organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2Z,2′Z,4E,4′E)-4,4′-(Cyclo­hexane-1,2-diyldi­nitrilo)dipent-2-en-2-ol

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: quzr@seu.edu.cn

(Received 19 March 2008; accepted 9 April 2008; online 16 April 2008)

A new tetra­dentate chiral Schiff base ligand, C16H26N2O2, has been synthesized by the reaction of acetyl­acetone with (1R,2R)-(−)-1,2-diamino­cyclo­hexane. Both of the mol­ecules in the asymmetric unit are of the same chirality (R configuration), since the absolute configuration was determined by the starting reagent (1R,2R)-(−)-1,2-diamino­cyclo­hexane. The six-membered cyclo­hexane ring is in a chair conformation, and the substituents are equatorial in the most stable conformation (trans-cyclo­hexyl). At the ring substituents, large conjugated —C=N—CH=C—OH systems exist, resulting from the original ketone converted into the enol form. With H atoms excluded, the atoms of each substituent lie in the same plane. The two mol­ecules in the asymmetric unit have almost the same structure, with slight differences in the torsion angles between the substituents and the cyclo­hexane ring; the corresponding N1—(C—C—C)cyclo­hexa­ne torsion angles are −177.2 (3) and 179.3 (4)° in one mol­ecule and −176.5 (3) and 178.4 (4)° in the other. Two intra­molecular O—H⋯N hydrogen bonds exist in each mol­ecule.

Related literature

For the chemistry of Schiff bases, see: Alemi & Shaabani (2000[Alemi, A. A. & Shaabani, B. (2000). Acta Chim. Slov. 47, 363-369.]); Bandini et al. (1999[Bandini, M., Cozzi, P. G., Melchioree, P. & Umani-Ronchi, A. (1999). Angew. Chem. Int. Ed. 38, 3357-3359.], 2000[Bandini, M., Cozzi, P. G. & Umani-Ronchi, A. (2000). Angew. Chem. Int. Ed. 39, 2327-2330.]); Belokon et al. (1997[Belokon, Y., Flego, M., Ikonnikov, N., Moscalenko, M., North, M., Orizu, C., Tararov, V. & Tasinazzo, M. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 1293-1295.]); Cozzi (2003[Cozzi, P. G. (2003). Angew. Chem. Int. Ed. 42, 2895-2898.]); Jiang et al. (1995[Jiang, Y., Zhou, X., Hu, W., Wu, L. & Mi, A. (1995). Tetrahedron Asymmetry, 6, 405-408.]); Kureshy et al. (2001[Kureshy, R. I., Khan, N. H., Abdi, S. H. R., Patel, S. T. & Jasra, R. V. (2001). Tetrahedron Lett. 42, 2915-2918.]); Sasaki et al. (1991[Sasaki, C., Nakajima, K. & Kojima, M. (1991). Bull. Chem. Soc. Jpn, 64, 1318-1324.]).

[Scheme 1]

Experimental

Crystal data
  • C16H26N2O2

  • Mr = 278.39

  • Monoclinic, P 21

  • a = 9.7306 (15) Å

  • b = 14.7003 (17) Å

  • c = 12.760 (2) Å

  • β = 109.927 (8)°

  • V = 1716.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 (2) K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.986, Tmax = 0.993

  • 15462 measured reflections

  • 3485 independent reflections

  • 2740 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.167

  • S = 1.10

  • 3485 reflections

  • 371 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯N2 0.85 1.89 2.644 (4) 147
O1—H1A⋯N3 0.82 2.00 2.684 (4) 141
O3—H3A⋯N1 0.85 1.90 2.662 (5) 148
O2—H2⋯N4 0.82 1.95 2.659 (5) 145

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, research on Schiff bases has intensified because some of them form materials with non-linear optical (NLO) activity (Alemi & Shaabani, 2000) and because some can be used for the asymmetric oxidation of methyl phenyl sulfides (Sasaki et al., 1991). The search for new chiral ligands for asymmetric synthesis is an important task in organic chemistry. Various chiral Schiff bases are widely used in asymmetric reactions (Jiang et al., 1995; Belokon et al., 1997; Bandini et al., 1999, 2000; Kureshy et al., 2001; Cozzi, 2003). Herein, we report the synthesis and crystal structure of a new chiral Schiff base ligand (2Z,2'Z,4E,4'E)-4,4'-(cyclohexane-1,2-diylbis(azan-1-yl-1-ylidene))dipent-2-en-2-ol (Fig. 1).

The two molecules in the asymmetric unit have almost the same structure, with slight differences in the torsion angles between the substituents and the cyclohexane ring; the N—C3—C9—C19 and N3—C3—C10—C17 torsion angles are -177.2 (3) and 179.3 (4)°, respectively, and the N2—C1—C5—C23 and N2—C1—C7—C18 torsion angels are -176.5 (3) and 178.4 (4)Å, respectively.

Related literature top

For the chemistry of Schiff bases, see: Alemi & Shaabani (2000); Bandini et al. (1999, 2000); Belokon et al. (1997); Cozzi (2003); Jiang et al. (1995); Kureshy et al. (2001); Sasaki et al. (1991).

Experimental top

Acetylacetone (2.4 g, 0.024 mol) in 6 ml of chloroform was added dropwise to a solution of chloroform (20 ml) containing (1R, 2R)-(–)-1,2-Diaminocyclohexane (1.14 g, 0.01 mol), which was kept at 0–5°C with vigorous stirring during the reaction. After complete addition which took approximately 30 min, the mixture was stirred for another 1 h at room temperature. After the evaporation of the solvent under reduced pressure, the crude product was recrystallized by slowly evaporating with petroleum ether to yield pale-yellow crystals.

Refinement top

Hydroxy and methyl H atoms were placed in calculated positions with O—H = 0.82 and C—H = 0.96 Å, and torsion angles were refined. Other H atoms were placed in calculated positions with C—H = 0.93 to 0.98 Å. In the absence of significant anomalous scattering effects, Friedel pairs were averaged.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
(2Z,2'Z,4E,4'E)-4,4'-(Cyclohexane-1,2- diyldinitrilo)dipent-2-en-2-ol top
Crystal data top
C16H26N2O2F(000) = 608
Mr = 278.39Dx = 1.078 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3495 reflections
a = 9.7306 (15) Åθ = 3.2–27.5°
b = 14.7003 (17) ŵ = 0.07 mm1
c = 12.760 (2) ÅT = 293 K
β = 109.927 (8)°Block, yellow
V = 1716.0 (4) Å30.20 × 0.15 × 0.10 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
3485 independent reflections
Radiation source: fine-focus sealed tube2740 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.2°
ω scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1718
Tmin = 0.986, Tmax = 0.993l = 1515
15462 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.167 w = 1/[σ2(Fo2) + (0.0929P)2 + 0.0509P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3485 reflectionsΔρmax = 0.26 e Å3
371 parametersΔρmin = 0.20 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.044 (14)
Crystal data top
C16H26N2O2V = 1716.0 (4) Å3
Mr = 278.39Z = 4
Monoclinic, P21Mo Kα radiation
a = 9.7306 (15) ŵ = 0.07 mm1
b = 14.7003 (17) ÅT = 293 K
c = 12.760 (2) Å0.20 × 0.15 × 0.10 mm
β = 109.927 (8)°
Data collection top
Rigaku SCXmini
diffractometer
3485 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2740 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.993Rint = 0.046
15462 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0621 restraint
wR(F2) = 0.167H-atom parameters constrained
S = 1.10Δρmax = 0.26 e Å3
3485 reflectionsΔρmin = 0.20 e Å3
371 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.2331 (3)0.0705 (2)0.1213 (2)0.0495 (7)
C10.1320 (3)0.1372 (3)0.1382 (3)0.0506 (8)
H10.16800.19810.13000.061*
O40.2711 (3)0.1020 (2)0.0795 (3)0.0823 (9)
H4A0.22470.05430.08510.123*
N10.2625 (3)0.1490 (2)0.3420 (2)0.0581 (8)
N40.8253 (4)0.4606 (3)0.3268 (3)0.0678 (9)
C30.6294 (4)0.5743 (3)0.2561 (3)0.0567 (9)
H30.63340.58360.33310.068*
N30.7255 (3)0.6406 (2)0.2316 (2)0.0569 (7)
C40.3731 (4)0.0815 (2)0.1303 (3)0.0495 (8)
C50.1211 (4)0.1297 (3)0.2550 (3)0.0561 (9)
H50.09120.06770.26540.067*
O10.8023 (4)0.7283 (2)0.0754 (2)0.0768 (9)
H1A0.74300.70050.09600.115*
C70.0180 (4)0.1249 (3)0.0491 (3)0.0618 (9)
H7A0.00980.13390.02380.074*
H7B0.05120.06310.05240.074*
C80.4543 (4)0.0087 (3)0.1148 (3)0.0579 (9)
H80.54990.01980.11830.069*
C90.6805 (4)0.4776 (3)0.2460 (3)0.0614 (10)
H90.68350.46870.17070.074*
C100.4723 (5)0.5893 (3)0.1793 (4)0.0742 (12)
H10A0.44180.65030.19050.089*
H10B0.46770.58430.10240.089*
O30.4543 (4)0.2765 (2)0.4469 (3)0.0909 (10)
H3A0.37500.25460.40250.136*
C120.8823 (4)0.7750 (3)0.1538 (4)0.0634 (10)
O20.9822 (4)0.4545 (4)0.5429 (3)0.1050 (13)
H20.90910.46490.48870.157*
C140.4014 (4)0.0812 (3)0.0939 (3)0.0618 (9)
C150.8997 (4)0.7595 (3)0.2663 (4)0.0633 (10)
H150.96860.79430.31980.076*
C160.3627 (4)0.0888 (3)0.4013 (3)0.0582 (9)
C170.3679 (5)0.5206 (3)0.2010 (4)0.0783 (12)
H17A0.36460.52980.27540.094*
H17B0.27030.53030.14810.094*
C180.1303 (5)0.1907 (4)0.0636 (4)0.0777 (12)
H18A0.10290.25240.05240.093*
H18B0.22490.17810.00800.093*
C190.5730 (5)0.4084 (3)0.2667 (4)0.0786 (12)
H19A0.60230.34740.25440.094*
H19B0.57800.41260.34380.094*
C201.0821 (5)0.4578 (4)0.4000 (4)0.0835 (14)
H201.16930.45580.38520.100*
C210.9538 (5)0.4634 (3)0.3102 (4)0.0705 (11)
C220.4950 (5)0.1197 (3)0.4755 (4)0.0684 (11)
H220.56180.07640.51600.082*
C230.0078 (5)0.1962 (4)0.2683 (4)0.0831 (14)
H23A0.00120.18780.34100.100*
H23B0.04070.25790.26430.100*
C240.8217 (4)0.6967 (3)0.3024 (3)0.0603 (9)
C250.4427 (4)0.1743 (3)0.1572 (4)0.0683 (11)
H25A0.38430.21800.10490.103*
H25B0.53900.17250.15250.103*
H25C0.44890.19140.23130.103*
C260.4153 (5)0.4247 (4)0.1903 (5)0.0848 (14)
H26A0.40740.41320.11360.102*
H26B0.35100.38250.20960.102*
C271.0909 (5)0.4549 (4)0.5141 (4)0.0850 (15)
C280.5353 (5)0.2123 (4)0.4938 (4)0.0819 (13)
C290.1412 (5)0.1825 (5)0.1784 (4)0.0909 (15)
H29A0.17880.12290.18680.109*
H29B0.20910.22780.18720.109*
C300.3316 (5)0.0111 (3)0.3878 (4)0.0731 (12)
H30A0.24000.02360.39780.110*
H30B0.40820.04400.44260.110*
H30C0.32660.02990.31450.110*
C310.9560 (6)0.4700 (5)0.1934 (5)0.0945 (16)
H31A0.88640.42810.14630.142*
H31B1.05200.45530.19300.142*
H31C0.93120.53080.16610.142*
C321.2405 (6)0.4531 (6)0.6027 (5)0.130 (3)
H32A1.26340.51230.63570.195*
H32B1.31180.43620.56960.195*
H32C1.24140.40960.65900.195*
C330.5043 (6)0.1553 (4)0.0876 (5)0.0952 (16)
H33A0.45710.19360.02460.143*
H33B0.53120.19090.15460.143*
H33C0.59030.12890.07950.143*
C340.8432 (7)0.6907 (4)0.4256 (4)0.0946 (17)
H34A0.75240.70360.43670.142*
H34B0.91560.73420.46580.142*
H34C0.87520.63060.45220.142*
C350.6841 (7)0.2341 (6)0.5773 (8)0.155 (4)
H35A0.70440.29760.57310.232*
H35B0.75710.19870.56080.232*
H35C0.68530.21980.65100.232*
C360.9633 (7)0.8527 (5)0.1258 (5)0.113 (2)
H37A1.06640.84470.16330.169*
H37B0.93250.90870.14930.169*
H37C0.94300.85430.04670.169*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0395 (14)0.0525 (16)0.0569 (16)0.0021 (12)0.0168 (11)0.0008 (14)
C10.0424 (17)0.0480 (18)0.0581 (19)0.0000 (14)0.0127 (14)0.0004 (16)
O40.0699 (19)0.0546 (16)0.125 (3)0.0055 (13)0.0370 (17)0.0164 (17)
N10.0479 (16)0.072 (2)0.0501 (15)0.0054 (14)0.0112 (12)0.0002 (15)
N40.0515 (19)0.079 (2)0.071 (2)0.0026 (16)0.0175 (15)0.0169 (19)
C30.058 (2)0.059 (2)0.0495 (19)0.0100 (17)0.0134 (15)0.0080 (18)
N30.0557 (17)0.0589 (18)0.0532 (16)0.0140 (14)0.0148 (13)0.0023 (15)
C40.0471 (18)0.0487 (19)0.0525 (18)0.0034 (15)0.0168 (14)0.0049 (16)
C50.0429 (18)0.067 (2)0.054 (2)0.0012 (16)0.0109 (15)0.0006 (18)
O10.089 (2)0.084 (2)0.0676 (17)0.0244 (17)0.0395 (16)0.0090 (16)
C70.052 (2)0.065 (2)0.061 (2)0.0033 (17)0.0101 (16)0.0034 (19)
C80.0461 (19)0.060 (2)0.068 (2)0.0015 (16)0.0205 (16)0.0025 (18)
C90.054 (2)0.065 (2)0.063 (2)0.0031 (17)0.0166 (17)0.0076 (19)
C100.057 (2)0.072 (3)0.088 (3)0.001 (2)0.017 (2)0.016 (2)
O30.079 (2)0.076 (2)0.097 (2)0.0045 (17)0.0019 (17)0.0026 (19)
C120.060 (2)0.063 (2)0.076 (3)0.0123 (18)0.035 (2)0.008 (2)
O20.067 (2)0.162 (4)0.081 (2)0.006 (2)0.0181 (17)0.045 (2)
C140.059 (2)0.057 (2)0.073 (2)0.0026 (18)0.0268 (18)0.000 (2)
C150.057 (2)0.064 (2)0.065 (2)0.0159 (18)0.0167 (18)0.0082 (19)
C160.053 (2)0.071 (2)0.0521 (19)0.0056 (18)0.0207 (16)0.0084 (19)
C170.056 (2)0.087 (3)0.088 (3)0.012 (2)0.019 (2)0.008 (3)
C180.053 (2)0.084 (3)0.080 (3)0.014 (2)0.0019 (19)0.008 (2)
C190.067 (3)0.062 (3)0.103 (3)0.009 (2)0.024 (2)0.007 (3)
C200.055 (3)0.094 (3)0.100 (3)0.004 (2)0.024 (2)0.019 (3)
C210.058 (2)0.071 (3)0.084 (3)0.003 (2)0.027 (2)0.012 (2)
C220.056 (2)0.077 (3)0.064 (2)0.0063 (19)0.0089 (18)0.004 (2)
C230.056 (2)0.118 (4)0.074 (3)0.024 (2)0.019 (2)0.012 (3)
C240.057 (2)0.063 (2)0.055 (2)0.0027 (17)0.0121 (16)0.0036 (19)
C250.054 (2)0.058 (2)0.092 (3)0.0115 (18)0.025 (2)0.000 (2)
C260.066 (3)0.079 (3)0.100 (4)0.020 (2)0.016 (2)0.000 (3)
C270.064 (3)0.095 (4)0.087 (3)0.009 (2)0.013 (2)0.035 (3)
C280.061 (3)0.085 (3)0.084 (3)0.004 (2)0.004 (2)0.005 (3)
C290.049 (2)0.123 (4)0.099 (3)0.020 (3)0.023 (2)0.006 (3)
C300.074 (3)0.069 (3)0.072 (3)0.001 (2)0.018 (2)0.013 (2)
C310.078 (3)0.123 (5)0.090 (3)0.003 (3)0.040 (3)0.001 (3)
C320.072 (4)0.190 (8)0.105 (4)0.031 (4)0.000 (3)0.054 (5)
C330.088 (3)0.071 (3)0.128 (5)0.018 (3)0.038 (3)0.003 (3)
C340.116 (4)0.101 (4)0.053 (2)0.037 (3)0.011 (2)0.001 (3)
C350.096 (5)0.110 (5)0.193 (8)0.020 (4)0.037 (5)0.009 (5)
C360.125 (5)0.114 (5)0.117 (4)0.048 (4)0.066 (4)0.001 (4)
Geometric parameters (Å, º) top
N2—C41.337 (4)C18—C291.509 (7)
N2—C11.456 (4)C18—H18A0.9700
C1—C71.524 (5)C18—H18B0.9700
C1—C51.533 (5)C19—C261.531 (6)
C1—H10.9800C19—H19A0.9700
O4—C141.256 (5)C19—H19B0.9700
O4—H4A0.8499C20—C211.379 (6)
N1—C161.343 (5)C20—C271.431 (8)
N1—C51.471 (5)C20—H200.9300
N4—C211.338 (5)C21—C311.502 (7)
N4—C91.456 (5)C22—C281.413 (7)
C3—N31.457 (5)C22—H220.9300
C3—C101.524 (5)C23—C291.525 (6)
C3—C91.525 (6)C23—H23A0.9700
C3—H30.9800C23—H23B0.9700
N3—C241.340 (5)C24—C341.516 (6)
C4—C81.385 (5)C25—H25A0.9600
C4—C251.509 (5)C25—H25B0.9600
C5—C231.525 (6)C25—H25C0.9600
C5—H50.9800C26—H26A0.9700
O1—C121.244 (5)C26—H26B0.9700
O1—H1A0.8200C27—C321.508 (7)
C7—C181.517 (6)C28—C351.511 (7)
C7—H7A0.9700C29—H29A0.9700
C7—H7B0.9700C29—H29B0.9700
C8—C141.410 (6)C30—H30A0.9600
C8—H80.9300C30—H30B0.9600
C9—C191.544 (6)C30—H30C0.9600
C9—H90.9800C31—H31A0.9600
C10—C171.523 (6)C31—H31B0.9600
C10—H10A0.9700C31—H31C0.9600
C10—H10B0.9700C32—H32A0.9600
O3—C281.245 (6)C32—H32B0.9600
O3—H3A0.8500C32—H32C0.9600
C12—C151.406 (6)C33—H33A0.9600
C12—C361.498 (7)C33—H33B0.9600
O2—C271.232 (6)C33—H33C0.9600
O2—H20.8200C34—H34A0.9600
C14—C331.501 (6)C34—H34B0.9600
C15—C241.371 (6)C34—H34C0.9600
C15—H150.9300C35—H35A0.9600
C16—C221.389 (6)C35—H35B0.9600
C16—C301.498 (6)C35—H35C0.9600
C17—C261.504 (8)C36—H37A0.9600
C17—H17A0.9700C36—H37B0.9600
C17—H17B0.9700C36—H37C0.9600
C4—N2—C1128.7 (3)C27—C20—H20117.6
N2—C1—C7109.5 (3)N4—C21—C20119.8 (4)
N2—C1—C5111.7 (3)N4—C21—C31119.3 (4)
C7—C1—C5110.5 (3)C20—C21—C31120.8 (4)
N2—C1—H1108.4C16—C22—C28124.6 (4)
C7—C1—H1108.4C16—C22—H22117.7
C5—C1—H1108.4C28—C22—H22117.7
C14—O4—H4A109.0C29—C23—C5111.7 (4)
C16—N1—C5127.7 (4)C29—C23—H23A109.3
C21—N4—C9127.8 (4)C5—C23—H23A109.3
N3—C3—C10110.0 (3)C29—C23—H23B109.3
N3—C3—C9110.7 (3)C5—C23—H23B109.3
C10—C3—C9111.4 (3)H23A—C23—H23B107.9
N3—C3—H3108.2N3—C24—C15121.9 (3)
C10—C3—H3108.2N3—C24—C34118.8 (4)
C9—C3—H3108.2C15—C24—C34119.3 (4)
C24—N3—C3128.2 (3)C4—C25—H25A109.5
N2—C4—C8120.6 (3)C4—C25—H25B109.5
N2—C4—C25119.6 (3)H25A—C25—H25B109.5
C8—C4—C25119.8 (3)C4—C25—H25C109.5
N1—C5—C23108.5 (3)H25A—C25—H25C109.5
N1—C5—C1111.3 (3)H25B—C25—H25C109.5
C23—C5—C1110.7 (3)C17—C26—C19111.1 (4)
N1—C5—H5108.7C17—C26—H26A109.4
C23—C5—H5108.7C19—C26—H26A109.4
C1—C5—H5108.7C17—C26—H26B109.4
C12—O1—H1A109.5C19—C26—H26B109.4
C18—C7—C1112.3 (3)H26A—C26—H26B108.0
C18—C7—H7A109.1O2—C27—C20123.0 (4)
C1—C7—H7A109.1O2—C27—C32119.0 (5)
C18—C7—H7B109.1C20—C27—C32118.1 (5)
C1—C7—H7B109.1O3—C28—C22123.8 (4)
H7A—C7—H7B107.9O3—C28—C35118.4 (5)
C4—C8—C14124.2 (3)C22—C28—C35117.8 (5)
C4—C8—H8117.9C18—C29—C23110.8 (4)
C14—C8—H8117.9C18—C29—H29A109.5
N4—C9—C3111.4 (3)C23—C29—H29A109.5
N4—C9—C19108.3 (3)C18—C29—H29B109.5
C3—C9—C19109.9 (3)C23—C29—H29B109.5
N4—C9—H9109.1H29A—C29—H29B108.1
C3—C9—H9109.1C16—C30—H30A109.5
C19—C9—H9109.1C16—C30—H30B109.5
C17—C10—C3111.9 (4)H30A—C30—H30B109.5
C17—C10—H10A109.2C16—C30—H30C109.5
C3—C10—H10A109.2H30A—C30—H30C109.5
C17—C10—H10B109.2H30B—C30—H30C109.5
C3—C10—H10B109.2C21—C31—H31A109.5
H10A—C10—H10B107.9C21—C31—H31B109.5
C28—O3—H3A108.4H31A—C31—H31B109.5
O1—C12—C15123.8 (4)C21—C31—H31C109.5
O1—C12—C36117.7 (4)H31A—C31—H31C109.5
C15—C12—C36118.5 (4)H31B—C31—H31C109.5
C27—O2—H2109.5C27—C32—H32A109.5
O4—C14—C8122.8 (4)C27—C32—H32B109.5
O4—C14—C33118.3 (4)H32A—C32—H32B109.5
C8—C14—C33118.9 (4)C27—C32—H32C109.5
C24—C15—C12124.3 (4)H32A—C32—H32C109.5
C24—C15—H15117.8H32B—C32—H32C109.5
C12—C15—H15117.8C14—C33—H33A109.5
N1—C16—C22119.6 (4)C14—C33—H33B109.5
N1—C16—C30120.1 (4)H33A—C33—H33B109.5
C22—C16—C30120.2 (4)C14—C33—H33C109.5
C26—C17—C10111.2 (4)H33A—C33—H33C109.5
C26—C17—H17A109.4H33B—C33—H33C109.5
C10—C17—H17A109.4C24—C34—H34A109.5
C26—C17—H17B109.4C24—C34—H34B109.5
C10—C17—H17B109.4H34A—C34—H34B109.5
H17A—C17—H17B108.0C24—C34—H34C109.5
C29—C18—C7111.1 (4)H34A—C34—H34C109.5
C29—C18—H18A109.4H34B—C34—H34C109.5
C7—C18—H18A109.4C28—C35—H35A109.5
C29—C18—H18B109.4C28—C35—H35B109.5
C7—C18—H18B109.4H35A—C35—H35B109.5
H18A—C18—H18B108.0C28—C35—H35C109.5
C26—C19—C9112.3 (4)H35A—C35—H35C109.5
C26—C19—H19A109.1H35B—C35—H35C109.5
C9—C19—H19A109.1C12—C36—H37A109.5
C26—C19—H19B109.1C12—C36—H37B109.5
C9—C19—H19B109.1H37A—C36—H37B109.5
H19A—C19—H19B107.9C12—C36—H37C109.5
C21—C20—C27124.7 (4)H37A—C36—H37C109.5
C21—C20—H20117.6H37B—C36—H37C109.5
C4—N2—C1—C7139.4 (4)C36—C12—C15—C24173.5 (5)
C4—N2—C1—C597.9 (4)C5—N1—C16—C22175.8 (4)
C10—C3—N3—C24127.5 (4)C5—N1—C16—C304.5 (6)
C9—C3—N3—C24108.9 (4)C3—C10—C17—C2656.1 (6)
C1—N2—C4—C8177.7 (3)C1—C7—C18—C2955.9 (5)
C1—N2—C4—C252.6 (6)N4—C9—C19—C26176.4 (4)
C16—N1—C5—C23140.5 (4)C3—C9—C19—C2654.5 (5)
C16—N1—C5—C197.5 (4)C9—N4—C21—C20171.0 (4)
N2—C1—C5—N162.6 (4)C9—N4—C21—C3110.7 (7)
C7—C1—C5—N1175.3 (3)C27—C20—C21—N44.3 (8)
N2—C1—C5—C23176.5 (3)C27—C20—C21—C31177.5 (5)
C7—C1—C5—C2354.5 (4)N1—C16—C22—C280.7 (7)
N2—C1—C7—C18178.4 (4)C30—C16—C22—C28179.7 (5)
C5—C1—C7—C1855.1 (5)N1—C5—C23—C29178.1 (4)
N2—C4—C8—C143.0 (6)C1—C5—C23—C2955.7 (5)
C25—C4—C8—C14177.3 (4)C3—N3—C24—C15176.3 (4)
C21—N4—C9—C398.6 (5)C3—N3—C24—C343.1 (7)
C21—N4—C9—C19140.5 (5)C12—C15—C24—N33.4 (7)
N3—C3—C9—N462.7 (4)C12—C15—C24—C34175.9 (5)
C10—C3—C9—N4174.6 (3)C10—C17—C26—C1955.1 (6)
N3—C3—C9—C19177.2 (3)C9—C19—C26—C1755.2 (6)
C10—C3—C9—C1954.5 (4)C21—C20—C27—O22.2 (9)
N3—C3—C10—C17179.3 (4)C21—C20—C27—C32177.3 (6)
C9—C3—C10—C1756.1 (5)C16—C22—C28—O31.8 (9)
C4—C8—C14—O45.3 (7)C16—C22—C28—C35179.7 (6)
C4—C8—C14—C33175.1 (4)C7—C18—C29—C2355.6 (6)
O1—C12—C15—C245.8 (7)C5—C23—C29—C1856.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···N20.851.892.644 (4)147
O1—H1A···N30.822.002.684 (4)141
O3—H3A···N10.851.902.662 (5)148
O2—H2···N40.821.952.659 (5)145

Experimental details

Crystal data
Chemical formulaC16H26N2O2
Mr278.39
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)9.7306 (15), 14.7003 (17), 12.760 (2)
β (°) 109.927 (8)
V3)1716.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.986, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
15462, 3485, 2740
Rint0.046
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.167, 1.10
No. of reflections3485
No. of parameters371
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.20

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···N20.851.892.644 (4)147.4
O1—H1A···N30.822.002.684 (4)140.7
O3—H3A···N10.851.902.662 (5)147.7
O2—H2···N40.821.952.659 (5)145.0
 

Acknowledgements

This work was supported by a Start-up Grant from Southeast University to ZRQ.

References

First citationAlemi, A. A. & Shaabani, B. (2000). Acta Chim. Slov. 47, 363–369.  CAS Google Scholar
First citationBandini, M., Cozzi, P. G., Melchioree, P. & Umani-Ronchi, A. (1999). Angew. Chem. Int. Ed. 38, 3357–3359.  Web of Science CrossRef CAS Google Scholar
First citationBandini, M., Cozzi, P. G. & Umani-Ronchi, A. (2000). Angew. Chem. Int. Ed. 39, 2327–2330.  Web of Science CrossRef CAS Google Scholar
First citationBelokon, Y., Flego, M., Ikonnikov, N., Moscalenko, M., North, M., Orizu, C., Tararov, V. & Tasinazzo, M. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 1293–1295.  CrossRef Web of Science Google Scholar
First citationCozzi, P. G. (2003). Angew. Chem. Int. Ed. 42, 2895–2898.  Web of Science CrossRef CAS Google Scholar
First citationJiang, Y., Zhou, X., Hu, W., Wu, L. & Mi, A. (1995). Tetrahedron Asymmetry, 6, 405–408.  CrossRef CAS Web of Science Google Scholar
First citationKureshy, R. I., Khan, N. H., Abdi, S. H. R., Patel, S. T. & Jasra, R. V. (2001). Tetrahedron Lett. 42, 2915–2918.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSasaki, C., Nakajima, K. & Kojima, M. (1991). Bull. Chem. Soc. Jpn, 64, 1318–1324.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds