metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m662-m663

catena-Poly[[tetra­aqua­(μ-4,4′-bi­pyridine-κ2N:N′)zinc(II)] fumarate tetra­hydrate]

aDepartment of Chemistry, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710069, People's Republic of China, and bDepartment of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, People's Republic of China
*Correspondence e-mail: lidongsheng1@126.com

(Received 27 February 2008; accepted 4 April 2008; online 16 April 2008)

In the title compound, {[Zn(C10H8N2)(H2O)4](C4H2O4)·4H2O}n, the ZnII atom is coordinated by two N atoms from two μ-4,4′-bipyridine ligands and four water mol­ecules in a distorted octa­hedral geometry. The coordination unit is extended through the Zn—N bond, leading to a one-dimensional cationic chain. A twofold rotation axis passes through the Zn atom and along the axis of the 4,4′-bipyridine ligand. Each uncoordinated water mol­ecule acts as both hydrogen-bond donor and acceptor. A three-dimensional network is constructed through hydrogen bonds involving water mol­ecules and fumarate dianions.

Related literature

For related literature, see: Lu et al. (2006[Lu, W.-J., Zhu, Y.-M. & Zhong, K.-L. (2006). Acta Cryst. E62, m3036-m3038.]); Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Nordell et al. (2003[Nordell, K. J., Higgins, K. A. & Smith, M. D. (2003). Acta Cryst. E59, m114-m115.]); Wagner et al. (2002[Wagner, B. D., McManus, G. J., Moulton, B. & Zaworotko, M. J. (2002). Chem. Commun. pp. 2176-2177.]); Wen et al. (2005[Wen, L.-L., Dang, D.-B., Duan, C.-Y., Li, Y.-Z., Tian, Z.-F. & Meng, Q.-J. (2005). Inorg. Chem. 44, 7161-7170.]); Yaghi et al. (1997[Yaghi, O. M., Li, H.-L. & Groy, T. L. (1997). Inorg. Chem. 36, 4292-4293.]); Zaworotko (2001[Zaworotko, M. J. (2001). Chem. Commun. pp. 1-9.]); Zhou et al. (2007[Zhou, Y., Yao, J.-N., Liu, W.-S. & Yu, K.-B. (2007). Anal. Sci. 23, x245-x246.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C10H8N2)(H2O)4](C4H2O4)·4H2O

  • Mr = 479.74

  • Monoclinic, C 2/c

  • a = 17.094 (5) Å

  • b = 11.394 (3) Å

  • c = 13.082 (6) Å

  • β = 126.652 (2)°

  • V = 2044.3 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.26 mm−1

  • T = 293 (2) K

  • 0.39 × 0.28 × 0.26 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.626, Tmax = 0.712

  • 7538 measured reflections

  • 1907 independent reflections

  • 1724 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.112

  • S = 1.09

  • 1907 reflections

  • 134 parameters

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −0.86 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—O2 2.0697 (18)
Zn1—N2i 2.133 (3)
Zn1—N1 2.146 (3)
Zn1—O1 2.186 (2)
O2ii—Zn1—O2 179.01 (9)
O2—Zn1—N2i 89.50 (4)
O2—Zn1—N1 90.50 (4)
O2—Zn1—O1ii 91.97 (7)
O2—Zn1—O1 88.01 (7)
N2i—Zn1—O1 89.21 (4)
N1—Zn1—O1 90.79 (4)
O1ii—Zn1—O1 178.43 (8)
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1W⋯O3iii 0.83 1.93 2.757 (2) 173
O1—H2W⋯O4iv 0.83 2.01 2.835 (3) 172
O2—H3W⋯O3 0.83 1.91 2.732 (2) 172
O2—H4W⋯O6v 0.82 1.83 2.623 (3) 162
O3—H5W⋯O5 0.83 1.88 2.707 (3) 173
O3—H6W⋯O4iv 0.82 2.10 2.911 (3) 172
O4—H7W⋯O6v 0.83 2.00 2.832 (3) 175
O4—H8W⋯O5 0.83 1.99 2.811 (3) 169
Symmetry codes: (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) [x, -y+1, z-{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Coordination polymer networks represent a result of applying supramolecular concepts to the design of new functional solids and are well exemplified by compounds in which transition metal centers (nodes) are connected by linear bidentate organic ligands (spacer groups) such as 4,4'-bipyridine (Lu et al., 2006; Nordell et al., 2003; Wagner et al., 2002; Wen et al., 2005; Yaghi et al., 1997; Zhou et al., 2007). These supramolecular structures are of interest as they provide opportunity for generating open framework compounds with controllable cavity sizes and they therefore have the potential to exhibit porosity and/or encapsulate guest molecules (Moulton & Zaworotko, 2001; Zaworotko, 2001).

The title compound consists of one [Zn(C10H8N2) (H2O)4]2+ cation, one fumarate dianion and four lattice water molecules (Fig. 1). Each ZnII atom is six-coordinated in an octahedral geometry with four O atoms of four water molecules in the equatorial plane and two N atoms from two µ-4,4'-bipyridine ligands in the axial sites, resulting a one-dimensional cationic chain along the b-axis. The two pyridyl rings of 4,4'-bipyridine present a torsion angle of 10.0 (2)°.

Each lattice water molecule acts as both hydrogen-bond donor and acceptor. In the crystal structure, the cationic chains are arranged parallel to the bc plane with the fumarate dianions and lattice water molecules located between the sheets composed of the chains. A three-dimensional supramolecular network is formed by hydrogen-bonding interactions involving the water molecules and fumarate dianions (Fig. 2).

Related literature top

For related literature, see: Lu et al. (2006); Moulton & Zaworotko (2001); Nordell et al. (2003); Wagner et al. (2002); Wen et al. (2005); Yaghi et al. (1997); Zaworotko (2001); Zhou et al. (2007).

Experimental top

A mixture of Zn(NO3)2.6H2O (0.030 g, 0.1 mmol), 4,4'-bipyridine (0.016 g, 0.1 mmol), mercaptosuccinic acid (0.015 g, 0.1 mmol), NaOH (0.008 g, 0.2 mmol) and distilled water (10 ml) was sealed in a 25 ml Teflon-lined stainless autoclave and heated at 433 K for 72 h under autogenous pressure. After slowly cooling to room temperature, yellow block-like crystals of the title compound suitable for X-ray analysis were obtained from the reaction mixture by filtration.

Refinement top

H atoms of the water molecules were located in a difference Fourier map and fixed in the refinements with Uiso(H) = 1.5Ueq(O). The remaining H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) 1 - x, y, 3/2 - z; (ii) 1/2 - x, 3/2 - y, 1 - z; (iii) x, -1 + y, z; (iv) x, 1 + y, z; (v) 1/2 - x, 1/2 - y, 1 - z; (vi) 1/2 - x, -1/2 + y, 3/2 - z.]
[Figure 2] Fig. 2. A view of the three-dimensional network in the title compound, viewed down the a axis.
catena-Poly[[tetraaqua(µ-4,4'-bipyridine- κ2N:N')zinc(II)] fumarate tetrahydrate] top
Crystal data top
[Zn(C10H8N2)(H2O)4](C4H2O4)·4H2OF(000) = 1000
Mr = 479.74Dx = 1.559 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3920 reflections
a = 17.094 (5) Åθ = 2.3–28.2°
b = 11.394 (3) ŵ = 1.27 mm1
c = 13.082 (6) ÅT = 293 K
β = 126.652 (2)°Block, colorless
V = 2044.3 (12) Å30.39 × 0.28 × 0.26 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1907 independent reflections
Radiation source: fine-focus sealed tube1724 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ϕ and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2020
Tmin = 0.626, Tmax = 0.712k = 1313
7538 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0789P)2 + 0.2551P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1907 reflectionsΔρmax = 0.99 e Å3
134 parametersΔρmin = 0.86 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0
Crystal data top
[Zn(C10H8N2)(H2O)4](C4H2O4)·4H2OV = 2044.3 (12) Å3
Mr = 479.74Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.094 (5) ŵ = 1.27 mm1
b = 11.394 (3) ÅT = 293 K
c = 13.082 (6) Å0.39 × 0.28 × 0.26 mm
β = 126.652 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1907 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1724 reflections with I > 2σ(I)
Tmin = 0.626, Tmax = 0.712Rint = 0.051
7538 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.09Δρmax = 0.99 e Å3
1907 reflectionsΔρmin = 0.86 e Å3
134 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.27603 (3)0.75000.02705 (18)
O10.41826 (14)0.27340 (13)0.54278 (17)0.0358 (4)
H1W0.38140.21720.52590.054*
H2W0.38640.33280.50410.054*
O20.36784 (13)0.27446 (13)0.72328 (17)0.0358 (4)
H3W0.32320.31200.66100.054*
H4W0.36210.27060.78120.054*
O30.21520 (12)0.40439 (15)0.53213 (15)0.0396 (4)
H5W0.20700.46580.55810.059*
H6W0.23310.41670.48720.059*
O40.29343 (13)0.53785 (16)0.89255 (16)0.0454 (5)
H7W0.30410.46670.89330.068*
H8W0.26350.56460.81910.068*
O50.19945 (14)0.59997 (17)0.63613 (17)0.0437 (4)
O60.17990 (18)0.79445 (17)0.6206 (2)0.0499 (5)
N10.50000.4644 (2)0.75000.0305 (6)
N20.50001.0888 (2)0.75000.0281 (6)
C10.47776 (19)0.5262 (2)0.8170 (2)0.0375 (6)
H1A0.46130.48540.86330.045*
C20.47816 (19)0.6469 (2)0.8206 (2)0.0352 (5)
H2A0.46380.68560.87020.042*
C30.50000.7114 (3)0.75000.0288 (7)
C40.50000.8413 (3)0.75000.0286 (7)
C50.5361 (2)0.9065 (2)0.6958 (3)0.0378 (6)
H50.56120.86810.65840.045*
C60.53453 (18)1.0269 (2)0.6974 (2)0.0358 (5)
H60.55871.06770.66010.043*
C70.20633 (18)0.6996 (2)0.6001 (2)0.0330 (5)
C80.24700 (18)0.7029 (2)0.5263 (2)0.0355 (5)
H80.26990.63280.51670.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0401 (3)0.0197 (3)0.0348 (3)0.0000.0296 (2)0.000
O10.0500 (10)0.0311 (10)0.0364 (9)0.0015 (6)0.0313 (8)0.0004 (6)
O20.0455 (10)0.0390 (11)0.0419 (10)0.0077 (7)0.0362 (8)0.0091 (7)
O30.0540 (10)0.0334 (9)0.0408 (9)0.0009 (7)0.0334 (8)0.0006 (7)
O40.0691 (12)0.0338 (10)0.0394 (10)0.0009 (8)0.0357 (9)0.0017 (7)
O50.0722 (12)0.0362 (10)0.0497 (10)0.0015 (9)0.0509 (10)0.0025 (8)
O60.0879 (15)0.0365 (10)0.0668 (13)0.0006 (9)0.0685 (13)0.0000 (9)
N10.0468 (15)0.0214 (13)0.0374 (14)0.0000.0327 (13)0.000
N20.0357 (13)0.0213 (13)0.0346 (14)0.0000.0250 (12)0.000
C10.0596 (15)0.0256 (12)0.0471 (14)0.0003 (11)0.0424 (13)0.0025 (11)
C20.0574 (14)0.0249 (11)0.0435 (13)0.0034 (10)0.0410 (12)0.0010 (10)
C30.0341 (16)0.0228 (17)0.0319 (16)0.0000.0211 (14)0.000
C40.0354 (15)0.0247 (16)0.0308 (15)0.0000.0224 (13)0.000
C50.0595 (15)0.0249 (12)0.0547 (15)0.0010 (11)0.0480 (13)0.0029 (11)
C60.0528 (13)0.0271 (12)0.0489 (14)0.0000 (10)0.0418 (12)0.0019 (10)
C70.0462 (13)0.0339 (12)0.0312 (11)0.0023 (10)0.0297 (11)0.0014 (10)
C80.0528 (14)0.0326 (11)0.0401 (13)0.0016 (10)0.0381 (12)0.0007 (10)
Geometric parameters (Å, º) top
Zn1—O2i2.0697 (18)N2—C61.344 (3)
Zn1—O22.0697 (18)N2—C6i1.344 (3)
Zn1—N2ii2.133 (3)N2—Zn1iii2.133 (3)
Zn1—N12.146 (3)C1—C21.376 (3)
Zn1—O1i2.186 (2)C1—H1A0.9300
Zn1—O12.186 (2)C2—C31.394 (3)
O1—H1W0.8300C2—H2A0.9300
O1—H2W0.8259C3—C2i1.394 (3)
O2—H3W0.8283C3—C41.480 (5)
O2—H4W0.8210C4—C51.400 (3)
O3—H5W0.8263C4—C5i1.400 (3)
O3—H6W0.8200C5—C61.372 (4)
O4—H7W0.8299C5—H50.9300
O4—H8W0.8315C6—H60.9300
O5—C71.261 (3)C7—C81.490 (3)
O6—C71.261 (3)C8—C8iv1.312 (5)
N1—C1i1.345 (3)C8—H80.9300
N1—C11.345 (3)
O2i—Zn1—O2179.01 (9)C6—N2—Zn1iii121.70 (14)
O2i—Zn1—N2ii89.50 (4)C6i—N2—Zn1iii121.70 (14)
O2—Zn1—N2ii89.50 (4)N1—C1—C2123.2 (2)
O2i—Zn1—N190.50 (4)N1—C1—H1A118.4
O2—Zn1—N190.50 (4)C2—C1—H1A118.4
N2ii—Zn1—N1179.999 (1)C1—C2—C3120.1 (2)
O2i—Zn1—O1i88.01 (7)C1—C2—H2A119.9
O2—Zn1—O1i91.97 (7)C3—C2—H2A119.9
N2ii—Zn1—O1i89.21 (4)C2i—C3—C2116.4 (3)
N1—Zn1—O1i90.79 (4)C2i—C3—C4121.79 (14)
O2i—Zn1—O191.98 (7)C2—C3—C4121.79 (14)
O2—Zn1—O188.01 (7)C5—C4—C5i115.9 (3)
N2ii—Zn1—O189.21 (4)C5—C4—C3122.05 (15)
N1—Zn1—O190.79 (4)C5i—C4—C3122.05 (15)
O1i—Zn1—O1178.43 (8)C6—C5—C4120.3 (2)
Zn1—O1—H1W99.4C6—C5—H5119.9
Zn1—O1—H2W116.6C4—C5—H5119.9
H1W—O1—H2W110.6N2—C6—C5123.5 (2)
Zn1—O2—H3W115.7N2—C6—H6118.3
Zn1—O2—H4W124.3C5—C6—H6118.3
H3W—O2—H4W112.8O6—C7—O5124.5 (2)
H5W—O3—H6W112.2O6—C7—C8118.8 (2)
H7W—O4—H8W110.5O5—C7—C8116.7 (2)
C1i—N1—C1116.8 (3)C8iv—C8—C7124.9 (3)
C1i—N1—Zn1121.60 (14)C8iv—C8—H8117.5
C1—N1—Zn1121.60 (14)C7—C8—H8117.5
C6—N2—C6i116.6 (3)
O2i—Zn1—N1—C1i45.69 (14)C1—C2—C3—C4179.23 (18)
O2—Zn1—N1—C1i134.31 (14)C2i—C3—C4—C510.02 (17)
O1i—Zn1—N1—C1i133.71 (14)C2—C3—C4—C5169.98 (17)
O1—Zn1—N1—C1i46.29 (14)C2i—C3—C4—C5i169.97 (17)
O2i—Zn1—N1—C1134.31 (14)C2—C3—C4—C5i10.02 (17)
O2—Zn1—N1—C145.69 (14)C5i—C4—C5—C60.19 (18)
O1i—Zn1—N1—C146.29 (15)C3—C4—C5—C6179.81 (18)
O1—Zn1—N1—C1133.70 (15)C6i—N2—C6—C50.21 (19)
C1i—N1—C1—C20.83 (19)Zn1iii—N2—C6—C5179.80 (19)
Zn1—N1—C1—C2179.17 (19)C4—C5—C6—N20.4 (4)
N1—C1—C2—C31.6 (4)O6—C7—C8—C8iv3.9 (5)
C1—C2—C3—C2i0.77 (18)O5—C7—C8—C8iv174.9 (3)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x, y1, z; (iii) x, y+1, z; (iv) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···O3v0.831.932.757 (2)173
O1—H2W···O4vi0.832.012.835 (3)172
O2—H3W···O30.831.912.732 (2)172
O2—H4W···O6vii0.821.832.623 (3)162
O3—H5W···O50.831.882.707 (3)173
O3—H6W···O4vi0.822.102.911 (3)172
O4—H7W···O6vii0.832.002.832 (3)175
O4—H8W···O50.831.992.811 (3)169
Symmetry codes: (v) x+1/2, y+1/2, z+1; (vi) x, y+1, z1/2; (vii) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Zn(C10H8N2)(H2O)4](C4H2O4)·4H2O
Mr479.74
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)17.094 (5), 11.394 (3), 13.082 (6)
β (°) 126.652 (2)
V3)2044.3 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.27
Crystal size (mm)0.39 × 0.28 × 0.26
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.626, 0.712
No. of measured, independent and
observed [I > 2σ(I)] reflections
7538, 1907, 1724
Rint0.051
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.112, 1.09
No. of reflections1907
No. of parameters134
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.99, 0.86

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—O22.0697 (18)Zn1—N12.146 (3)
Zn1—N2i2.133 (3)Zn1—O12.186 (2)
O2ii—Zn1—O2179.01 (9)O2—Zn1—O188.01 (7)
O2—Zn1—N2i89.50 (4)N2i—Zn1—O189.21 (4)
O2—Zn1—N190.50 (4)N1—Zn1—O190.79 (4)
O2—Zn1—O1ii91.97 (7)O1ii—Zn1—O1178.43 (8)
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···O3iii0.831.932.757 (2)173
O1—H2W···O4iv0.832.012.835 (3)172
O2—H3W···O30.831.912.732 (2)172
O2—H4W···O6v0.821.832.623 (3)162
O3—H5W···O50.831.882.707 (3)173
O3—H6W···O4iv0.822.102.911 (3)172
O4—H7W···O6v0.832.002.832 (3)175
O4—H8W···O50.831.992.811 (3)169
Symmetry codes: (iii) x+1/2, y+1/2, z+1; (iv) x, y+1, z1/2; (v) x+1/2, y1/2, z+3/2.
 

Acknowledgements

This work was supported by the Natural Science Research Foundation of Shaanxi Provincial Education Office of China (grant No. 06JK155), the Natural Science Foundation of Shaanxi Province of China (grant No. 2006B08) and the Sustentatio Program for New-Century Elitists of the Ministry of Education, China (NCET-06-0891).

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLu, W.-J., Zhu, Y.-M. & Zhong, K.-L. (2006). Acta Cryst. E62, m3036–m3038.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNordell, K. J., Higgins, K. A. & Smith, M. D. (2003). Acta Cryst. E59, m114–m115.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWagner, B. D., McManus, G. J., Moulton, B. & Zaworotko, M. J. (2002). Chem. Commun. pp. 2176–2177.  Web of Science CSD CrossRef Google Scholar
First citationWen, L.-L., Dang, D.-B., Duan, C.-Y., Li, Y.-Z., Tian, Z.-F. & Meng, Q.-J. (2005). Inorg. Chem. 44, 7161–7170.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYaghi, O. M., Li, H.-L. & Groy, T. L. (1997). Inorg. Chem. 36, 4292–4293.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationZaworotko, M. J. (2001). Chem. Commun. pp. 1–9.  Web of Science CrossRef Google Scholar
First citationZhou, Y., Yao, J.-N., Liu, W.-S. & Yu, K.-B. (2007). Anal. Sci. 23, x245–x246.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m662-m663
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds