, U. K., Hassan, M., Hogarth, G., Kabir, S. E., Nordlander, E., Rahman, M. A. & Tocher, D. A. (2007). Organometallics, 26, 6462-6472.]); Fan et al. (2004[Fan, W., Zhang, R., Leong, W. K. & Yan, Y. K. (2004). Inorg. Chim. Acta, 357, 2441-2450.]); Miyake et al. (2007[Miyake, Y., Nomaguchi, Y., Yuki, M. & Nishibayashi, Y. (2007). Organo­metallics, 26, 3611-3613.]); Zeller et al. (2003[Zeller, M., Hunter, A. D., Regula, J. L. & Szalay, P. S. (2003). Acta Cryst. E59, m975-m976.]).

[Scheme 1]

Experimental

Crystal data
  • [Os3(C9H6NS)H(CO)10]

  • Mr = 1012.02

  • Monoclinic, P 21 /n

  • a = 9.3593 (5) Å

  • b = 9.4129 (5) Å

  • c = 25.7433 (14) Å

  • β = 93.045 (1)°

  • V = 2264.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 16.94 mm−1

  • T = 223 (2) K

  • 0.18 × 0.16 × 0.14 mm

Data collection
  • Rigaku SCXMini 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.058, Tmax = 0.092

  • 13690 measured reflections

  • 4446 independent reflections

  • 4162 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.052

  • S = 1.14

  • 4446 reflections

  • 311 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.75 e Å−3

  • Δρmin = −1.24 e Å−3

Table 1
Selected bond lengths (Å)

Os1—C11 1.892 (6)
Os1—C12 1.900 (6)
Os1—C13 1.922 (6)
Os1—S1 2.4154 (14)
Os1—Os2 2.8399 (3)
Os1—Os3 2.8559 (3)
Os1—H1 1.87 (6)
Os2—C23 1.896 (6)
Os2—C22 1.901 (6)
Os2—C21 1.926 (6)
Os2—S1 2.4144 (13)
Os2—Os3 2.8516 (3)
Os2—H1 1.86 (6)
Os3—C33 1.897 (6)
Os3—C34 1.929 (6)
Os3—C31 1.941 (6)
Os3—C32 1.970 (6)

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, transition metal–carbonyl clusters have received considerable attention owing to their important role in catalytic reactions (Miyake et al., 2007; Zeller et al., 2003) as well as the preparation of materials with novel magnetic properties (Fan et al., 2004). Different organic ligands containing O and S atoms can stabilize the metal cluster framework by means of chelating and bridging (Begum et al., 2007). We report here the synthesis and structure of the title compound containing a triangle of Os atoms and an organic quinoline-2-thiol ligand.

The S atom of the ligand acts as a bidentate bridge connecting two Os atoms [Os1—S1 = 2.4154 (14) and Os2—S1 = 2.4144 (13) Å]. The molecule of the title compound (Fig. 1) consists of an Os3 triangle with ten terminal CO ligands and a substituted quinoline-2-thiol ligand. Each Os atom is in a distorted octahedral geometry, with Os3 bonded to four terminal carbonyl ligands and Os1 and Os2 bonded to three terminal carbonyl ligands and one bridging S atom from the quinoline-2-thiol ligand, respectively. The hydride H atom was crystallographically located and refined and it is found to bridge across the shortest Os1—Os2 edge.

Related literature top

For related literature, see: Begum et al. (2007); Fan et al. (2004); Miyake et al. (2007); Zeller et al. (2003).

Experimental top

[Os3(CO)10(MeCN)2] (0.120 g, 0.1 mmol) was added to a MeCN solution (10 ml) of quinoline-2-thiol (0.015 g, 0.1 mmol) and the mixture was stirred at room temperature for one hour. Crystals suitable for crystallographic analysis were obtained after two weeks.

Refinement top

H atoms bound to C were positioned geometrically and refined as riding atoms, with C—H = 0.94Å and Uiso(H) = 1.2Ueq(C). The hydride H atom was located from a difference Fourier map and refined isotropically.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
Decacarbonyl-1κ3C,2κ3C,3κ4C-µ-hydrido-1:2κ2H:H-(µ- quinoline-2-thiolato-1:2κ2S:S)diosmium(I)osmium(0)(3 Os—Os) top
Crystal data top
[Os3(C9H6NS)H(CO)10]F(000) = 1808
Mr = 1012.02Dx = 2.968 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4762 reflections
a = 9.3593 (5) Åθ = 3.0–26.1°
b = 9.4129 (5) ŵ = 16.94 mm1
c = 25.7433 (14) ÅT = 223 K
β = 93.045 (1)°Block, colourless
V = 2264.7 (2) Å30.18 × 0.16 × 0.14 mm
Z = 4
Data collection top
Rigaku Scxmini 1K CCD area-detector
diffractometer
4446 independent reflections
Radiation source: fine-focus sealed tube4162 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1011
Tmin = 0.058, Tmax = 0.092k = 118
13690 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0163P)2 + 2.1547P]
where P = (Fo2 + 2Fc2)/3
4446 reflections(Δ/σ)max = 0.001
311 parametersΔρmax = 0.75 e Å3
1 restraintΔρmin = 1.24 e Å3
Crystal data top
[Os3(C9H6NS)H(CO)10]V = 2264.7 (2) Å3
Mr = 1012.02Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.3593 (5) ŵ = 16.94 mm1
b = 9.4129 (5) ÅT = 223 K
c = 25.7433 (14) Å0.18 × 0.16 × 0.14 mm
β = 93.045 (1)°
Data collection top
Rigaku Scxmini 1K CCD area-detector
diffractometer
4446 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
4162 reflections with I > 2σ(I)
Tmin = 0.058, Tmax = 0.092Rint = 0.032
13690 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0241 restraint
wR(F2) = 0.052H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.75 e Å3
4446 reflectionsΔρmin = 1.24 e Å3
311 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Os10.76242 (2)0.01890 (2)0.169927 (8)0.01740 (6)
Os20.97667 (2)0.15956 (2)0.130925 (8)0.01676 (6)
Os31.04641 (2)0.12428 (2)0.161547 (8)0.01774 (6)
N10.5984 (5)0.2445 (5)0.08694 (18)0.0239 (11)
S10.79273 (14)0.03585 (15)0.07951 (5)0.0200 (3)
O110.6461 (5)0.3150 (5)0.1487 (2)0.0434 (12)
O120.7862 (5)0.0836 (5)0.28569 (17)0.0401 (11)
O130.4768 (5)0.1310 (5)0.18287 (19)0.0414 (12)
O210.8805 (5)0.4583 (5)0.09893 (18)0.0402 (11)
O221.1990 (5)0.1242 (5)0.0512 (2)0.0465 (13)
O231.1859 (5)0.2826 (5)0.21235 (18)0.0426 (12)
O311.1025 (5)0.0142 (5)0.26916 (17)0.0384 (11)
O320.9894 (5)0.2326 (5)0.04959 (18)0.0426 (12)
O331.3613 (5)0.1450 (6)0.1407 (2)0.0605 (17)
O341.0082 (6)0.4241 (5)0.20439 (19)0.0471 (13)
H10.851 (7)0.156 (8)0.184 (3)0.09 (3)*
C10.6572 (5)0.1579 (6)0.0552 (2)0.0183 (11)
C20.6192 (6)0.1465 (6)0.0019 (2)0.0227 (12)
H2A0.66740.08370.01950.027*
C30.5099 (6)0.2299 (7)0.0178 (2)0.0281 (13)
H3A0.48210.22520.05340.034*
C40.3199 (6)0.4058 (7)0.0022 (3)0.0304 (14)
H4A0.28710.40380.03740.036*
C50.2526 (6)0.4889 (7)0.0322 (3)0.0349 (16)
H5A0.17300.54360.02070.042*
C60.3013 (7)0.4935 (7)0.0844 (3)0.0374 (16)
H6A0.25300.55060.10780.045*
C70.4172 (7)0.4170 (7)0.1020 (3)0.0332 (15)
H7A0.44990.42310.13710.040*
C80.4886 (5)0.3279 (6)0.0673 (2)0.0197 (12)
C90.4392 (5)0.3222 (6)0.0148 (2)0.0213 (12)
C110.6869 (6)0.2026 (7)0.1567 (2)0.0267 (13)
C120.7783 (6)0.0587 (7)0.2424 (2)0.0268 (13)
C130.5842 (6)0.0799 (7)0.1754 (2)0.0279 (13)
C210.9088 (6)0.3461 (6)0.1112 (2)0.0251 (13)
C221.1165 (6)0.1414 (6)0.0804 (2)0.0276 (14)
C231.1095 (6)0.2351 (6)0.1818 (2)0.0245 (13)
C311.0809 (6)0.0373 (6)0.2294 (2)0.0243 (13)
C321.0046 (6)0.1898 (7)0.0897 (2)0.0259 (13)
C331.2440 (6)0.1335 (7)0.1489 (3)0.0311 (15)
C341.0190 (6)0.3122 (7)0.1892 (2)0.0263 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Os10.01208 (11)0.01895 (12)0.02128 (12)0.00154 (8)0.00173 (8)0.00144 (8)
Os20.01364 (11)0.01579 (11)0.02091 (12)0.00091 (8)0.00137 (8)0.00040 (8)
Os30.01302 (11)0.01713 (11)0.02298 (12)0.00306 (8)0.00002 (8)0.00002 (8)
N10.021 (2)0.027 (3)0.023 (3)0.005 (2)0.0013 (19)0.002 (2)
S10.0181 (6)0.0206 (7)0.0212 (7)0.0043 (5)0.0009 (5)0.0022 (5)
O110.038 (3)0.031 (3)0.061 (3)0.006 (2)0.006 (2)0.006 (2)
O120.048 (3)0.050 (3)0.023 (2)0.001 (2)0.005 (2)0.007 (2)
O130.028 (2)0.046 (3)0.051 (3)0.017 (2)0.013 (2)0.009 (2)
O210.051 (3)0.023 (2)0.045 (3)0.008 (2)0.011 (2)0.008 (2)
O220.045 (3)0.037 (3)0.061 (3)0.005 (2)0.036 (3)0.001 (2)
O230.041 (3)0.042 (3)0.044 (3)0.013 (2)0.014 (2)0.005 (2)
O310.046 (3)0.041 (3)0.027 (2)0.008 (2)0.011 (2)0.002 (2)
O320.050 (3)0.042 (3)0.035 (3)0.017 (2)0.004 (2)0.015 (2)
O330.019 (3)0.075 (4)0.089 (4)0.004 (2)0.005 (3)0.034 (3)
O340.072 (4)0.027 (3)0.043 (3)0.001 (3)0.005 (3)0.009 (2)
C10.012 (2)0.021 (3)0.021 (3)0.001 (2)0.006 (2)0.002 (2)
C20.023 (3)0.024 (3)0.022 (3)0.005 (2)0.000 (2)0.001 (2)
C30.028 (3)0.032 (3)0.024 (3)0.001 (3)0.003 (2)0.000 (3)
C40.026 (3)0.026 (3)0.038 (4)0.001 (3)0.005 (3)0.009 (3)
C50.017 (3)0.031 (4)0.055 (4)0.012 (3)0.002 (3)0.004 (3)
C60.035 (4)0.030 (4)0.048 (4)0.010 (3)0.012 (3)0.007 (3)
C70.033 (3)0.035 (4)0.032 (4)0.015 (3)0.001 (3)0.006 (3)
C80.015 (3)0.022 (3)0.023 (3)0.003 (2)0.002 (2)0.001 (2)
C90.013 (3)0.023 (3)0.028 (3)0.001 (2)0.002 (2)0.003 (2)
C110.017 (3)0.030 (4)0.033 (3)0.003 (3)0.005 (2)0.007 (3)
C120.022 (3)0.025 (3)0.034 (4)0.002 (3)0.009 (3)0.003 (3)
C130.026 (3)0.030 (3)0.028 (3)0.004 (3)0.004 (3)0.002 (3)
C210.021 (3)0.027 (3)0.027 (3)0.001 (2)0.004 (2)0.001 (3)
C220.023 (3)0.026 (3)0.035 (3)0.005 (3)0.004 (3)0.003 (3)
C230.026 (3)0.018 (3)0.029 (3)0.003 (2)0.000 (3)0.003 (2)
C310.019 (3)0.025 (3)0.028 (3)0.007 (2)0.001 (2)0.000 (3)
C320.020 (3)0.029 (3)0.030 (3)0.008 (2)0.002 (2)0.002 (3)
C330.021 (3)0.030 (3)0.041 (4)0.000 (3)0.005 (3)0.012 (3)
C340.026 (3)0.028 (3)0.025 (3)0.001 (3)0.001 (2)0.001 (3)
Geometric parameters (Å, º) top
Os1—C111.892 (6)O21—C211.130 (7)
Os1—C121.900 (6)O22—C221.118 (7)
Os1—C131.922 (6)O23—C231.127 (7)
Os1—S12.4154 (14)O31—C311.140 (7)
Os1—Os22.8399 (3)O32—C321.110 (7)
Os1—Os32.8559 (3)O33—C331.134 (7)
Os1—H11.87 (6)O34—C341.130 (7)
Os2—C231.896 (6)C1—C21.404 (8)
Os2—C221.901 (6)C2—C31.366 (8)
Os2—C211.926 (6)C2—H2A0.9400
Os2—S12.4144 (13)C3—C91.399 (8)
Os2—Os32.8516 (3)C3—H3A0.9400
Os2—H11.86 (6)C4—C51.361 (9)
Os3—C331.897 (6)C4—C91.417 (8)
Os3—C341.929 (6)C4—H4A0.9400
Os3—C311.941 (6)C5—C61.397 (9)
Os3—C321.970 (6)C5—H5A0.9400
N1—C11.297 (7)C6—C71.360 (9)
N1—C81.369 (7)C6—H6A0.9400
S1—C11.799 (5)C7—C81.418 (8)
O11—C111.140 (7)C7—H7A0.9400
O12—C121.138 (7)C8—C91.406 (8)
O13—C131.139 (7)
C11—Os1—C1290.3 (3)C34—Os3—Os2158.16 (17)
C11—Os1—C1397.9 (3)C31—Os3—Os283.02 (17)
C12—Os1—C1392.6 (2)C32—Os3—Os290.14 (18)
C11—Os1—S194.81 (18)C33—Os3—Os1161.6 (2)
C12—Os1—S1168.73 (17)C34—Os3—Os198.51 (17)
C13—Os1—S196.58 (18)C31—Os3—Os184.06 (16)
C11—Os1—Os2137.83 (19)C32—Os3—Os192.31 (16)
C12—Os1—Os2116.33 (18)Os2—Os3—Os159.679 (7)
C13—Os1—Os2111.83 (19)C1—N1—C8117.6 (5)
S1—Os1—Os253.97 (3)C1—S1—Os2110.59 (18)
C11—Os1—Os390.53 (17)C1—S1—Os1110.76 (19)
C12—Os1—Os388.91 (17)Os2—S1—Os172.03 (4)
C13—Os1—Os3171.38 (19)N1—C1—C2124.7 (5)
S1—Os1—Os381.02 (3)N1—C1—S1119.8 (4)
Os2—Os1—Os360.085 (8)C2—C1—S1115.4 (4)
C11—Os1—H1176 (3)C3—C2—C1117.7 (5)
C12—Os1—H188 (2)C3—C2—H2A121.1
C13—Os1—H186 (2)C1—C2—H2A121.1
S1—Os1—H186 (2)C2—C3—C9120.2 (5)
Os2—Os1—H140 (2)C2—C3—H3A119.9
Os3—Os1—H185 (2)C9—C3—H3A119.9
C23—Os2—C2293.2 (3)C5—C4—C9120.1 (6)
C23—Os2—C2192.0 (2)C5—C4—H4A119.9
C22—Os2—C2197.5 (3)C9—C4—H4A119.9
C23—Os2—S1169.10 (18)C4—C5—C6120.4 (6)
C22—Os2—S194.50 (18)C4—C5—H5A119.8
C21—Os2—S194.56 (17)C6—C5—H5A119.8
C23—Os2—Os1115.27 (17)C7—C6—C5121.2 (6)
C22—Os2—Os1135.51 (18)C7—C6—H6A119.4
C21—Os2—Os1113.78 (17)C5—C6—H6A119.4
S1—Os2—Os154.00 (3)C6—C7—C8119.8 (6)
C23—Os2—Os391.62 (17)C6—C7—H7A120.1
C22—Os2—Os387.07 (18)C8—C7—H7A120.1
C21—Os2—Os3173.95 (17)N1—C8—C9122.3 (5)
S1—Os2—Os381.12 (3)N1—C8—C7118.5 (5)
Os1—Os2—Os360.236 (8)C9—C8—C7119.1 (5)
C23—Os2—H185 (2)C3—C9—C8117.3 (5)
C22—Os2—H1172 (3)C3—C9—C4123.3 (5)
C21—Os2—H190 (2)C8—C9—C4119.3 (5)
S1—Os2—H186 (2)O11—C11—Os1177.7 (5)
Os1—Os2—H141 (2)O12—C12—Os1179.1 (6)
Os3—Os2—H186 (2)O13—C13—Os1173.5 (5)
C33—Os3—C3499.9 (3)O21—C21—Os2174.3 (5)
C33—Os3—C3193.3 (2)O22—C22—Os2176.8 (6)
C34—Os3—C3194.2 (2)O23—C23—Os2178.2 (6)
C33—Os3—C3288.3 (2)O31—C31—Os3179.3 (6)
C34—Os3—C3292.1 (3)O32—C32—Os3175.0 (5)
C31—Os3—C32173.2 (2)O33—C33—Os3177.1 (6)
C33—Os3—Os2101.9 (2)O34—C34—Os3177.0 (6)
C11—Os1—Os2—C23128.2 (3)S1—Os1—Os3—C31138.78 (18)
C12—Os1—Os2—C234.5 (3)Os2—Os1—Os3—C3185.37 (18)
C13—Os1—Os2—C23100.2 (3)C11—Os1—Os3—C3259.4 (3)
S1—Os1—Os2—C23177.8 (2)C12—Os1—Os3—C32149.7 (3)
Os3—Os1—Os2—C2376.47 (19)S1—Os1—Os3—C3235.40 (19)
C11—Os1—Os2—C223.5 (4)Os2—Os1—Os3—C3288.80 (18)
C12—Os1—Os2—C22120.2 (3)C11—Os1—Os3—Os2148.20 (18)
C13—Os1—Os2—C22135.1 (3)C12—Os1—Os3—Os2121.52 (19)
S1—Os1—Os2—C2253.1 (3)S1—Os1—Os3—Os253.41 (3)
Os3—Os1—Os2—C2248.2 (3)C23—Os2—S1—C1116.8 (10)
C11—Os1—Os2—C21127.3 (3)C22—Os2—S1—C1108.1 (3)
C12—Os1—Os2—C21109.0 (3)C21—Os2—S1—C110.2 (3)
C13—Os1—Os2—C214.3 (3)Os1—Os2—S1—C1106.0 (2)
S1—Os1—Os2—C2177.71 (19)Os3—Os2—S1—C1165.5 (2)
Os3—Os1—Os2—C21179.00 (19)C23—Os2—S1—Os110.7 (10)
C11—Os1—Os2—S149.6 (3)C22—Os2—S1—Os1145.81 (18)
C12—Os1—Os2—S1173.3 (2)C21—Os2—S1—Os1116.24 (18)
C13—Os1—Os2—S182.0 (2)Os3—Os2—S1—Os159.50 (2)
Os3—Os1—Os2—S1101.29 (4)C11—Os1—S1—C1105.0 (3)
C11—Os1—Os2—Os351.7 (2)C12—Os1—S1—C1138.3 (10)
C12—Os1—Os2—Os372.0 (2)C13—Os1—S1—C16.5 (3)
C13—Os1—Os2—Os3176.69 (19)Os2—Os1—S1—C1105.81 (19)
S1—Os1—Os2—Os3101.29 (4)Os3—Os1—S1—C1165.19 (19)
C23—Os2—Os3—C3360.7 (3)C11—Os1—S1—Os2149.15 (17)
C22—Os2—Os3—C3332.5 (3)C12—Os1—S1—Os232.5 (10)
S1—Os2—Os3—C33127.50 (19)C13—Os1—S1—Os2112.27 (19)
Os1—Os2—Os3—C33179.09 (19)Os3—Os1—S1—Os259.38 (2)
C23—Os2—Os3—C34115.1 (5)C8—N1—C1—C22.0 (8)
C22—Os2—Os3—C34151.7 (5)C8—N1—C1—S1175.3 (4)
S1—Os2—Os3—C3456.7 (5)Os2—S1—C1—N151.1 (5)
Os1—Os2—Os3—C343.3 (5)Os1—S1—C1—N126.7 (5)
C23—Os2—Os3—C3131.2 (2)Os2—S1—C1—C2131.3 (4)
C22—Os2—Os3—C31124.4 (2)Os1—S1—C1—C2150.8 (4)
S1—Os2—Os3—C31140.59 (17)N1—C1—C2—C31.9 (9)
Os1—Os2—Os3—C3187.18 (17)S1—C1—C2—C3175.6 (4)
C23—Os2—Os3—C32149.0 (2)C1—C2—C3—C90.3 (9)
C22—Os2—Os3—C3255.8 (2)C9—C4—C5—C60.5 (10)
S1—Os2—Os3—C3239.19 (17)C4—C5—C6—C70.8 (11)
Os1—Os2—Os3—C3292.60 (17)C5—C6—C7—C81.6 (10)
C23—Os2—Os3—Os1118.41 (18)C1—N1—C8—C90.1 (8)
C22—Os2—Os3—Os1148.44 (18)C1—N1—C8—C7176.2 (6)
S1—Os2—Os3—Os153.42 (3)C6—C7—C8—N1175.4 (6)
C11—Os1—Os3—C33151.0 (6)C6—C7—C8—C91.0 (9)
C12—Os1—Os3—C33118.7 (6)C2—C3—C9—C82.0 (8)
S1—Os1—Os3—C3356.2 (6)C2—C3—C9—C4176.3 (6)
Os2—Os1—Os3—C332.8 (6)N1—C8—C9—C31.9 (8)
C11—Os1—Os3—C3433.0 (3)C7—C8—C9—C3178.2 (6)
C12—Os1—Os3—C3457.3 (3)N1—C8—C9—C4176.5 (5)
S1—Os1—Os3—C34127.82 (18)C7—C8—C9—C40.2 (8)
Os2—Os1—Os3—C34178.77 (17)C5—C4—C9—C3177.3 (6)
C11—Os1—Os3—C31126.4 (3)C5—C4—C9—C81.0 (9)
C12—Os1—Os3—C3136.1 (3)

Experimental details

Crystal data
Chemical formula[Os3(C9H6NS)H(CO)10]
Mr1012.02
Crystal system, space groupMonoclinic, P21/n
Temperature (K)223
a, b, c (Å)9.3593 (5), 9.4129 (5), 25.7433 (14)
β (°) 93.045 (1)
V3)2264.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)16.94
Crystal size (mm)0.18 × 0.16 × 0.14
Data collection
DiffractometerRigaku Scxmini 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.058, 0.092
No. of measured, independent and
observed [I > 2σ(I)] reflections
13690, 4446, 4162
Rint0.032
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.052, 1.14
No. of reflections4446
No. of parameters311
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.75, 1.24

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Os1—C111.892 (6)Os2—C211.926 (6)
Os1—C121.900 (6)Os2—S12.4144 (13)
Os1—C131.922 (6)Os2—Os32.8516 (3)
Os1—S12.4154 (14)Os2—H11.86 (6)
Os1—Os22.8399 (3)Os3—C331.897 (6)
Os1—Os32.8559 (3)Os3—C341.929 (6)
Os1—H11.87 (6)Os3—C311.941 (6)
Os2—C231.896 (6)Os3—C321.970 (6)
Os2—C221.901 (6)
 

References

First citationBegum, N., Das, U. K., Hassan, M., Hogarth, G., Kabir, S. E., Nordlander, E., Rahman, M. A. & Tocher, D. A. (2007). Organometallics, 26, 6462–6472.  Web of Science CSD CrossRef CAS Google Scholar
First citationFan, W., Zhang, R., Leong, W. K. & Yan, Y. K. (2004). Inorg. Chim. Acta, 357, 2441–2450.  Web of Science CSD CrossRef CAS Google Scholar
First citationMiyake, Y., Nomaguchi, Y., Yuki, M. & Nishibayashi, Y. (2007). Organo­metallics, 26, 3611–3613.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeller, M., Hunter, A. D., Regula, J. L. & Szalay, P. S. (2003). Acta Cryst. E59, m975–m976.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds