organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­nitro-1-naphthyl 4-toluene­sulfonate

aDepartment of Chemistry, Valliammai Engineering College, Chennai, India, and bDepartment of Physics, Presidency College, Chennai 600 005, India
*Correspondence e-mail: manivan_1999@yahoo.com

(Received 8 April 2008; accepted 12 April 2008; online 18 April 2008)

In the title compound, C17H12N2O7S, the dihedral angle between the benzene ring and the naphthyl plane is 26.34 (6)°. The nitro groups make dihedral angles of 40.09 (4) and 37.05 (3)° with the naphthyl plane. In the crystal structure, weak intra- and inter­molecular C—H⋯O inter­actions are observed.

Related literature

For biological activity, see: Yachi et al. (1989[Yachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hananon, M. (1989). Biochim. Biophys. Acta, 978, 1-7.]). For the structure of closely related compounds, see: Manivannan et al. (2005a[Manivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Fronczek, F. R. (2005a). Acta Cryst. E61, o239-o241.],b[Manivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Fronczek, F. R. (2005b). Acta Cryst. E61, o242-o244.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12N2O7S

  • Mr = 388.35

  • Monoclinic, P 21 /c

  • a = 13.071 (2) Å

  • b = 7.8660 (13) Å

  • c = 16.595 (3) Å

  • β = 90.757 (3)°

  • V = 1706.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 295 (2) K

  • 0.36 × 0.25 × 0.13 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.920, Tmax = 0.970

  • 12222 measured reflections

  • 3116 independent reflections

  • 2291 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.104

  • S = 1.02

  • 3116 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O5 0.93 2.55 3.194 (3) 127
C14—H14⋯O7 0.93 2.33 2.895 (3) 119
C17—H17⋯O3 0.93 2.48 2.798 (3) 100
C10—H10⋯O1i 0.93 2.45 3.327 (3) 157
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Aromatic sulfonates are used in monitoring the merging of lipids (Yachi et al., 1989). The geometric parameters in the title compound agree with the reported values of similar structures (Manivannan et al., 2005a,b). The dihedral angle between the mean planes of phenyl and naphthyl rings is 26.34 (6)°. The planes N1/O5/O4 and N2/O6/O7 make the dihedral angles of 40.09 (4) and 37.05 (3)°, respectively, with the naphthyl ring. The torsion angles [O1—S1—C1—C6 = -17.0 (2)° and O2—S1—C1—C2 = 27.9 (2)°] indicate a syn conformation of the sulfonyl moiety.

In addition to this, because of the presence of highly electron attracting nitro groups, there are strong dipole-dipole attractions between different molecules in the lattice arrangement. The nitro group substituted naphthylring, which is electron deficient is found to be lying over the electron rich tolyl benzene ring of another molecule in the lattice. This leads to a sort of charge transfer complex.

The enhanced stability of this compound and larger stability of the lattice when compared to other sulfonates reported already, is supported by thermoanalytic studies. This compound is having higher density, melting point and higher lattice energy when compared to others. Another interesting property of this compound is that it possesses antibacterial activity almost equivalent to those of antibiotics. This is attributed to the elongation of the S—O (S1—O3) bond in –S—O–naphthyl ring such that the dissociation to naphthoxy moiety is facilitated. The facile formation of the naphthoxy radical is further supported by the high intensity peak for this specy in the Mass spectra. Kinetic studies also indicate that the rate of hydrolysis (rate of cleavage of the –S—O– bond) is very high when compared to other toluene sulfonates reported already.

The molecular structure is stabilized by weak intramolecular C—H···O interactions and the crystal packing of (I) (Fig. 2) is stabilized by weak intermolecular C—H···O interactions.

Related literature top

For biological activity, see: Yachi et al. (1989). For the structure of a closely related compound, see: Manivannan et al. (2005a,b)

Experimental top

Calculated quantity of (10 mmol) of alpha naphthol was dissolved in hot con. sulfuric acid (10 ml) and heated for 10 minutes over a water bath to get disulfonic acid. To this was added (10 ml) of fuming nitric acid in small quantity at a time with stirring. After the addition was over the reaction mixture was kept aside for an hour. It was poured into crushed ice with stirring. The precipitate was filtered, washed with cold water, dried and recrystallized from rectified spirit.

A solution of the above 2,4-dinitronaphthol and triethylamine in acetone was treated with sulfonyl chloride in acetone. This was left as such overnight. The solvent was evaporated and the residue was washed with triethylamine solution. The crude product was recrystallized from ethanol to get diffraction quality crystal of 2,4-dintro-1-naphthyl-4-toluene sulfonate.

Refinement top

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H, and with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down the b axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
2,4-Dinitro-1-naphthyl 4-toluenesulfonate top
Crystal data top
C17H12N2O7SF(000) = 800
Mr = 388.35Dx = 1.512 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4023 reflections
a = 13.071 (2) Åθ = 1.8–25.2°
b = 7.8660 (13) ŵ = 0.24 mm1
c = 16.595 (3) ÅT = 295 K
β = 90.757 (3)°Block, colourless
V = 1706.0 (5) Å30.36 × 0.25 × 0.13 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
3116 independent reflections
Radiation source: fine-focus sealed tube2291 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and ϕ scansθmax = 25.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.920, Tmax = 0.970k = 99
12222 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.4765P]
where P = (Fo2 + 2Fc2)/3
3116 reflections(Δ/σ)max < 0.001
245 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C17H12N2O7SV = 1706.0 (5) Å3
Mr = 388.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.071 (2) ŵ = 0.24 mm1
b = 7.8660 (13) ÅT = 295 K
c = 16.595 (3) Å0.36 × 0.25 × 0.13 mm
β = 90.757 (3)°
Data collection top
Bruker Kappa APEXII
diffractometer
3116 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2291 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.970Rint = 0.031
12222 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.02Δρmax = 0.20 e Å3
3116 reflectionsΔρmin = 0.23 e Å3
245 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.75961 (5)0.14928 (8)0.91732 (3)0.04636 (19)
N20.47400 (18)0.4441 (3)1.21402 (12)0.0509 (5)
N10.77051 (15)0.1383 (3)1.12836 (11)0.0511 (5)
C80.62399 (17)0.1694 (3)1.03092 (12)0.0379 (5)
C90.66905 (17)0.2018 (3)1.10432 (13)0.0396 (5)
C100.61838 (18)0.2985 (3)1.16206 (13)0.0418 (5)
H100.65050.32441.21090.050*
C110.52268 (18)0.3540 (3)1.14659 (12)0.0394 (5)
C120.47017 (17)0.3258 (3)1.07210 (12)0.0383 (5)
C130.52516 (16)0.2336 (3)1.01249 (12)0.0366 (5)
C140.37180 (18)0.3875 (3)1.05167 (14)0.0462 (6)
H140.33470.44761.08970.055*
C150.33082 (18)0.3603 (3)0.97732 (15)0.0502 (6)
H150.26580.40160.96510.060*
C160.38494 (19)0.2709 (3)0.91879 (15)0.0494 (6)
H160.35580.25420.86800.059*
C170.47966 (18)0.2082 (3)0.93546 (13)0.0421 (5)
H170.51480.14840.89620.051*
C10.82025 (17)0.0380 (3)0.88993 (14)0.0467 (6)
C40.9179 (2)0.3362 (4)0.84598 (18)0.0639 (7)
C20.8941 (2)0.1075 (4)0.94025 (17)0.0660 (8)
H20.91130.05480.98880.079*
C30.9421 (2)0.2557 (4)0.91778 (19)0.0744 (9)
H30.99180.30260.95160.089*
C60.7943 (2)0.1167 (4)0.81845 (15)0.0583 (7)
H60.74390.07080.78480.070*
C50.8437 (2)0.2639 (4)0.79741 (18)0.0671 (8)
H50.82640.31630.74890.081*
C70.9719 (2)0.4974 (4)0.8216 (2)0.0947 (11)
H7A1.02220.47150.78180.142*
H7B0.92300.57620.79950.142*
H7C1.00490.54700.86800.142*
O10.70983 (14)0.2246 (2)0.84979 (9)0.0613 (5)
O20.82266 (13)0.2523 (2)0.96766 (10)0.0584 (5)
O30.67103 (11)0.06829 (18)0.97377 (8)0.0431 (4)
O40.82359 (15)0.2326 (3)1.16921 (12)0.0810 (6)
O50.79512 (14)0.0046 (3)1.10830 (11)0.0644 (5)
O60.53013 (16)0.5300 (3)1.25734 (11)0.0738 (6)
O70.38300 (16)0.4246 (3)1.22514 (11)0.0713 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0527 (4)0.0503 (4)0.0362 (3)0.0065 (3)0.0072 (3)0.0017 (3)
N20.0698 (15)0.0451 (12)0.0382 (11)0.0054 (11)0.0093 (11)0.0005 (9)
N10.0516 (13)0.0644 (15)0.0372 (11)0.0010 (12)0.0001 (9)0.0005 (11)
C80.0473 (13)0.0341 (12)0.0324 (11)0.0068 (10)0.0055 (10)0.0000 (9)
C90.0447 (13)0.0384 (12)0.0358 (12)0.0044 (10)0.0001 (10)0.0041 (10)
C100.0582 (15)0.0389 (12)0.0285 (11)0.0081 (11)0.0000 (10)0.0002 (10)
C110.0532 (14)0.0313 (11)0.0338 (11)0.0022 (10)0.0087 (10)0.0017 (9)
C120.0485 (13)0.0300 (11)0.0364 (12)0.0069 (10)0.0043 (10)0.0048 (9)
C130.0446 (13)0.0309 (11)0.0344 (11)0.0090 (10)0.0013 (10)0.0028 (9)
C140.0521 (14)0.0383 (13)0.0485 (14)0.0017 (11)0.0078 (11)0.0060 (11)
C150.0448 (14)0.0490 (14)0.0566 (15)0.0038 (11)0.0045 (12)0.0106 (13)
C160.0564 (15)0.0488 (14)0.0427 (13)0.0126 (12)0.0088 (12)0.0061 (11)
C170.0517 (14)0.0394 (12)0.0352 (12)0.0088 (11)0.0001 (10)0.0011 (10)
C10.0405 (13)0.0579 (15)0.0420 (13)0.0071 (11)0.0076 (11)0.0057 (11)
C40.0484 (15)0.0653 (18)0.078 (2)0.0063 (14)0.0158 (14)0.0175 (16)
C20.0531 (16)0.087 (2)0.0578 (16)0.0052 (15)0.0036 (13)0.0213 (15)
C30.0555 (17)0.089 (2)0.079 (2)0.0164 (16)0.0041 (15)0.0103 (18)
C60.0564 (16)0.0690 (18)0.0496 (15)0.0026 (14)0.0009 (12)0.0111 (13)
C50.0612 (17)0.076 (2)0.0641 (18)0.0081 (15)0.0040 (14)0.0264 (16)
C70.075 (2)0.077 (2)0.133 (3)0.0067 (18)0.022 (2)0.028 (2)
O10.0794 (12)0.0660 (12)0.0387 (9)0.0039 (9)0.0059 (9)0.0086 (8)
O20.0630 (11)0.0584 (11)0.0539 (10)0.0189 (9)0.0080 (8)0.0100 (9)
O30.0514 (9)0.0404 (9)0.0377 (8)0.0031 (7)0.0076 (7)0.0054 (7)
O40.0617 (12)0.1075 (17)0.0734 (13)0.0049 (11)0.0180 (11)0.0267 (12)
O50.0660 (12)0.0632 (12)0.0640 (12)0.0149 (10)0.0005 (9)0.0042 (10)
O60.0898 (15)0.0723 (13)0.0593 (12)0.0021 (11)0.0009 (11)0.0308 (10)
O70.0664 (13)0.0885 (15)0.0596 (12)0.0031 (11)0.0229 (10)0.0065 (10)
Geometric parameters (Å, º) top
S1—O11.4179 (17)C14—H140.9300
S1—O21.4196 (16)C15—C161.399 (3)
S1—O31.6287 (16)C15—H150.9300
S1—C11.736 (3)C16—C171.358 (3)
N2—O71.216 (3)C16—H160.9300
N2—O61.224 (3)C17—H170.9300
N2—C111.476 (3)C1—C61.377 (3)
N1—O41.216 (3)C1—C21.381 (3)
N1—O51.216 (3)C4—C51.376 (4)
N1—C91.467 (3)C4—C31.382 (4)
C8—C91.370 (3)C4—C71.509 (4)
C8—O31.388 (2)C2—C31.378 (4)
C8—C131.416 (3)C2—H20.9300
C9—C101.397 (3)C3—H30.9300
C10—C111.346 (3)C6—C51.373 (4)
C10—H100.9300C6—H60.9300
C11—C121.423 (3)C5—H50.9300
C12—C141.411 (3)C7—H7A0.9600
C12—C131.429 (3)C7—H7B0.9600
C13—C171.417 (3)C7—H7C0.9600
C14—C151.356 (3)
O1—S1—O2118.91 (11)C14—C15—H15119.5
O1—S1—O3107.20 (10)C16—C15—H15119.5
O2—S1—O3107.24 (9)C17—C16—C15120.6 (2)
O1—S1—C1110.71 (11)C17—C16—H16119.7
O2—S1—C1112.01 (11)C15—C16—H16119.7
O3—S1—C198.58 (10)C16—C17—C13120.2 (2)
O7—N2—O6124.1 (2)C16—C17—H17119.9
O7—N2—C11119.1 (2)C13—C17—H17119.9
O6—N2—C11116.7 (2)C6—C1—C2120.4 (2)
O4—N1—O5124.4 (2)C6—C1—S1119.9 (2)
O4—N1—C9116.8 (2)C2—C1—S1119.70 (19)
O5—N1—C9118.8 (2)C5—C4—C3117.8 (3)
C9—C8—O3121.7 (2)C5—C4—C7121.3 (3)
C9—C8—C13120.4 (2)C3—C4—C7120.9 (3)
O3—C8—C13117.89 (18)C3—C2—C1119.2 (3)
C8—C9—C10120.6 (2)C3—C2—H2120.4
C8—C9—N1123.7 (2)C1—C2—H2120.4
C10—C9—N1115.71 (19)C2—C3—C4121.4 (3)
C11—C10—C9119.6 (2)C2—C3—H3119.3
C11—C10—H10120.2C4—C3—H3119.3
C9—C10—H10120.2C5—C6—C1119.2 (3)
C10—C11—C12123.4 (2)C5—C6—H6120.4
C10—C11—N2114.8 (2)C1—C6—H6120.4
C12—C11—N2121.7 (2)C6—C5—C4122.0 (3)
C14—C12—C11125.6 (2)C6—C5—H5119.0
C14—C12—C13118.3 (2)C4—C5—H5119.0
C11—C12—C13116.1 (2)C4—C7—H7A109.5
C8—C13—C17121.0 (2)C4—C7—H7B109.5
C8—C13—C12119.83 (19)H7A—C7—H7B109.5
C17—C13—C12119.1 (2)C4—C7—H7C109.5
C15—C14—C12120.8 (2)H7A—C7—H7C109.5
C15—C14—H14119.6H7B—C7—H7C109.5
C12—C14—H14119.6C8—O3—S1119.58 (13)
C14—C15—C16120.9 (2)
O3—C8—C9—C10177.46 (19)C11—C12—C14—C15176.7 (2)
C13—C8—C9—C100.0 (3)C13—C12—C14—C150.2 (3)
O3—C8—C9—N11.8 (3)C12—C14—C15—C160.2 (3)
C13—C8—C9—N1179.21 (19)C14—C15—C16—C170.5 (3)
O4—N1—C9—C8143.2 (2)C15—C16—C17—C130.3 (3)
O5—N1—C9—C838.6 (3)C8—C13—C17—C16179.9 (2)
O4—N1—C9—C1037.5 (3)C12—C13—C17—C160.1 (3)
O5—N1—C9—C10140.7 (2)O1—S1—C1—C617.0 (2)
C8—C9—C10—C112.9 (3)O2—S1—C1—C6152.30 (19)
N1—C9—C10—C11176.4 (2)O3—S1—C1—C695.1 (2)
C9—C10—C11—C122.8 (3)O1—S1—C1—C2163.2 (2)
C9—C10—C11—N2175.77 (19)O2—S1—C1—C227.9 (2)
O7—N2—C11—C10143.1 (2)O3—S1—C1—C284.7 (2)
O6—N2—C11—C1034.3 (3)C6—C1—C2—C30.5 (4)
O7—N2—C11—C1235.5 (3)S1—C1—C2—C3179.7 (2)
O6—N2—C11—C12147.1 (2)C1—C2—C3—C40.0 (5)
C10—C11—C12—C14177.1 (2)C5—C4—C3—C20.3 (4)
N2—C11—C12—C144.5 (3)C7—C4—C3—C2179.2 (3)
C10—C11—C12—C130.1 (3)C2—C1—C6—C50.8 (4)
N2—C11—C12—C13178.59 (19)S1—C1—C6—C5179.4 (2)
C9—C8—C13—C17176.87 (19)C1—C6—C5—C40.6 (4)
O3—C8—C13—C175.6 (3)C3—C4—C5—C60.0 (4)
C9—C8—C13—C122.9 (3)C7—C4—C5—C6179.5 (3)
O3—C8—C13—C12174.60 (17)C9—C8—O3—S180.6 (2)
C14—C12—C13—C8179.86 (19)C13—C8—O3—S1101.93 (19)
C11—C12—C13—C83.0 (3)O1—S1—O3—C886.68 (17)
C14—C12—C13—C170.3 (3)O2—S1—O3—C842.07 (17)
C11—C12—C13—C17176.83 (19)C1—S1—O3—C8158.41 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O50.932.553.194 (3)127
C14—H14···O70.932.332.895 (3)119
C17—H17···O30.932.482.798 (3)100
C10—H10···O1i0.932.453.327 (3)157
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H12N2O7S
Mr388.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)13.071 (2), 7.8660 (13), 16.595 (3)
β (°) 90.757 (3)
V3)1706.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.36 × 0.25 × 0.13
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.920, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
12222, 3116, 2291
Rint0.031
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.104, 1.02
No. of reflections3116
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.23

Computer programs: APEX2 (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O50.932.553.194 (3)127
C14—H14···O70.932.332.895 (3)119
C17—H17···O30.932.482.798 (3)100
C10—H10···O1i0.932.453.327 (3)157
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge Professor T. N. Guru Row and Dr Vijay Thiruvenkatam, Indian Institute of Science, Bangalore, India, for the data collection.

References

First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationManivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Fronczek, F. R. (2005a). Acta Cryst. E61, o239–o241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationManivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Fronczek, F. R. (2005b). Acta Cryst. E61, o242–o244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hananon, M. (1989). Biochim. Biophys. Acta, 978, 1–7.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds