organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,6-Di­chloro-N-(4,6-di­chloro­pyrimidin-2-yl)picolinamide

aCollege of Chemistry and Ecological Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Guangxi University, Nanning 530006, People's Republic of China
*Correspondence e-mail: yxhphd@163.com

(Received 1 March 2008; accepted 15 April 2008; online 18 April 2008)

In the title compound, C10H4Cl4N4O, the pyridine and pyrimidine rings are nearly perpendicular to each other, the dihedral angle between them being 86.60 (10)°. In the crystal structure, the N and O atoms in the amide group are involved in inter­molecular hydrogen bonds, forming a one-dimensional chain along the c axis.

Related literature

For related literature, see: Liu et al. (2005[Liu, W., Li, X., Zhang, B. & Song, M.-P. (2005). J. Org. Chem. 70, 295. ]); Śladowska et al. (1999[Śladowska, H., Sieklucka-Dziuba, M., Rajtar, G., Sadowski, M. & Kleinrok, Z. (1999). Farmaco, 54, 773-779.]).

[Scheme 1]

Experimental

Crystal data
  • C10H4Cl4N4O

  • Mr = 337.97

  • Monoclinic, P 21 /c

  • a = 10.9313 (13) Å

  • b = 13.3682 (14) Å

  • c = 9.3846 (10) Å

  • β = 112.576 (1)°

  • V = 1266.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 293 (2) K

  • 0.48 × 0.43 × 0.40 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.648, Tmax = 0.690

  • 15165 measured reflections

  • 2494 independent reflections

  • 2132 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.096

  • S = 1.02

  • 2494 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.09 2.937 (2) 170
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemical and pharmacological properties of acid amides have been investigated extensively, owing to their chelating ability with metal ions and to their pltentially beneficial chemical and biological activities (Liu et al., 2005; Śladowska et al., 1999). As part of our studies of the synthesis and characterization of these compounds, we report here the synthesis and crystal structure of 3,6-dichloro-N-(4,6-dichloropyrimidin-2-yl)picolinamide. The C=O bond length is 1.208 (3) Å, indicating that the molecule is in the keto form. In the crystal structure, intermolecular N—H···O hydrogen bonds link the molecules into extended chains (Table 1 and Fig. 2). The dihedral angle between the two rings is 86.60 (10)°, which is close to 90 °. The two rings are nearly perpendicular to one another, which keeps the steric effects between these rings least.

Related literature top

For related literature, see: Liu et al. (2005); Śladowska et al. (1999).

Experimental top

A solution of 3,6-dichloropicolinoyl chloride (10 mmol) in 50 ml ethanol was added to a solution of 4,6-dichloropyrimidin-2-amine (10 mmol) in 10 ml ethanol. The reaction mixture was refluxed for 1 h with stirring. Then the resulting pale yellow precipitate was obtained by filtration, washed several times with ethanol and dried in vacuo (yield 90%). Analysis calculated for C10H4Cl4N4O: C 35.54, H 1.19, Cl 41.96, N 16.58, O 4.73%; found: C 35.51, H 1.21, Cl 41.90, N 16.58, O 4.79%. A methanol solution of the title compound was slowly evaporated and white crystals were obtained after one weeks.

Refinement top

H atoms were positioned geometrically (C—H = 0.93 and N—H = 0.86 Å) and were refined as riding, with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Crystal packing of the title compound, showing the hydrogen bonds as dashed lines.
3,6-Dichloro-N-(4,6-dichloropyrimidin-2-yl)picolinamide top
Crystal data top
C10H4Cl4N4OF(000) = 672
Mr = 337.97Dx = 1.773 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5203 reflections
a = 10.9313 (13) Åθ = 2.5–27.9°
b = 13.3682 (14) ŵ = 0.93 mm1
c = 9.3846 (10) ÅT = 293 K
β = 112.576 (1)°Block, colorless
V = 1266.3 (2) Å30.48 × 0.43 × 0.40 mm
Z = 4
Data collection top
Bruker SMART 1000
diffractometer
2494 independent reflections
Radiation source: fine-focus sealed tube2132 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.648, Tmax = 0.690k = 1416
15165 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.054P)2 + 0.512P]
where P = (Fo2 + 2Fc2)/3
2494 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C10H4Cl4N4OV = 1266.3 (2) Å3
Mr = 337.97Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.9313 (13) ŵ = 0.93 mm1
b = 13.3682 (14) ÅT = 293 K
c = 9.3846 (10) Å0.48 × 0.43 × 0.40 mm
β = 112.576 (1)°
Data collection top
Bruker SMART 1000
diffractometer
2494 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2132 reflections with I > 2σ(I)
Tmin = 0.648, Tmax = 0.690Rint = 0.032
15165 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.02Δρmax = 0.34 e Å3
2494 reflectionsΔρmin = 0.30 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.35795 (6)0.27703 (5)0.13818 (7)0.05603 (19)
Cl20.62475 (7)0.54097 (5)0.43365 (8)0.0654 (2)
Cl31.09988 (5)0.21157 (5)0.02538 (7)0.05207 (18)
Cl41.02903 (6)0.06103 (4)0.35461 (7)0.05590 (19)
N10.74081 (16)0.23149 (13)0.16663 (19)0.0373 (4)
H10.72570.22610.24970.045*
N20.62326 (16)0.40893 (13)0.23044 (19)0.0391 (4)
N30.87749 (16)0.09425 (12)0.24523 (19)0.0365 (4)
N40.90814 (16)0.21391 (12)0.07244 (19)0.0345 (4)
O10.65761 (15)0.30109 (12)0.07433 (17)0.0477 (4)
C10.65957 (19)0.29263 (15)0.0547 (2)0.0343 (4)
C20.56552 (19)0.35255 (15)0.1045 (2)0.0337 (4)
C30.4300 (2)0.35264 (16)0.0218 (2)0.0377 (4)
C40.3507 (2)0.41321 (17)0.0706 (3)0.0454 (5)
H40.25920.41370.01780.054*
C50.4096 (2)0.47242 (16)0.1984 (3)0.0453 (5)
H50.35960.51480.23350.054*
C60.5450 (2)0.46693 (16)0.2728 (2)0.0409 (5)
C70.84622 (18)0.17692 (14)0.1588 (2)0.0326 (4)
C81.01267 (19)0.16221 (16)0.0782 (2)0.0356 (4)
C91.0576 (2)0.07605 (16)0.1624 (2)0.0410 (5)
H91.13170.04120.16400.049*
C100.9829 (2)0.04607 (15)0.2440 (2)0.0372 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0484 (3)0.0739 (4)0.0436 (3)0.0043 (3)0.0151 (3)0.0118 (3)
Cl20.0771 (4)0.0715 (4)0.0639 (4)0.0244 (3)0.0452 (4)0.0292 (3)
Cl30.0420 (3)0.0729 (4)0.0502 (3)0.0091 (2)0.0275 (3)0.0117 (3)
Cl40.0705 (4)0.0384 (3)0.0589 (4)0.0150 (3)0.0248 (3)0.0111 (2)
N10.0406 (9)0.0437 (10)0.0356 (9)0.0093 (7)0.0234 (8)0.0071 (7)
N20.0414 (9)0.0450 (10)0.0380 (9)0.0001 (8)0.0231 (8)0.0001 (8)
N30.0422 (9)0.0331 (9)0.0357 (9)0.0000 (7)0.0166 (7)0.0004 (7)
N40.0349 (8)0.0366 (9)0.0352 (9)0.0011 (7)0.0170 (7)0.0012 (7)
O10.0500 (9)0.0659 (10)0.0353 (8)0.0160 (7)0.0253 (7)0.0077 (7)
C10.0358 (10)0.0388 (11)0.0343 (10)0.0023 (8)0.0200 (8)0.0010 (8)
C20.0375 (10)0.0354 (10)0.0331 (10)0.0065 (8)0.0189 (8)0.0065 (8)
C30.0408 (10)0.0422 (11)0.0321 (10)0.0047 (9)0.0162 (9)0.0052 (8)
C40.0371 (11)0.0534 (13)0.0467 (12)0.0141 (9)0.0173 (9)0.0106 (10)
C50.0550 (13)0.0412 (12)0.0508 (13)0.0137 (10)0.0327 (11)0.0063 (10)
C60.0515 (12)0.0377 (11)0.0434 (11)0.0025 (9)0.0292 (10)0.0000 (9)
C70.0335 (9)0.0336 (10)0.0319 (9)0.0006 (8)0.0139 (8)0.0026 (8)
C80.0329 (9)0.0437 (11)0.0310 (9)0.0007 (8)0.0132 (8)0.0039 (8)
C90.0372 (11)0.0425 (12)0.0431 (11)0.0085 (9)0.0153 (9)0.0033 (9)
C100.0421 (11)0.0321 (10)0.0331 (10)0.0042 (8)0.0098 (9)0.0023 (8)
Geometric parameters (Å, º) top
Cl1—C31.729 (2)N4—C71.335 (2)
Cl2—C61.734 (2)O1—C11.208 (2)
Cl3—C81.732 (2)C1—C21.512 (3)
Cl4—C101.726 (2)C2—C31.383 (3)
N1—C11.358 (3)C3—C41.387 (3)
N1—C71.389 (2)C4—C51.373 (3)
N1—H10.8600C4—H40.9300
N2—C61.323 (3)C5—C61.375 (3)
N2—C21.338 (3)C5—H50.9300
N3—C101.324 (3)C8—C91.376 (3)
N3—C71.335 (3)C9—C101.376 (3)
N4—C81.319 (3)C9—H90.9300
C1—N1—C7125.77 (15)C4—C5—C6117.70 (19)
C1—N1—H1117.1C4—C5—H5121.1
C7—N1—H1117.1C6—C5—H5121.1
C6—N2—C2117.08 (17)N2—C6—C5124.9 (2)
C10—N3—C7114.73 (16)N2—C6—Cl2115.41 (16)
C8—N4—C7114.49 (17)C5—C6—Cl2119.64 (16)
O1—C1—N1125.91 (17)N4—C7—N3127.17 (17)
O1—C1—C2120.51 (18)N4—C7—N1117.50 (17)
N1—C1—C2113.57 (15)N3—C7—N1115.27 (16)
N2—C2—C3122.36 (17)N4—C8—C9125.06 (18)
N2—C2—C1115.17 (17)N4—C8—Cl3115.62 (15)
C3—C2—C1122.40 (18)C9—C8—Cl3119.29 (15)
C2—C3—C4119.07 (19)C10—C9—C8113.97 (18)
C2—C3—Cl1121.29 (15)C10—C9—H9123.0
C4—C3—Cl1119.62 (17)C8—C9—H9123.0
C5—C4—C3118.8 (2)N3—C10—C9124.56 (19)
C5—C4—H4120.6N3—C10—Cl4116.92 (16)
C3—C4—H4120.6C9—C10—Cl4118.52 (16)
C7—N1—C1—O18.1 (3)C4—C5—C6—N20.1 (3)
C7—N1—C1—C2172.25 (18)C4—C5—C6—Cl2179.38 (17)
C6—N2—C2—C31.0 (3)C8—N4—C7—N31.4 (3)
C6—N2—C2—C1176.22 (17)C8—N4—C7—N1175.62 (17)
O1—C1—C2—N2124.1 (2)C10—N3—C7—N40.9 (3)
N1—C1—C2—N256.2 (2)C10—N3—C7—N1176.17 (17)
O1—C1—C2—C353.0 (3)C1—N1—C7—N429.0 (3)
N1—C1—C2—C3126.6 (2)C1—N1—C7—N3153.63 (19)
N2—C2—C3—C40.0 (3)C7—N4—C8—C90.9 (3)
C1—C2—C3—C4176.93 (18)C7—N4—C8—Cl3177.03 (14)
N2—C2—C3—Cl1178.64 (15)N4—C8—C9—C100.1 (3)
C1—C2—C3—Cl14.4 (3)Cl3—C8—C9—C10177.81 (15)
C2—C3—C4—C51.0 (3)C7—N3—C10—C90.1 (3)
Cl1—C3—C4—C5179.68 (17)C7—N3—C10—Cl4179.59 (14)
C3—C4—C5—C61.0 (3)C8—C9—C10—N30.5 (3)
C2—N2—C6—C50.9 (3)C8—C9—C10—Cl4179.95 (15)
C2—N2—C6—Cl2178.40 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.092.937 (2)170
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H4Cl4N4O
Mr337.97
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.9313 (13), 13.3682 (14), 9.3846 (10)
β (°) 112.576 (1)
V3)1266.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.48 × 0.43 × 0.40
Data collection
DiffractometerBruker SMART 1000
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.648, 0.690
No. of measured, independent and
observed [I > 2σ(I)] reflections
15165, 2494, 2132
Rint0.032
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.096, 1.02
No. of reflections2494
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.30

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.092.937 (2)169.5
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (20761002). This research was sponsored by the fund of the Talent Highland Research Program of Guangxi University (205121), the Science Foundation of the State Ethnic Affairs Commission (07GX05), the Development Foundation Guangxi Research Institute of Chemical Industry and the Science Foundation of Guangxi University for Nationalities (0409032, 0409012, 0509ZD047).

References

First citationLiu, W., Li, X., Zhang, B. & Song, M.-P. (2005). J. Org. Chem. 70, 295.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationŚladowska, H., Sieklucka-Dziuba, M., Rajtar, G., Sadowski, M. & Kleinrok, Z. (1999). Farmaco, 54, 773–779.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds