metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m670-m671

Chlorido{5,5′-dimeth­­oxy-2,2′-[1,2-phenyl­enebis(nitrilo­methyl­­idyne)]diphenolato-κ4O,N,N′,O′}manganese(III)

aSchool of Chemical Science, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 8 April 2008; accepted 10 April 2008; online 16 April 2008)

In the title complex, [Mn(C22H18N2O4)Cl], the MnIII centre is in a distorted square-pyramidal configuration, with the basal plane formed by the N2O2 donors of the tetra­dentate Schiff base dianion; the two phenolate O atoms and the two imine N atoms are each mutually cis. The chloride ion occupies the apical position. The dihedral angle between the two outer phenolate rings of the tetra­dentate Schiff base ligand is 16.44 (9)°. The central benzene ring makes dihedral angles of 10.64 (9) and 25.17 (10)° with the two outer phenolate rings. In the crystal structure, weak C—H⋯O and C—H⋯Cl inter­actions link the mol­ecules into wave-like face-to-face double layers along the c direction. A ππ inter­action involving the two outer phenolate rings is observed, the centroid–centroid distance being 3.743 (11) Å.

Related literature

For values of bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For details of ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related structures, see, for example: Eltayeb et al. (2008a[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008a). Acta Cryst. E64, m535-m536.],b[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008b). Acta Cryst. E64, m570-m571.]); Habibi et al. (2007[Habibi, M. H., Askari, E., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, m2905-m2906.]); Mitra et al. (2006[Mitra, K., Biswas, S., Lucas, C. R. & Adhikary, B. (2006). Inorg. Chim. Acta, 359, 1997-2003.]). For the background to applications of manganese complexes, see, for example: Dixit & Srinivasan (1988[Dixit, P. S. & Srinivasan, K. (1988). Inorg. Chem. 27, 4507-4509.]); Glatzel et al. (2004[Glatzel, P., Bergmann, U., Yano, J., Visser, H., Robblee, J. H., Gu, W., de Groot, F. M. F., Christou, G., Pecoraro, V. L., Cramer, S. P. & Yachandra, V. K. (2004). J. Am. Chem. Soc. 126, 9946-9959.]); Lu et al. (2006[Lu, Z., Yuan, M., Pan, F., Gao, S., Zhang, D. & Zhu, D. (2006). Inorg. Chem. 45, 3538-3548.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C22H18N2O4)Cl]

  • Mr = 464.77

  • Orthorhombic, P b c a

  • a = 13.7282 (2) Å

  • b = 15.0250 (2) Å

  • c = 19.2094 (3) Å

  • V = 3962.25 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 296 (2) K

  • 0.44 × 0.42 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.708, Tmax = 0.915

  • 28689 measured reflections

  • 5780 independent reflections

  • 4072 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.095

  • S = 1.05

  • 5780 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯Cl1i 0.93 2.81 3.7156 (19) 165
C21—H21A⋯O2ii 0.96 2.44 3.321 (2) 152
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

There has been considerable interest in Schiff base ligand containing oxygen and imine nitrogen atoms and their metal complexes due to their variety of applications such as manganese complexes with Schiff base ligands which have diverse range of applications in chemistry, biology, physics and advanced materials and are used in catalysis (Dixit & Srinivasan, 1988), as models for the oxygen-evolving complex of photosystem II (Glatzel et al., 2004), and as single-molecule magnets (Lu et al., 2006). We have previously reported the crystal structures of five coordinate MnIII complexes with closely-related N2O2 donor Schiff base ligands, chlorido{6,6'-dimethyl-2,2'-[1,2-phenylenebis(nitrilomethylidene)]diphenolato- κ4O,N,N',O'}manganese(III) monohydrate (Eltayeb et al., 2008a) and chlorido{5,5'-dimethyl-2,2'-[1,2- phenylenebis(nitrilomethylidene)]diphenolato- κ4O,N,N',O'}manganese(III) (Eltayeb et al., 2008b). We report here the synthesis and structure of (I), Fig. 1, another five-coordinate MnIII complex of a closely-related ligand.

In (I), the MnIII complex shows a slightly distorted square-pyramidal geometry involving N1, N2, O1 and O2 atoms of the tetradentate Schiff base ligand as the basal plane. The two phenolic oxygen atoms and two imine nitrogen atoms are located in cis positions. The apical position is filled by the Cl- ion. The Mn—O distances [Mn1—O1 = 1.8623 (12) Å, Mn1—O2 = 1.9067 (11) Å] and Mn—N distances [Mn1—N1 = 1.9859 (14) Å, Mn1—N2 = 1.9876 (14) Å] are in the same ranges as those observed in other related MnIII complexes of N2O2 Schiff base ligands (Eltayeb et al. , 2008a,b; Habibi et al., 2007; Mitra et al., 2006). Other bond lengths and angles observed in the structure are also normal (Allen et al., 1987). The basal bond angles are close to 90° [O1–Mn1–O2 = 92.82 (5)°, O1–Mn1–N1 = 93.06 (5)°, O2–Mn1–N2 = 90.13 (6)°] excepting for the N–Mn–N angle is smaller than 90 ° [N1–Mn1–N2 = 81.68 (6)°]. The distorted square-pyramidal geometry of (I) can be reflected by the bond angles between the Cl- ion and the atoms in the basal plane which are in the range 96.89 (4) to 97.16 (4)°. All these angle are close to the correspondence angles in the closely related structures (Eltayeb et al., 2008a,b). Coordination of the N2O2 chelate ligand to the MnIII ion results in the formation of an essentially planar five-membered ring (Mn1/N1/N2/C8/C13) and two six-membered rings; the Mn1/O1/N1/C1/C6/C7 ring is almost planar with the greatest deviation being -0.041 (1) Å for atom O1 whereas the Mn1/O2/N2/C14/C15/C20 ring adopts an envelope conformation with atom O2 displaced from the Mn1/N2/C14/C15/C20 plane by -0.276 (1) Å and with Cremer & Pople (1975) puckering parameters Q = 0.4418 (12)°, θ = 60.1 (2)° and ϕ = 20.2 (2)°. The dihedral angle between the two outer phenolate rings [C1–C6 and C15–C20] of the Schiff base ligand is 16.44 (9)°. The central benzene ring (C8–C13) makes dihedral angles of 10.64 (9) and 25.17 (10)° with the two outer phenolate rings. In addition one methoxy group is almost planarly attached to the (C15–C20) phenolate ring which can be indicated by the torsion angle C22–O4–C18–C19 = -3.4 (3)° whereas another methoxy group is slightly deviated from the mean plane of the C15–C20 phenolate ring, as shown by the torsion angle C21–O3–C3–C4 = 9.4 (3)°. The dihedral angles between the phenolate and benzene rings found in (I) are smaller than the corresponding angles found in a closely related structure (Eltayeb et al., 2008b), showing that the Schiff base ligand in (I) is more flat due to the different substituents in the phenolate rings of the Schiff base ligand which are two methoxy groups in (I) but are two methyl groups in the same positions in (Eltayeb et al., 2008b).

In the crystal packing (Fig. 2), weak C—H···O and C—H···Cl interactions (Table 1) link the molecules into wave like face-to-face double layers along the c direction. The crystal is stabilized by these weak C—H···O and C—H···Cl interactions. A π-π interaction was also observed in the crystal with the Cg1···Cg2i distance of 3.7430 (11) Å [Cg1 and Cg2 are the centroids of the C1–C6 and C15–C20 phenolate rings, respectively; symmetry code: (i) 1-x, -y, 1-z].

Related literature top

For values of bond lengths and angles, see: Allen et al. (1987); for details of ring conformations, see: Cremer & Pople (1975). For related structures, see, for example: Eltayeb et al. (2008a,b); Habibi et al. (2007); Mitra et al. (2006). For the background to applications of manganese complexes, see, for example:Dixit & Srinivasan (1988); Glatzel et al. (2004); Lu et al. (2006).

Experimental top

The title compound was synthesized by adding 2-hydroxy-4-methoxybenzaldehyde (0.610 g, 4 mmol) to a solution of o-phenylenediamine (0.216 g, 2 mmol) in ethanol 95% (30 ml). The mixture was refluxed with stirring for half an hour. Manganese chloride tetrahydrate (0.394 g, 2 mmol) in ethanol (10 ml) was then added, followed by triethylamine (0.5 ml, 3.6 mmol). The mixture was refluxed at room temperature for three hours. A brown precipitate was obtained, washed with about 5 ml ethanol, dried, and then washed with copious quantities of diethylether. Brown single crystals of the title compound suitable for x-ray structure determination were recrystallized from methanol by slow evaporation of the solvent at room temperature after two weeks.

Refinement top

All H atoms were placed in calculated positions with d(C—H) = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic and CH, and with d(C—H) = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.70 Å from C2 and the deepest hole is located at 0.53 Å from Mn1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the a axis, showing the wave like face-to-face double layers along the c axis. C—H···O and C—H···Cl weak interactions are drawn as dashed lines.
Chlorido{5,5'-dimethoxy-2,2'-[1,2-phenylenebis(nitrilomethylidyne)]diphenolato- κ4O,N,N',O'}manganese(III) top
Crystal data top
[Mn(C22H18N2O4)Cl]F(000) = 1904
Mr = 464.77Dx = 1.558 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5780 reflections
a = 13.7282 (2) Åθ = 2.1–30.0°
b = 15.0250 (2) ŵ = 0.83 mm1
c = 19.2094 (3) ÅT = 296 K
V = 3962.25 (10) Å3Block, brown
Z = 80.44 × 0.42 × 0.11 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5780 independent reflections
Radiation source: fine-focus sealed tube4072 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 8.33 pixels mm-1θmax = 30.0°, θmin = 2.1°
ω scansh = 1914
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 2116
Tmin = 0.708, Tmax = 0.915l = 2720
28689 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0397P)2 + 1.0383P]
where P = (Fo2 + 2Fc2)/3
5780 reflections(Δ/σ)max = 0.001
273 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Mn(C22H18N2O4)Cl]V = 3962.25 (10) Å3
Mr = 464.77Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.7282 (2) ŵ = 0.83 mm1
b = 15.0250 (2) ÅT = 296 K
c = 19.2094 (3) Å0.44 × 0.42 × 0.11 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5780 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4072 reflections with I > 2σ(I)
Tmin = 0.708, Tmax = 0.915Rint = 0.032
28689 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.05Δρmax = 0.30 e Å3
5780 reflectionsΔρmin = 0.34 e Å3
273 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.475763 (18)0.111700 (17)0.483521 (14)0.02817 (9)
Cl10.54204 (4)0.24455 (3)0.42743 (3)0.04223 (13)
O10.40677 (8)0.07486 (8)0.40518 (6)0.0327 (3)
O20.58304 (8)0.03537 (8)0.46327 (6)0.0303 (3)
O30.16571 (10)0.03819 (11)0.23875 (7)0.0550 (4)
O40.92194 (10)0.01474 (11)0.41480 (9)0.0595 (4)
N10.35851 (10)0.16427 (9)0.52796 (7)0.0289 (3)
N20.53358 (11)0.14005 (9)0.57575 (8)0.0314 (3)
C10.31581 (12)0.09053 (11)0.38763 (9)0.0285 (4)
C20.28302 (13)0.05942 (12)0.32363 (9)0.0357 (4)
H2A0.32620.02980.29440.043*
C30.18761 (13)0.07159 (13)0.30249 (10)0.0362 (4)
C40.12079 (14)0.11447 (12)0.34578 (10)0.0385 (4)
H4A0.05650.12240.33180.046*
C50.15161 (13)0.14455 (12)0.40900 (10)0.0366 (4)
H5A0.10680.17200.43830.044*
C60.24892 (12)0.13560 (11)0.43162 (9)0.0296 (4)
C70.27287 (13)0.16752 (11)0.49861 (10)0.0326 (4)
H7A0.22280.19330.52430.039*
C80.37358 (13)0.19174 (11)0.59834 (9)0.0334 (4)
C90.30344 (16)0.23117 (14)0.64048 (11)0.0485 (5)
H9A0.24250.24530.62250.058*
C100.32499 (18)0.24912 (16)0.70897 (13)0.0598 (6)
H10A0.27810.27550.73720.072*
C110.41567 (18)0.22843 (16)0.73660 (11)0.0576 (6)
H11A0.42880.23960.78330.069*
C120.48587 (16)0.19152 (14)0.69479 (10)0.0465 (5)
H12A0.54680.17790.71310.056*
C130.46582 (13)0.17445 (12)0.62465 (9)0.0343 (4)
C140.62697 (13)0.13753 (12)0.58689 (10)0.0358 (4)
H14A0.64890.15860.62960.043*
C150.69814 (13)0.10568 (11)0.53996 (10)0.0342 (4)
C160.79809 (14)0.11969 (13)0.55549 (12)0.0447 (5)
H16A0.81480.15020.59590.054*
C170.86974 (15)0.08976 (15)0.51298 (13)0.0503 (6)
H17A0.93470.10030.52380.060*
C180.84519 (13)0.04321 (13)0.45301 (12)0.0424 (5)
C190.74893 (13)0.02738 (12)0.43567 (10)0.0355 (4)
H19A0.73390.00330.39500.043*
C200.67467 (12)0.05740 (11)0.47896 (9)0.0305 (4)
C210.07328 (15)0.05817 (18)0.20853 (11)0.0587 (6)
H21A0.06890.03100.16340.088*
H21B0.06640.12150.20400.088*
H21C0.02240.03550.23790.088*
C220.90345 (17)0.03830 (18)0.35536 (13)0.0632 (7)
H22A0.96410.05470.33400.095*
H22B0.86480.00520.32280.095*
H22C0.86890.09110.36900.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02087 (14)0.03480 (14)0.02885 (16)0.00122 (10)0.00199 (11)0.00309 (10)
Cl10.0391 (3)0.0402 (2)0.0474 (3)0.00523 (19)0.0018 (2)0.0043 (2)
O10.0219 (6)0.0452 (7)0.0310 (7)0.0052 (5)0.0026 (5)0.0052 (5)
O20.0183 (6)0.0373 (6)0.0352 (6)0.0003 (5)0.0030 (5)0.0029 (5)
O30.0381 (8)0.0883 (11)0.0387 (8)0.0124 (7)0.0166 (7)0.0130 (8)
O40.0255 (7)0.0776 (11)0.0754 (11)0.0040 (7)0.0088 (8)0.0008 (9)
N10.0264 (7)0.0297 (7)0.0308 (8)0.0000 (6)0.0008 (6)0.0033 (6)
N20.0294 (8)0.0345 (7)0.0302 (8)0.0012 (6)0.0048 (7)0.0023 (6)
C10.0217 (8)0.0319 (8)0.0318 (9)0.0001 (6)0.0006 (7)0.0054 (7)
C20.0278 (9)0.0495 (10)0.0298 (10)0.0055 (8)0.0011 (8)0.0024 (8)
C30.0308 (10)0.0455 (10)0.0324 (10)0.0005 (8)0.0061 (8)0.0048 (8)
C40.0233 (9)0.0491 (10)0.0430 (11)0.0036 (8)0.0066 (9)0.0046 (9)
C50.0267 (9)0.0444 (10)0.0387 (11)0.0080 (8)0.0006 (9)0.0007 (8)
C60.0253 (8)0.0324 (8)0.0310 (9)0.0020 (7)0.0006 (8)0.0013 (7)
C70.0262 (9)0.0336 (8)0.0379 (10)0.0042 (7)0.0033 (8)0.0014 (8)
C80.0338 (10)0.0331 (9)0.0331 (10)0.0020 (7)0.0019 (8)0.0047 (7)
C90.0397 (11)0.0594 (13)0.0465 (13)0.0036 (9)0.0013 (10)0.0176 (10)
C100.0554 (15)0.0755 (16)0.0484 (14)0.0009 (12)0.0121 (12)0.0266 (12)
C110.0626 (16)0.0738 (15)0.0363 (12)0.0106 (12)0.0022 (12)0.0169 (11)
C120.0448 (12)0.0584 (13)0.0362 (11)0.0074 (10)0.0051 (10)0.0033 (9)
C130.0373 (10)0.0343 (9)0.0313 (9)0.0044 (8)0.0010 (8)0.0042 (7)
C140.0341 (10)0.0373 (9)0.0359 (10)0.0020 (8)0.0118 (9)0.0014 (8)
C150.0260 (9)0.0346 (9)0.0422 (11)0.0019 (7)0.0083 (9)0.0026 (8)
C160.0305 (10)0.0445 (11)0.0591 (14)0.0024 (8)0.0141 (10)0.0031 (10)
C170.0227 (10)0.0528 (12)0.0754 (17)0.0043 (9)0.0106 (11)0.0021 (11)
C180.0241 (9)0.0454 (10)0.0578 (13)0.0013 (8)0.0033 (10)0.0115 (10)
C190.0259 (9)0.0415 (10)0.0392 (10)0.0013 (7)0.0007 (8)0.0066 (8)
C200.0217 (8)0.0321 (8)0.0376 (10)0.0003 (7)0.0031 (8)0.0072 (7)
C210.0392 (12)0.0960 (18)0.0410 (12)0.0053 (12)0.0151 (11)0.0007 (12)
C220.0440 (13)0.0847 (17)0.0609 (15)0.0148 (12)0.0144 (12)0.0119 (14)
Geometric parameters (Å, º) top
Mn1—O11.8623 (12)C8—C91.390 (3)
Mn1—O21.9067 (11)C9—C101.375 (3)
Mn1—N11.9859 (14)C9—H9A0.9300
Mn1—N21.9876 (14)C10—C111.389 (3)
Mn1—Cl12.4440 (5)C10—H10A0.9300
O1—C11.3147 (19)C11—C121.372 (3)
O2—C201.335 (2)C11—H11A0.9300
O3—C31.357 (2)C12—C131.399 (3)
O3—C211.427 (2)C12—H12A0.9300
O4—C181.353 (2)C14—C151.413 (3)
O4—C221.415 (3)C14—H14A0.9300
N1—C71.305 (2)C15—C201.415 (3)
N1—C81.429 (2)C15—C161.420 (3)
N2—C141.300 (2)C16—C171.355 (3)
N2—C131.419 (2)C16—H16A0.9300
C1—C21.390 (2)C17—C181.389 (3)
C1—C61.420 (2)C17—H17A0.9300
C2—C31.383 (2)C18—C191.383 (3)
C2—H2A0.9300C19—C201.391 (3)
C3—C41.396 (3)C19—H19A0.9300
C4—C51.363 (3)C21—H21A0.9600
C4—H4A0.9300C21—H21B0.9600
C5—C61.411 (2)C21—H21C0.9600
C5—H5A0.9300C22—H22A0.9600
C6—C71.412 (2)C22—H22B0.9600
C7—H7A0.9300C22—H22C0.9600
C8—C131.388 (3)
O1—Mn1—O292.82 (5)C8—C9—H9A120.3
O1—Mn1—N193.06 (5)C9—C10—C11121.0 (2)
O2—Mn1—N1162.37 (6)C9—C10—H10A119.5
O1—Mn1—N2170.79 (6)C11—C10—H10A119.5
O2—Mn1—N290.13 (6)C12—C11—C10119.8 (2)
N1—Mn1—N281.68 (6)C12—C11—H11A120.1
O1—Mn1—Cl194.35 (4)C10—C11—H11A120.1
O2—Mn1—Cl196.53 (4)C11—C12—C13120.0 (2)
N1—Mn1—Cl199.58 (4)C11—C12—H12A120.0
N2—Mn1—Cl193.97 (4)C13—C12—H12A120.0
C1—O1—Mn1129.57 (11)C8—C13—C12119.73 (18)
C20—O2—Mn1122.17 (11)C8—C13—N2115.17 (16)
C3—O3—C21119.09 (16)C12—C13—N2125.11 (17)
C18—O4—C22118.41 (17)N2—C14—C15125.93 (17)
C7—N1—C8121.91 (15)N2—C14—H14A117.0
C7—N1—Mn1124.02 (12)C15—C14—H14A117.0
C8—N1—Mn1113.85 (11)C14—C15—C20122.99 (16)
C14—N2—C13123.23 (16)C14—C15—C16118.94 (18)
C14—N2—Mn1122.28 (13)C20—C15—C16118.03 (18)
C13—N2—Mn1113.96 (11)C17—C16—C15121.7 (2)
O1—C1—C2118.30 (16)C17—C16—H16A119.1
O1—C1—C6123.17 (16)C15—C16—H16A119.1
C2—C1—C6118.50 (15)C16—C17—C18119.38 (18)
C3—C2—C1121.45 (17)C16—C17—H17A120.3
C3—C2—H2A119.3C18—C17—H17A120.3
C1—C2—H2A119.3O4—C18—C19124.0 (2)
O3—C3—C2115.20 (17)O4—C18—C17114.83 (17)
O3—C3—C4124.24 (16)C19—C18—C17121.19 (19)
C2—C3—C4120.56 (18)C18—C19—C20120.04 (18)
C5—C4—C3118.68 (17)C18—C19—H19A120.0
C5—C4—H4A120.7C20—C19—H19A120.0
C3—C4—H4A120.7O2—C20—C19118.37 (16)
C4—C5—C6122.45 (17)O2—C20—C15121.90 (16)
C4—C5—H5A118.8C19—C20—C15119.63 (16)
C6—C5—H5A118.8O3—C21—H21A109.5
C5—C6—C7117.95 (16)O3—C21—H21B109.5
C5—C6—C1118.32 (16)H21A—C21—H21B109.5
C7—C6—C1123.62 (16)O3—C21—H21C109.5
N1—C7—C6126.21 (16)H21A—C21—H21C109.5
N1—C7—H7A116.9H21B—C21—H21C109.5
C6—C7—H7A116.9O4—C22—H22A109.5
C13—C8—C9119.98 (17)O4—C22—H22B109.5
C13—C8—N1115.00 (16)H22A—C22—H22B109.5
C9—C8—N1125.01 (17)O4—C22—H22C109.5
C10—C9—C8119.4 (2)H22A—C22—H22C109.5
C10—C9—H9A120.3H22B—C22—H22C109.5
O2—Mn1—O1—C1169.80 (14)C1—C6—C7—N13.4 (3)
N1—Mn1—O1—C16.44 (15)C7—N1—C8—C13172.65 (16)
Cl1—Mn1—O1—C193.42 (14)Mn1—N1—C8—C132.17 (19)
O1—Mn1—O2—C20147.01 (13)C7—N1—C8—C95.9 (3)
N1—Mn1—O2—C20103.7 (2)Mn1—N1—C8—C9179.32 (16)
N2—Mn1—O2—C2041.71 (13)C13—C8—C9—C102.8 (3)
Cl1—Mn1—O2—C2052.30 (12)N1—C8—C9—C10175.59 (19)
O1—Mn1—N1—C73.45 (15)C8—C9—C10—C110.0 (4)
O2—Mn1—N1—C7112.8 (2)C9—C10—C11—C121.6 (4)
N2—Mn1—N1—C7175.86 (15)C10—C11—C12—C130.3 (3)
Cl1—Mn1—N1—C791.49 (14)C9—C8—C13—C124.1 (3)
O1—Mn1—N1—C8171.25 (11)N1—C8—C13—C12174.47 (16)
O2—Mn1—N1—C861.9 (2)C9—C8—C13—N2175.66 (17)
N2—Mn1—N1—C81.16 (11)N1—C8—C13—N25.8 (2)
Cl1—Mn1—N1—C893.82 (11)C11—C12—C13—C82.5 (3)
O2—Mn1—N2—C1427.96 (14)C11—C12—C13—N2177.22 (19)
N1—Mn1—N2—C14167.72 (15)C14—N2—C13—C8165.17 (17)
Cl1—Mn1—N2—C1468.60 (14)Mn1—N2—C13—C86.68 (19)
O2—Mn1—N2—C13160.11 (12)C14—N2—C13—C1214.6 (3)
N1—Mn1—N2—C134.21 (12)Mn1—N2—C13—C12173.56 (15)
Cl1—Mn1—N2—C13103.33 (11)C13—N2—C14—C15178.81 (17)
Mn1—O1—C1—C2176.24 (12)Mn1—N2—C14—C157.6 (3)
Mn1—O1—C1—C65.5 (2)N2—C14—C15—C2011.7 (3)
O1—C1—C2—C3178.41 (17)N2—C14—C15—C16170.58 (18)
C6—C1—C2—C30.0 (3)C14—C15—C16—C17179.18 (19)
C21—O3—C3—C2171.43 (18)C20—C15—C16—C171.3 (3)
C21—O3—C3—C49.4 (3)C15—C16—C17—C180.8 (3)
C1—C2—C3—O3179.73 (17)C22—O4—C18—C193.4 (3)
C1—C2—C3—C41.1 (3)C22—O4—C18—C17175.86 (19)
O3—C3—C4—C5179.50 (18)C16—C17—C18—O4178.80 (19)
C2—C3—C4—C50.4 (3)C16—C17—C18—C190.4 (3)
C3—C4—C5—C61.4 (3)O4—C18—C19—C20178.47 (17)
C4—C5—C6—C7178.81 (17)C17—C18—C19—C200.7 (3)
C4—C5—C6—C12.4 (3)Mn1—O2—C20—C19147.80 (13)
O1—C1—C6—C5176.64 (16)Mn1—O2—C20—C1535.8 (2)
C2—C1—C6—C51.7 (2)C18—C19—C20—O2175.20 (16)
O1—C1—C6—C70.5 (3)C18—C19—C20—C151.3 (3)
C2—C1—C6—C7177.84 (16)C14—C15—C20—O23.0 (3)
C8—N1—C7—C6174.68 (16)C16—C15—C20—O2174.78 (16)
Mn1—N1—C7—C60.4 (2)C14—C15—C20—C19179.30 (16)
C5—C6—C7—N1179.55 (17)C16—C15—C20—C191.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cl1i0.932.813.7156 (19)165
C21—H21A···O2ii0.962.443.321 (2)152
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(C22H18N2O4)Cl]
Mr464.77
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)13.7282 (2), 15.0250 (2), 19.2094 (3)
V3)3962.25 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.44 × 0.42 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.708, 0.915
No. of measured, independent and
observed [I > 2σ(I)] reflections
28689, 5780, 4072
Rint0.032
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.095, 1.05
No. of reflections5780
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.34

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cl1i0.932.813.7156 (19)165
C21—H21A···O2ii0.962.443.321 (2)152
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x1/2, y, z+1/2.
 

Footnotes

On study leave from International University of Africa, Sudan. E-mail: nasertaha90@hotmail.com.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th.

Acknowledgements

The authors thank the Malaysian Government, Ministry of Science, Technology and Innovation (MOSTI), and the Universiti Sains Malaysia for the E-Science Fund, RU research grant (Nos. PKIMIA/613308, PKIMIA/815002, 203/PKIMIA/671083) and facilities. The International University of Africa (Sudan) is acknowledged for providing study leave to NEE. The authors also thank Universiti Sains Malaysia for the Fundamental Research Grant Scheme (FRGS) (grant No. 203/PFIZIK/671064).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDixit, P. S. & Srinivasan, K. (1988). Inorg. Chem. 27, 4507–4509.  CrossRef CAS Web of Science Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008a). Acta Cryst. E64, m535–m536.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008b). Acta Cryst. E64, m570–m571.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGlatzel, P., Bergmann, U., Yano, J., Visser, H., Robblee, J. H., Gu, W., de Groot, F. M. F., Christou, G., Pecoraro, V. L., Cramer, S. P. & Yachandra, V. K. (2004). J. Am. Chem. Soc. 126, 9946–9959.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHabibi, M. H., Askari, E., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, m2905–m2906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, Z., Yuan, M., Pan, F., Gao, S., Zhang, D. & Zhu, D. (2006). Inorg. Chem. 45, 3538–3548.  Web of Science CSD CrossRef PubMed Google Scholar
First citationMitra, K., Biswas, S., Lucas, C. R. & Adhikary, B. (2006). Inorg. Chim. Acta, 359, 1997–2003.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m670-m671
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds