organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-(–)-Methyl 2-(p-tolyl­sulfon­yl­oxy)­propanoate

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhj@njut.edu.cn

(Received 31 March 2008; accepted 12 April 2008; online 18 April 2008)

In the title compound, C11H14O5S, there is an intra­molecular C—H⋯O hydrogen bond, for which the C—C—S—O torsion angle involving the acceptor and donor atoms is 2.4 (4)°. The dihedral angle between the benzene ring and the methoxy­carbonyl plane is 52.7 (4)°. In the crystal structure, mol­ecules are linked via inter­molecular C—H⋯O hydrogen bonds, forming a mol­ecular chain along the b axis.

Related literature

For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Chan et al. (1975[Chan, J. H., Walker, F., Tseng, C. K., Baker, D. R. & Arneklev, D. R. (1975). J. Agric. Food Chem. 23, 1008-1010]); Talbert et al. (1974[Talbert, R. E., Frans, R. E. & Ramthun, L. E. (1974). Arkansas Agric. 11, 226-244.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14O5S

  • Mr = 258.28

  • Orthorhombic, P 21 21 21

  • a = 7.4890 (15) Å

  • b = 10.150 (2) Å

  • c = 17.362 (4) Å

  • V = 1319.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 298 (2) K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.906, Tmax = 0.951

  • 2933 measured reflections

  • 2581 independent reflections

  • 1703 reflections with I > 2σ(I)

  • Rint = 0.063

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.154

  • S = 1.01

  • 2581 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1073 Friedel pairs

  • Flack parameter: 0.20 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O1 0.93 2.53 2.910 (6) 104
C4—H4A⋯O3i 0.93 2.52 3.297 (5) 141
C6—H6A⋯O1ii 0.93 2.55 3.478 (6) 172
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

(S)-(-)-methyl 2-(p-toluenesulfonyloxy)propanoate is an important fine chemical, which can be used for many fields such as chiral pesticide, organometallic chemistry, etc. (Talbert et al., 1974). The bond lengths and angles of the title compound are within normal ranges (Allen et al., 1987). In the crystal structure, molecules are linked via intermolecular C—H···O hydrogen bonds, which with intramolecular C—H···O hydrogen bonds seem to be effective in the stabilization of the crystal. As can be seen from the packing diagram (Fig. 2), the molecules are stacked along the a axis.

Related literature top

For related literature, see: Allen et al. (1987); Chan et al. (1975); Talbert et al. (1974).

Experimental top

The title compound was prepared according to the literature method (Chan et al., 1975). The crystals were obtained by dissolving the title compound (500 mg, 2 mmol) in ethyl acetate (20 ml) and evaporating the solvent slowly at room temperature for about 7 d.

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A drawing of the title molecular structure, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The hydrogen bond is shown by dashed line.
[Figure 2] Fig. 2. A packing diagram of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
(S)-(-)-Methyl 2-(p-tolylsulfonyloxy)propanoate top
Crystal data top
C11H14O5SF(000) = 544
Mr = 258.28Dx = 1.300 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 7.4890 (15) Åθ = 9–14°
b = 10.150 (2) ŵ = 0.25 mm1
c = 17.362 (4) ÅT = 298 K
V = 1319.7 (5) Å3Block, colorless
Z = 40.40 × 0.20 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1703 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.063
Graphite monochromatorθmax = 26.0°, θmin = 2.3°
ω/2θ scansh = 99
Absorption correction: ψ scan
(North et al., 1968)
k = 012
Tmin = 0.906, Tmax = 0.951l = 021
2933 measured reflections3 standard reflections every 200 reflections
2581 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.06P)2 + P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2581 reflectionsΔρmax = 0.31 e Å3
154 parametersΔρmin = 0.29 e Å3
0 restraintsAbsolute structure: Flack (1983), 1073 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.20 (16)
Crystal data top
C11H14O5SV = 1319.7 (5) Å3
Mr = 258.28Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.4890 (15) ŵ = 0.25 mm1
b = 10.150 (2) ÅT = 298 K
c = 17.362 (4) Å0.40 × 0.20 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1703 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.063
Tmin = 0.906, Tmax = 0.9513 standard reflections every 200 reflections
2933 measured reflections intensity decay: none
2581 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.154Δρmax = 0.31 e Å3
S = 1.01Δρmin = 0.29 e Å3
2581 reflectionsAbsolute structure: Flack (1983), 1073 Friedel pairs
154 parametersAbsolute structure parameter: 0.20 (16)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.06641 (15)0.89958 (12)0.71844 (7)0.0628 (3)
O10.1083 (4)0.7829 (3)0.67754 (18)0.0765 (10)
O20.1557 (5)1.0219 (3)0.7003 (2)0.0830 (10)
O30.1372 (4)0.9339 (3)0.70538 (18)0.0689 (9)
O40.3001 (6)0.8618 (5)0.5745 (2)0.1125 (16)
O50.4188 (5)0.6878 (4)0.6310 (2)0.0984 (12)
C10.1382 (8)0.7979 (7)1.0589 (3)0.102 (2)
H1B0.10730.87501.08810.152*
H1C0.25980.77411.06950.152*
H1D0.06080.72661.07320.152*
C20.1173 (7)0.8265 (7)0.9740 (3)0.0853 (17)
C30.1522 (6)0.7282 (5)0.9202 (3)0.0723 (13)
H3A0.18740.64570.93770.087*
C40.1371 (6)0.7478 (4)0.8434 (3)0.0589 (11)
H4A0.16270.68070.80860.071*
C50.0814 (5)0.8730 (4)0.8176 (3)0.0561 (11)
C60.0417 (8)0.9679 (5)0.8676 (3)0.0805 (14)
H6A0.00341.04980.85000.097*
C70.0576 (9)0.9444 (6)0.9464 (3)0.0910 (17)
H7A0.02671.01060.98100.109*
C80.2695 (6)0.8272 (5)0.7102 (3)0.0715 (13)
H8A0.21740.74940.73500.086*
C90.4204 (7)0.8807 (6)0.7576 (3)0.0969 (17)
H9A0.37820.90080.80840.145*
H9B0.51390.81620.76070.145*
H9C0.46590.95930.73390.145*
C100.3253 (6)0.7955 (6)0.6289 (3)0.0758 (14)
C110.5033 (10)0.6511 (7)0.5593 (4)0.124 (3)
H11A0.57450.57360.56710.186*
H11B0.41340.63340.52130.186*
H11C0.57820.72190.54200.186*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0524 (6)0.0593 (6)0.0768 (7)0.0042 (6)0.0029 (6)0.0051 (6)
O10.077 (2)0.080 (2)0.072 (2)0.0056 (18)0.0007 (17)0.0045 (17)
O20.078 (2)0.078 (2)0.093 (3)0.0125 (18)0.0042 (18)0.0086 (19)
O30.0576 (17)0.0589 (18)0.090 (2)0.0055 (14)0.0090 (16)0.0238 (16)
O40.142 (4)0.119 (4)0.076 (3)0.042 (3)0.004 (2)0.026 (3)
O50.098 (3)0.081 (2)0.116 (3)0.011 (2)0.025 (2)0.012 (2)
C10.092 (4)0.137 (6)0.075 (4)0.009 (4)0.007 (3)0.003 (4)
C20.057 (3)0.118 (5)0.081 (4)0.014 (3)0.012 (3)0.005 (4)
C30.058 (3)0.070 (3)0.089 (4)0.009 (2)0.017 (2)0.008 (3)
C40.061 (3)0.043 (2)0.072 (3)0.0061 (19)0.006 (2)0.001 (2)
C50.036 (2)0.052 (3)0.080 (3)0.0096 (19)0.002 (2)0.001 (2)
C60.090 (4)0.061 (3)0.090 (4)0.011 (3)0.004 (3)0.005 (3)
C70.087 (4)0.096 (4)0.090 (4)0.012 (4)0.007 (3)0.032 (3)
C80.053 (2)0.076 (3)0.085 (4)0.010 (2)0.008 (2)0.023 (3)
C90.078 (3)0.114 (4)0.099 (4)0.010 (4)0.017 (3)0.005 (3)
C100.053 (3)0.085 (4)0.089 (4)0.005 (3)0.004 (3)0.021 (3)
C110.140 (7)0.111 (5)0.121 (6)0.019 (5)0.036 (4)0.009 (4)
Geometric parameters (Å, º) top
S—O11.416 (3)C4—C51.411 (6)
S—O21.444 (3)C4—H4A0.9300
S—O31.581 (3)C5—C61.331 (6)
S—C51.746 (5)C6—C71.395 (8)
O3—C81.470 (5)C6—H6A0.9300
O4—C101.174 (6)C7—H7A0.9300
O5—C101.299 (6)C8—C91.500 (7)
O5—C111.444 (7)C8—C101.507 (7)
C1—C21.511 (7)C8—H8A0.9800
C1—H1B0.9600C9—H9A0.9600
C1—H1C0.9600C9—H9B0.9600
C1—H1D0.9600C9—H9C0.9600
C2—C71.364 (8)C11—H11A0.9600
C2—C31.392 (8)C11—H11B0.9600
C3—C41.353 (6)C11—H11C0.9600
C3—H3A0.9300
O1—S—O2120.5 (2)C5—C6—H6A120.1
O1—S—O3109.0 (2)C7—C6—H6A120.1
O2—S—O3103.07 (19)C2—C7—C6121.5 (5)
O1—S—C5110.5 (2)C2—C7—H7A119.3
O2—S—C5108.5 (2)C6—C7—H7A119.3
O3—S—C5103.75 (18)O3—C8—C9105.8 (4)
C8—O3—S118.7 (3)O3—C8—C10106.9 (4)
C10—O5—C11115.4 (5)C9—C8—C10112.5 (4)
C2—C1—H1B109.5O3—C8—H8A110.5
C2—C1—H1C109.5C9—C8—H8A110.5
H1B—C1—H1C109.5C10—C8—H8A110.5
C2—C1—H1D109.5C8—C9—H9A109.5
H1B—C1—H1D109.5C8—C9—H9B109.5
H1C—C1—H1D109.5H9A—C9—H9B109.5
C7—C2—C3117.0 (5)C8—C9—H9C109.5
C7—C2—C1123.0 (6)H9A—C9—H9C109.5
C3—C2—C1119.9 (6)H9B—C9—H9C109.5
C4—C3—C2122.8 (5)O4—C10—O5126.3 (6)
C4—C3—H3A118.6O4—C10—C8125.9 (5)
C2—C3—H3A118.6O5—C10—C8107.6 (5)
C3—C4—C5118.0 (4)O5—C11—H11A109.5
C3—C4—H4A121.0O5—C11—H11B109.5
C5—C4—H4A121.0H11A—C11—H11B109.5
C6—C5—C4120.8 (4)O5—C11—H11C109.5
C6—C5—S121.1 (4)H11A—C11—H11C109.5
C4—C5—S118.1 (3)H11B—C11—H11C109.5
C5—C6—C7119.8 (5)
O1—S—O3—C844.2 (4)C4—C5—C6—C70.9 (8)
O2—S—O3—C8173.3 (3)S—C5—C6—C7179.0 (4)
C5—S—O3—C873.6 (4)C3—C2—C7—C63.5 (9)
C7—C2—C3—C43.2 (8)C1—C2—C7—C6179.3 (5)
C1—C2—C3—C4179.6 (5)C5—C6—C7—C21.6 (9)
C2—C3—C4—C50.8 (7)S—O3—C8—C9135.0 (4)
C3—C4—C5—C61.3 (6)S—O3—C8—C10104.8 (4)
C3—C4—C5—S178.7 (3)C11—O5—C10—O42.2 (9)
O1—S—C5—C6177.6 (4)C11—O5—C10—C8172.4 (5)
O2—S—C5—C648.2 (5)O3—C8—C10—O415.7 (7)
O3—S—C5—C660.9 (4)C9—C8—C10—O4100.0 (7)
O1—S—C5—C42.4 (4)O3—C8—C10—O5169.7 (4)
O2—S—C5—C4131.7 (3)C9—C8—C10—O574.6 (6)
O3—S—C5—C4119.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O10.932.532.910 (6)104
C4—H4A···O3i0.932.523.297 (5)141
C6—H6A···O1ii0.932.553.478 (6)172
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC11H14O5S
Mr258.28
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)7.4890 (15), 10.150 (2), 17.362 (4)
V3)1319.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.906, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
2933, 2581, 1703
Rint0.063
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.154, 1.01
No. of reflections2581
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.29
Absolute structureFlack (1983), 1073 Friedel pairs
Absolute structure parameter0.20 (16)

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O10.932.532.910 (6)104
C4—H4A···O3i0.932.523.297 (5)141
C6—H6A···O1ii0.932.553.478 (6)172
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y+1/2, z+3/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationChan, J. H., Walker, F., Tseng, C. K., Baker, D. R. & Arneklev, D. R. (1975). J. Agric. Food Chem. 23, 1008–1010  CrossRef PubMed CAS Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTalbert, R. E., Frans, R. E. & Ramthun, L. E. (1974). Arkansas Agric. 11, 226–244.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds