metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m745-m746

(2,2′-Bi­pyridine-κ2N,N′)[N-(2-oxido-1-naphthyl­­idene)threoninato-κ3O1,N,O2]copper(II)

aSchool of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: lilianzhi1963@yahoo.com.cn

(Received 11 April 2008; accepted 27 April 2008; online 30 April 2008)

In the title complex, [Cu(C15H13NO4)(C10H8N2)], the Schiff base ligand is derived from the condensation of 2-hydr­oxy-1-naphthaldehyde and L-threonine. The CuII atom is five-coordinated by one N atom and two O atoms from the Schiff base ligand and by two N atoms from a 2,2′-bipyridine ligand in a distorted square-pyramidal geometry. In the crystal structure, the combination of inter­molecular O—H⋯O and C—H⋯O hydrogen bonds leads to a two-dimensional network.

Related literature

For related literature, see: Garnovski et al. (1993[Garnovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Kalagouda et al. (2006[Kalagouda, B. G., Manjula, S. P., Ramesh, S. V., Rashmi, V. S. & Siddappa, A. P. (2006). Transition Met. Chem. 31, 580-585.]); Wang et al. (1999[Wang, R.-M., Hao, C.-J., Wang, Y.-P. & Li, S.-B. (1999). J. Mol. Catal. A: Chem. 147, 173-178.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C15H13NO4)(C10H8N2)]

  • Mr = 490.99

  • Orthorhombic, P 21 21 21

  • a = 9.955 (2) Å

  • b = 12.180 (3) Å

  • c = 18.438 (4) Å

  • V = 2235.6 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 298 (2) K

  • 0.29 × 0.28 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.757, Tmax = 0.855

  • 14242 measured reflections

  • 5278 independent reflections

  • 4243 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.088

  • S = 1.04

  • 5278 reflections

  • 300 parameters

  • 492 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.54 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2229 Friedel pairs

  • Flack parameter: −0.005 (13)

Table 1
Selected geometric parameters (Å, °)

Cu1—O4 1.925 (2)
Cu1—N1 1.926 (2)
Cu1—N3 2.005 (2)
Cu1—O1 2.0236 (18)
Cu1—N2 2.231 (3)
O4—Cu1—N1 92.62 (8)
O4—Cu1—N3 91.77 (9)
N1—Cu1—N3 174.65 (9)
O4—Cu1—O1 147.49 (9)
N1—Cu1—O1 82.08 (8)
N3—Cu1—O1 92.57 (9)
O4—Cu1—N2 109.51 (10)
N1—Cu1—N2 104.07 (9)
N3—Cu1—N2 77.29 (10)
O1—Cu1—N2 102.88 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.82 1.99 2.808 (3) 178
C5—H11⋯O2i 0.93 2.49 3.311 (3) 147
C12—H27⋯O2i 0.93 2.50 3.431 (4) 174
C14—H25⋯O3ii 0.93 2.52 3.445 (4) 177
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, -z+2]; (ii) [-x-{\script{1\over 2}}, -y+2, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Amino acids and their derivatives are very important in molecular biology because of their roles in biochemical reactions. Schiff base complexes have continued to play the role of the most important stereochemical models in main group and transition metal coordination chemistry with their easy preparation and structural variation (Garnovski et al., 1993). So efforts have been made to synthesize and characterize amino Schiff base complexes with transition metals and more and more these new complexes have been reported (Kalagouda et al., 2006; Wang et al., 1999). Herein, we report the synthesis and crystal structure of a copper(II) complex with a tridentate Schiff base ligand derived from the condensation of 2-hydroxy-1-naphthaldehyde and L-threonine.

In the title compound (Fig. 1), the CuII atom is in a distorted square-pyramidal coordination geometry, defined by one N and two O atoms from the Schiff base ligand and two N atoms from a 2, 2'-bipyridine ligand. The Cu atom deviates from the basal equatorial plane (formed by O1, N1, O4 and N3) by 0.230 (2) Å toward N2 atom, with a significantly longer Cu1—N2 bond distance (Table 1). The Cu1—N2 bond deviates greatly from the right position to close the Cu1—N3 bond [the bond angle of N3—Cu1—N2 is 77.3 (1)°]. The bipyridine ligand deviates from planarity, with an angle of 11.7 (1)° between the two pyridyl rings. The least-square plane of the bipyridine ligand is approximately perpendicular to the basal equatorial plane [dihedral angle 100.3 (2)°]. In the crystal, the combination of intermolecular O—H···O and C—H···O hydrogen bonds (Table 2) leads to a two-dimensional network structure (Fig. 2).

Related literature top

For related literature, see: Garnovski et al. (1993); Kalagouda et al. (2006); Wang et al. (1999).

Experimental top

L-Threonine (0.119 g, 1 mmol) was dissolved in hot methanol (10 ml), which was then added to a methanol solution (3 ml) of 2-hydroxy-1-naphthaldehyde (0.172 g, 1 mmol). The mixture was stirred at 323 K for 2 h. Subsequently, an aqueous solution (2 ml) of cupric acetate monohydrate (0.200 g, 1 mmol) was added dropwise and stirred for 2 h. A methanol solution (5 ml) of 2,2'-bipyridine (0.156 g, 1 mmol) was added dropwise and stirred for 4 h. The solution was held at room temperature for 10 d and blue block crystals suitable for X-ray diffraction were obtained.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.98(CH) and 0.96(CH3) Å, and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C,O) for methyl and hydroxyl groups.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound with hydrogen bonds shown as dashed lines.
(2,2'-Bipyridine-κ2N,N')[N-(2-oxido-1- naphthylidene)threoninato-κ3O1,N,O2]copper(II) top
Crystal data top
[Cu(C15H13NO4)(C10H8N2)]F(000) = 1012
Mr = 490.99Dx = 1.459 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5604 reflections
a = 9.955 (2) Åθ = 2.3–26.1°
b = 12.180 (3) ŵ = 1.01 mm1
c = 18.438 (4) ÅT = 298 K
V = 2235.6 (9) Å3Block, blue
Z = 40.29 × 0.28 × 0.16 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5278 independent reflections
Radiation source: fine-focus sealed tube4243 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.757, Tmax = 0.855k = 1416
14242 measured reflectionsl = 2024
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0472P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5278 reflectionsΔρmax = 0.32 e Å3
300 parametersΔρmin = 0.54 e Å3
492 restraintsAbsolute structure: Flack (1983), 2229 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.005 (13)
Crystal data top
[Cu(C15H13NO4)(C10H8N2)]V = 2235.6 (9) Å3
Mr = 490.99Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.955 (2) ŵ = 1.01 mm1
b = 12.180 (3) ÅT = 298 K
c = 18.438 (4) Å0.29 × 0.28 × 0.16 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5278 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4243 reflections with I > 2σ(I)
Tmin = 0.757, Tmax = 0.855Rint = 0.027
14242 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.089Δρmax = 0.32 e Å3
S = 1.04Δρmin = 0.54 e Å3
5278 reflectionsAbsolute structure: Flack (1983), 2229 Friedel pairs
300 parametersAbsolute structure parameter: 0.005 (13)
492 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.32501 (3)1.00767 (2)0.977106 (17)0.03806 (10)
N10.1622 (2)1.08781 (15)0.95744 (11)0.0313 (4)
N20.2672 (3)0.89079 (19)1.06492 (15)0.0491 (6)
N30.5005 (2)0.93672 (19)1.00252 (14)0.0480 (6)
O40.3191 (2)0.93362 (17)0.88490 (11)0.0498 (5)
O20.29386 (19)1.31490 (16)1.05070 (12)0.0512 (5)
O10.37076 (18)1.14608 (15)1.03256 (11)0.0424 (4)
O30.05190 (19)1.07490 (16)1.05400 (12)0.0474 (5)
H30.09611.10821.02360.071*
C10.2783 (3)1.2178 (2)1.03223 (14)0.0371 (6)
C20.1394 (3)1.17825 (19)1.00763 (13)0.0319 (5)
H280.09121.23790.98320.038*
C30.0596 (3)1.1395 (2)1.07501 (15)0.0368 (6)
H290.11941.09251.10370.044*
C40.0177 (3)1.2351 (3)1.12313 (16)0.0510 (7)
H21A0.02851.20761.16510.077*
H21B0.04091.28301.09650.077*
H21C0.09601.27501.13820.077*
C50.0856 (2)1.0765 (2)0.90139 (14)0.0325 (5)
H110.01251.12370.89780.039*
C60.1028 (2)0.9982 (2)0.84450 (12)0.0363 (5)
C70.2228 (3)0.9366 (2)0.83774 (15)0.0415 (6)
C80.2402 (3)0.8722 (3)0.77391 (16)0.0545 (8)
H180.31990.83350.76780.065*
C90.1453 (4)0.8654 (3)0.72205 (16)0.0560 (8)
H190.16150.82240.68130.067*
C100.0215 (3)0.9221 (2)0.72803 (15)0.0452 (6)
C110.0016 (3)0.9893 (2)0.78988 (13)0.0397 (6)
C120.1269 (3)1.0408 (2)0.79527 (17)0.0495 (7)
H270.14531.08450.83540.059*
C130.2234 (4)1.0284 (3)0.74247 (19)0.0588 (8)
H260.30551.06400.74750.071*
C140.2000 (4)0.9635 (3)0.68174 (18)0.0621 (9)
H250.26590.95560.64640.074*
C150.0795 (4)0.9115 (3)0.67446 (17)0.0572 (8)
H150.06340.86850.63370.069*
C160.1466 (4)0.8711 (3)1.0941 (2)0.0660 (9)
H170.07010.89761.07100.079*
C170.1333 (6)0.8119 (3)1.1577 (3)0.0965 (13)
H220.04880.79991.17770.116*
C180.2463 (6)0.7710 (4)1.1912 (3)0.1063 (14)
H360.23870.73021.23360.128*
C190.3693 (5)0.7909 (3)1.1617 (3)0.0883 (12)
H370.44680.76651.18490.106*
C200.3776 (4)0.8483 (2)1.09632 (19)0.0579 (8)
C210.5052 (3)0.8664 (2)1.05811 (19)0.0524 (7)
C220.6242 (4)0.8126 (3)1.0751 (2)0.0701 (10)
H330.62710.76241.11310.084*
C230.7371 (4)0.8343 (3)1.0354 (3)0.0775 (11)
H230.81690.79861.04680.093*
C240.7348 (3)0.9067 (3)0.9799 (3)0.0719 (10)
H240.81180.92220.95320.086*
C250.6136 (3)0.9570 (3)0.9642 (2)0.0634 (9)
H320.60971.00660.92590.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03383 (16)0.04027 (16)0.04008 (17)0.00393 (14)0.00421 (14)0.00230 (15)
N10.0301 (10)0.0347 (10)0.0291 (11)0.0002 (9)0.0011 (9)0.0009 (8)
N20.0536 (15)0.0405 (13)0.0531 (16)0.0017 (11)0.0030 (13)0.0083 (12)
N30.0409 (13)0.0384 (13)0.0647 (17)0.0035 (10)0.0093 (12)0.0003 (11)
O40.0456 (11)0.0590 (12)0.0448 (12)0.0165 (10)0.0016 (11)0.0084 (9)
O20.0434 (11)0.0466 (11)0.0636 (14)0.0096 (9)0.0033 (10)0.0158 (10)
O10.0341 (9)0.0460 (10)0.0470 (12)0.0025 (8)0.0092 (9)0.0015 (9)
O30.0356 (10)0.0553 (12)0.0514 (13)0.0103 (9)0.0020 (9)0.0047 (10)
C10.0398 (13)0.0424 (13)0.0291 (13)0.0075 (11)0.0053 (11)0.0008 (11)
C20.0348 (12)0.0333 (12)0.0275 (12)0.0016 (10)0.0021 (10)0.0008 (9)
C30.0339 (13)0.0442 (14)0.0323 (13)0.0029 (11)0.0013 (11)0.0017 (11)
C40.0536 (18)0.0621 (19)0.0374 (15)0.0016 (15)0.0060 (14)0.0050 (14)
C50.0326 (12)0.0360 (12)0.0288 (12)0.0016 (10)0.0001 (10)0.0002 (10)
C60.0456 (13)0.0364 (12)0.0270 (11)0.0003 (13)0.0012 (10)0.0009 (11)
C70.0486 (15)0.0413 (14)0.0346 (14)0.0009 (12)0.0065 (12)0.0036 (11)
C80.0637 (19)0.0570 (17)0.0428 (17)0.0105 (15)0.0104 (15)0.0090 (14)
C90.074 (2)0.0580 (16)0.0354 (15)0.0053 (16)0.0078 (15)0.0131 (13)
C100.0586 (16)0.0469 (15)0.0299 (13)0.0123 (13)0.0007 (13)0.0025 (11)
C110.0510 (14)0.0392 (13)0.0291 (11)0.0082 (13)0.0017 (11)0.0002 (11)
C120.0552 (16)0.0542 (15)0.0392 (15)0.0003 (13)0.0115 (13)0.0065 (12)
C130.0596 (17)0.065 (2)0.0515 (17)0.0031 (15)0.0187 (15)0.0011 (15)
C140.076 (2)0.0662 (18)0.0440 (16)0.0210 (16)0.0221 (16)0.0030 (14)
C150.079 (2)0.0582 (17)0.0344 (15)0.0206 (16)0.0067 (15)0.0039 (13)
C160.074 (2)0.0503 (17)0.074 (2)0.0007 (16)0.0131 (19)0.0167 (16)
C170.104 (3)0.085 (3)0.101 (3)0.002 (2)0.034 (3)0.038 (2)
C180.128 (3)0.098 (3)0.092 (3)0.009 (3)0.010 (3)0.049 (2)
C190.100 (3)0.080 (2)0.084 (2)0.015 (2)0.007 (2)0.035 (2)
C200.0753 (19)0.0387 (14)0.0597 (18)0.0037 (15)0.0113 (17)0.0086 (14)
C210.0575 (17)0.0352 (14)0.0645 (18)0.0071 (13)0.0215 (15)0.0033 (14)
C220.076 (2)0.0502 (17)0.084 (2)0.0146 (17)0.029 (2)0.0012 (17)
C230.060 (2)0.063 (2)0.109 (3)0.0182 (17)0.031 (2)0.020 (2)
C240.0489 (17)0.0566 (18)0.110 (3)0.0058 (15)0.010 (2)0.015 (2)
C250.0492 (17)0.0481 (16)0.093 (2)0.0030 (13)0.0050 (18)0.0026 (16)
Geometric parameters (Å, º) top
Cu1—O41.925 (2)C8—H180.9300
Cu1—N11.926 (2)C9—C101.417 (5)
Cu1—N32.005 (2)C9—H190.9300
Cu1—O12.0236 (18)C10—C151.415 (4)
Cu1—N22.231 (3)C10—C111.422 (4)
N1—C51.292 (3)C11—C121.400 (4)
N1—C21.457 (3)C12—C131.376 (4)
N2—C161.338 (4)C12—H270.9300
N2—C201.345 (4)C13—C141.390 (5)
N3—C211.337 (4)C13—H260.9300
N3—C251.352 (4)C14—C151.363 (5)
O4—C71.295 (4)C14—H250.9300
O2—C11.240 (3)C15—H150.9300
O1—C11.269 (3)C16—C171.384 (5)
O3—C31.415 (3)C16—H170.9300
O3—H30.8200C17—C181.376 (7)
C1—C21.533 (4)C17—H220.9300
C2—C31.548 (4)C18—C191.362 (7)
C2—H280.9800C18—H360.9300
C3—C41.522 (4)C19—C201.397 (5)
C3—H290.9800C19—H370.9300
C4—H21A0.9600C20—C211.469 (5)
C4—H21B0.9600C21—C221.390 (5)
C4—H21C0.9600C22—C231.366 (6)
C5—C61.428 (3)C22—H330.9300
C5—H110.9300C23—C241.352 (6)
C6—C71.417 (4)C23—H230.9300
C6—C111.452 (3)C24—C251.384 (5)
C7—C81.425 (4)C24—H240.9300
C8—C91.346 (5)C25—H320.9300
O4—Cu1—N192.62 (8)C9—C8—H18118.8
O4—Cu1—N391.77 (9)C7—C8—H18118.8
N1—Cu1—N3174.65 (9)C8—C9—C10121.6 (3)
O4—Cu1—O1147.49 (9)C8—C9—H19119.2
N1—Cu1—O182.08 (8)C10—C9—H19119.2
N3—Cu1—O192.57 (9)C15—C10—C9121.3 (3)
O4—Cu1—N2109.51 (10)C15—C10—C11119.8 (3)
N1—Cu1—N2104.07 (9)C9—C10—C11118.9 (3)
N3—Cu1—N277.29 (10)C12—C11—C10117.3 (3)
O1—Cu1—N2102.88 (9)C12—C11—C6123.7 (2)
C5—N1—C2119.8 (2)C10—C11—C6118.9 (3)
C5—N1—Cu1126.40 (17)C13—C12—C11121.5 (3)
C2—N1—Cu1113.27 (15)C13—C12—H27119.3
C16—N2—C20119.4 (3)C11—C12—H27119.3
C16—N2—Cu1129.6 (2)C12—C13—C14121.0 (3)
C20—N2—Cu1110.3 (2)C12—C13—H26119.5
C21—N3—C25119.3 (3)C14—C13—H26119.5
C21—N3—Cu1119.1 (2)C15—C14—C13119.4 (3)
C25—N3—Cu1121.6 (2)C15—C14—H25120.3
C7—O4—Cu1127.02 (18)C13—C14—H25120.3
C1—O1—Cu1114.08 (16)C14—C15—C10120.9 (3)
C3—O3—H3109.5C14—C15—H15119.5
O2—C1—O1124.4 (2)C10—C15—H15119.5
O2—C1—C2119.6 (2)N2—C16—C17121.3 (4)
O1—C1—C2116.1 (2)N2—C16—H17119.3
N1—C2—C1106.54 (19)C17—C16—H17119.3
N1—C2—C3111.06 (19)C18—C17—C16119.4 (5)
C1—C2—C3108.7 (2)C18—C17—H22120.3
N1—C2—H28110.1C16—C17—H22120.3
C1—C2—H28110.1C19—C18—C17119.5 (4)
C3—C2—H28110.1C19—C18—H36120.3
O3—C3—C4111.7 (2)C17—C18—H36120.3
O3—C3—C2110.6 (2)C18—C19—C20119.1 (4)
C4—C3—C2112.0 (2)C18—C19—H37120.4
O3—C3—H29107.4C20—C19—H37120.4
C4—C3—H29107.4N2—C20—C19121.1 (4)
C2—C3—H29107.4N2—C20—C21116.2 (3)
C3—C4—H21A109.5C19—C20—C21122.7 (4)
C3—C4—H21B109.5N3—C21—C22120.3 (4)
H21A—C4—H21B109.5N3—C21—C20115.7 (3)
C3—C4—H21C109.5C22—C21—C20123.9 (3)
H21A—C4—H21C109.5C23—C22—C21119.3 (4)
H21B—C4—H21C109.5C23—C22—H33120.4
N1—C5—C6126.0 (2)C21—C22—H33120.4
N1—C5—H11117.0C24—C23—C22121.2 (3)
C6—C5—H11117.0C24—C23—H23119.4
C7—C6—C5121.3 (2)C22—C23—H23119.4
C7—C6—C11120.2 (2)C23—C24—C25117.5 (4)
C5—C6—C11118.3 (2)C23—C24—H24121.3
O4—C7—C6125.5 (2)C25—C24—H24121.3
O4—C7—C8116.7 (3)N3—C25—C24122.4 (4)
C6—C7—C8117.8 (3)N3—C25—H32118.8
C9—C8—C7122.4 (3)C24—C25—H32118.8
C1—C2—C3—C471.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.992.808 (3)178
C5—H11···O2i0.932.493.311 (3)147
C12—H27···O2i0.932.503.431 (4)174
C14—H25···O3ii0.932.523.445 (4)177
Symmetry codes: (i) x1/2, y+5/2, z+2; (ii) x1/2, y+2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C15H13NO4)(C10H8N2)]
Mr490.99
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)9.955 (2), 12.180 (3), 18.438 (4)
V3)2235.6 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.29 × 0.28 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.757, 0.855
No. of measured, independent and
observed [I > 2σ(I)] reflections
14242, 5278, 4243
Rint0.027
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.089, 1.04
No. of reflections5278
No. of parameters300
No. of restraints492
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.54
Absolute structureFlack (1983), 2229 Friedel pairs
Absolute structure parameter0.005 (13)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O41.925 (2)Cu1—O12.0236 (18)
Cu1—N11.926 (2)Cu1—N22.231 (3)
Cu1—N32.005 (2)
O4—Cu1—N192.62 (8)N3—Cu1—O192.57 (9)
O4—Cu1—N391.77 (9)O4—Cu1—N2109.51 (10)
N1—Cu1—N3174.65 (9)N1—Cu1—N2104.07 (9)
O4—Cu1—O1147.49 (9)N3—Cu1—N277.29 (10)
N1—Cu1—O182.08 (8)O1—Cu1—N2102.88 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.992.808 (3)178
C5—H11···O2i0.932.493.311 (3)147
C12—H27···O2i0.932.503.431 (4)174
C14—H25···O3ii0.932.523.445 (4)177
Symmetry codes: (i) x1/2, y+5/2, z+2; (ii) x1/2, y+2, z1/2.
 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province (grant No. Y2004B02) for supporting this work.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGarnovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  CrossRef Web of Science Google Scholar
First citationKalagouda, B. G., Manjula, S. P., Ramesh, S. V., Rashmi, V. S. & Siddappa, A. P. (2006). Transition Met. Chem. 31, 580–585.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, R.-M., Hao, C.-J., Wang, Y.-P. & Li, S.-B. (1999). J. Mol. Catal. A: Chem. 147, 173–178.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m745-m746
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds