metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m657-m658

cis-Di­chloridobis[2-(hy­droxy­meth­yl)tetra­hydro­furan-κ2O,O′]manganese(II)

aFaculty of Chemistry, University of Wrocław, 14. F. Joliot Curie, 50-383 Wrocław, Poland
*Correspondence e-mail: jerzyk@wchuwr.pl

(Received 3 April 2008; accepted 7 April 2008; online 10 April 2008)

The structure of the title compound, [MnCl2(C5H10O2)2], was solved from low-temperature data collected at 100 (2) K. The asymmetric unit contains one half-mol­ecule with the MnII ion located on a twofold axis. A distorted octa­hedral environment around the Mn atom is formed by two ether and two hydroxyl O atoms of two 2-(hydroxy­methyl)tetra­hydro­furan ligands, and by two chloride ions. The chelating tetra­hydro­furan ligands, which form five-membered rings, are cis oriented. The crystal structure is stabilized by hydrogen bonding between the coordinated OH groups and the chloride ions.

Related literature

For general background, see: Bradley (1989[Bradley, D. C. (1989). Chem. Rev. 89, 1317-1322.]); Hubert-Pfalzgraf (1998[Hubert-Pfalzgraf, L. G. (1998). Coord. Chem. Rev. 178-180, 967-997.]); Jerzykiewicz et al. (1997[Jerzykiewicz, L. B., Utko, J. & Sobota, P. (1997). Acta Cryst. C53, 1393-1396.], 2007a[Jerzykiewicz, L. B., Utko, J., Duczmal, M. & Sobota, P. (2007a). Dalton Trans. pp. 825-826.],b[Jerzykiewicz, L. B., Utko, J. & Sobota, P. (2007b). Acta Cryst. C63, m501-m503.]); Janas et al. (1997[Janas, Z., Sobota, P., Kimowicz, M., Szafert, S., Szczegot, K. & Jerzykiewicz, L. B. (1997). J. Chem. Soc. Dalton Trans. pp. 3897-3901.], 1999[Janas, Z., Jerzykiewicz, L. B., Sobota, P. & Utko, J. (1999). New J. Chem. 23, 185-188.]); Sobota et al. (1998a[Sobota, P., Utko, J., Brusilovets, A. I. & Jerzykiewicz, L. B. (1998a). J. Organomet. Chem. 553, 379-385.],b[Sobota, P., Utko, J., Sztajnowska, K. & Jerzykiewicz, L. B. (1998b). New J. Chem. 22, 851-855.], 2000a[Sobota, P., Utko, J., Sztajnowska, K., Ejfler, J. & Jerzykiewicz, L. B. (2000a). Inorg. Chem. 39, 235-239.],b[Sobota, P., Utko, J., Ejfler, J. & Jerzykiewicz, L. B. (2000b). Organometallics, 19, 4929-4931.]); Utko et al. (2003[Utko, J., Przybylak, S., Jerzykiewicz, L. B., Szafert, S. & Sobota, P. (2003). Chem. Eur. J. 9, 181-190.])·For related compounds, see: Wu et al. (2004[Wu, J.-Z., Bouwman, E., Mills, A. M., Spek, A. L. & Reedijk, J. (2004). Inorg. Chim. Acta, 357, 2694-2702.]); Lumme & Lindell (1988[Lumme, P. O. & Lindell, E. (1988). Acta Cryst. C44, 463-465.]); Choudhury et al. (2006[Choudhury, S. R., Dutta, A., Mukhopadhyay, S., Lu, L.-P. & Zhu, M.-L. (2006). Acta Cryst. E62, m1489-m1491.]); Yang et al. (2003[Yang, Q. Y., Qi, J. Y., Chan, G., Zhou, Z. Y. & Chan, A. S. C. (2003). Acta Cryst. E59, m982-m984.]).

[Scheme 1]

Experimental

Crystal data
  • [MnCl2(C5H10O2)2]

  • Mr = 330.10

  • Monoclinic, C 2/c

  • a = 17.463 (3) Å

  • b = 6.171 (2) Å

  • c = 13.159 (3) Å

  • β = 100.24 (2)°

  • V = 1395.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.33 mm−1

  • T = 100 (2) K

  • 0.33 × 0.21 × 0.18 mm

Data collection
  • Kuma KM-4 CCD κ-axis diffractometer

  • Absorption correction: analytical (CrysAlis CCD; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wroclaw, Poland.]) Tmin = 0.721, Tmax = 0.818

  • 7753 measured reflections

  • 1757 independent reflections

  • 1667 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.057

  • S = 1.13

  • 1757 reflections

  • 91 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn—Cl1 2.459 (1)
Mn—O10 2.222 (2)
Mn—O11 2.222 (2)
Cl1—Mn—O10 94.26 (3)
Cl1—Mn—O11 89.57 (3)
Cl1—Mn—Cl1i 99.60 (2)
Cl1—Mn—O10i 93.03 (3)
Cl1—Mn—O11i 164.10 (3)
O10—Mn—O11 73.22 (4)
O10—Mn—O10i 168.70 (4)
O10—Mn—O11i 98.24 (4)
O11—Mn—O11i 84.69 (4)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11⋯Cl1ii 0.79 (2) 2.26 (2) 3.021 (2) 164 (2)
Symmetry code: (ii) x, y-1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wroclaw, Poland.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wroclaw, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2007[Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL, PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The investigation presented in this work is a part of our research project concerning complexes with O,O'–bifunctional ligands (Jerzykiewicz et al., 1997; Janas et al., 1997; Sobota et al., 1998a; Sobota et al., 1998b; Janas et al., 1999; Sobota et al., 2000a; Sobota et al., 2000b; Utko et al., 2003, Jerzykiewicz et al., 2007a; Jerzykiewicz et al. 2007b). The use of chelating alkoxides can provide new compounds which are potential candidates for both sol-gel and metal-organic chemical vapour (MOCV) conversion of the precursor into the ceramic materials (Hubert-Pfalzgraf, 1998; Bradley, 1989). In this paper we describe the structure of a monomeric manganese(II) alkoxide complex: Mn(thffoH)2Cl2 (thffoH – tetrahydrofurfuryl alcohol) (Fig. 1). The MnII atom located at the special position (0, y, 1/4) on the two-fold axes displays a slightly distorted octahedral geometry (Table 1). The thffoH molecules bond to Mn atom as bidentate ligands through O11 hydroxyl group and O10 of ether group close two five-membered rings. The hydroxyl groups are cis arranged, whereas ether oxygen atoms of chelating ligands are situated trans. The coordination sphere of metal ion is completed by the Cl- ions, which are in cis-positions. In contrast to other structures with O,O'–functional ligand MnBr2(MeOH)(Hmepap) (where mepma = N–(2–methoxyethyl)–N–(pyridin–2–ylmethyl)amine) (Wu et al., 2004) and Mn4Cl4(OCH2CH2OCH3)4(EtOH)4 (Jerzykiewicz et al., 2007a) the lengths of Mn–O(ether) and Mn–O(hydroxyl) bonds do not differ significantly. The Mn–Cl bond length of 2.459 (1) Å is similar to corresponding bonds distances in other monomeric octahedral manganese (II) compounds with cis–Cl atoms Mn(2,2'-bpy)2(C1)2 (where 2,2'-bpy = 2,2'-bipyridine) (Lumme & Lindell, 1988), Mn(2,2'-bpy)2(C1)2.SC(NH2)2 (Choudhury et al., 2006), MnCl2(HL)2 (where HL = N–(3–chlorophenyl)pyridine–2–carboxamide) (Yang et al., 2003). The tetrahydrofouran ring adopts an envelope conformation. The whole structure is held together by intermolecular hydrogen bonds of O–H···Cl type (Table 2, Fig. 2).

Related literature top

For general background, see: Bradley (1989); Hubert-Pfalzgraf (1998); Jerzykiewicz et al. (1997, 2007a,b); Janas et al. (1997, 1999); Sobota et al. (1998a,b, 2000a,b); Utko et al. (2003).For related compounds, see: Wu et al. (2004); Lumme & Lindell (1988); Choudhury et al. (2006); Yang et al. (2003).

Experimental top

The air- and moisture-sensitive title compound was prepared under dried N2. A mixture of 1.26 g (10 mmol) MnC12 and 1.93 cm3 (20 mmol) tetrahydrofurfuryl alcohol (thffoH, Aldrich) in 15 mL of absolute ethanol was refluxed for 50 min, and the resulting precipitate was filtered, washed with ethanol, dried and recrystallized from ethanol.

Refinement top

Carbon bonded hydrogen atoms were included in calculated positions and refined in the riding mode using SHELXTL default parameters. The remaining H atoms were located in a difference map and refined freely.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2003), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. Mn(II) is located at the two-fold axes.
[Figure 2] Fig. 2. The packing of the title compound, viewed down the c axis, showing one layer of molecules connected by O—H···Cl hydrogen bonds (dashed lines).
cis-Dichloridobis[2-(hydroxymethyl)tetrahydrofuran- κ2O,O']manganese(II) top
Crystal data top
[MnCl2(C5H10O2)2]F(000) = 684
Mr = 330.10Dx = 1.571 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4812 reflections
a = 17.463 (3) Åθ = 3–29°
b = 6.171 (2) ŵ = 1.33 mm1
c = 13.159 (3) ÅT = 100 K
β = 100.24 (2)°Block, colorless
V = 1395.5 (6) Å30.33 × 0.21 × 0.18 mm
Z = 4
Data collection top
Kuma KM-4 CCD κ-axis
diffractometer
1757 independent reflections
Radiation source: fine-focus sealed tube1667 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 28.5°, θmin = 3.6°
Absorption correction: analytical
(CrysAlis CCD; Oxford Diffraction, 2006)
h = 2323
Tmin = 0.721, Tmax = 0.818k = 88
7753 measured reflectionsl = 1117
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0255P)2 + 0.9537P]
where P = (Fo2 + 2Fc2)/3
1757 reflections(Δ/σ)max < 0.001
91 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[MnCl2(C5H10O2)2]V = 1395.5 (6) Å3
Mr = 330.10Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.463 (3) ŵ = 1.33 mm1
b = 6.171 (2) ÅT = 100 K
c = 13.159 (3) Å0.33 × 0.21 × 0.18 mm
β = 100.24 (2)°
Data collection top
Kuma KM-4 CCD κ-axis
diffractometer
1757 independent reflections
Absorption correction: analytical
(CrysAlis CCD; Oxford Diffraction, 2006)
1667 reflections with I > 2σ(I)
Tmin = 0.721, Tmax = 0.818Rint = 0.034
7753 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.057H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.36 e Å3
1757 reflectionsΔρmin = 0.32 e Å3
91 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn0.00000.60449 (4)0.25000.01153 (8)
Cl10.097635 (19)0.86166 (5)0.33711 (2)0.01677 (9)
O100.05616 (5)0.56904 (15)0.11203 (7)0.01400 (19)
O110.08645 (6)0.33832 (17)0.28441 (8)0.0203 (2)
H110.0799 (13)0.215 (4)0.2945 (16)0.035 (6)*
C110.11816 (8)0.4088 (2)0.11569 (11)0.0158 (3)
H11A0.09720.27250.08010.017 (4)*
C120.17872 (8)0.5110 (2)0.05927 (11)0.0192 (3)
H12A0.23230.47680.09460.021 (4)*
H12B0.17190.46020.01320.028 (5)*
C130.16192 (8)0.7537 (2)0.06439 (12)0.0203 (3)
H13A0.18720.81660.13110.029 (5)*
H13B0.17940.83320.00730.033 (5)*
C140.07401 (8)0.7568 (2)0.05337 (11)0.0171 (3)
H14A0.05620.89210.08220.028 (5)*
H14B0.04900.74440.02000.024 (5)*
C150.14969 (8)0.3643 (2)0.22866 (11)0.0183 (3)
H15A0.18170.23100.23520.024 (4)*
H15B0.18320.48620.25840.017 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.01366 (14)0.00883 (13)0.01296 (14)0.0000.00471 (10)0.000
Cl10.01853 (17)0.01165 (15)0.01927 (17)0.00251 (11)0.00099 (12)0.00065 (11)
O100.0142 (4)0.0143 (4)0.0147 (4)0.0012 (3)0.0060 (4)0.0023 (3)
O110.0236 (5)0.0134 (5)0.0276 (6)0.0050 (4)0.0145 (4)0.0082 (4)
C110.0138 (6)0.0133 (6)0.0211 (7)0.0007 (5)0.0055 (5)0.0028 (5)
C120.0154 (6)0.0251 (7)0.0187 (7)0.0004 (5)0.0073 (5)0.0007 (5)
C130.0153 (6)0.0231 (7)0.0224 (7)0.0042 (5)0.0027 (5)0.0073 (5)
C140.0166 (6)0.0183 (6)0.0167 (6)0.0014 (5)0.0041 (5)0.0070 (5)
C150.0161 (6)0.0178 (6)0.0226 (7)0.0042 (5)0.0076 (5)0.0056 (5)
Geometric parameters (Å, º) top
Mn—Cl12.459 (1)C13—C141.516 (2)
Mn—O102.222 (2)O11—H110.78 (2)
Mn—O112.222 (2)C11—H11A1.00
Mn—Cl1i2.459 (1)C12—H12A0.99
Mn—O10i2.222 (2)C12—H12B0.99
Mn—O11i2.222 (2)C13—H13A0.99
O10—C111.461 (2)C13—H13B0.99
O10—C141.456 (2)C14—H14A0.99
O11—C151.439 (2)C14—H14B0.99
C11—C121.532 (2)C15—H15A0.99
C11—C151.516 (2)C15—H15B0.99
C12—C131.530 (2)
Cl1—Mn—O1094.26 (3)O10—C14—C13104.34 (10)
Cl1—Mn—O1189.57 (3)O11—C15—C11110.01 (11)
Cl1—Mn—Cl1i99.60 (2)O10—C11—H11A110
Cl1—Mn—O10i93.03 (3)C12—C11—H11A110
Cl1—Mn—O11i164.10 (3)C15—C11—H11A110
O10—Mn—O1173.22 (4)C11—C12—H12A111
Cl1i—Mn—O1093.03 (3)C11—C12—H12B111
O10—Mn—O10i168.70 (4)C13—C12—H12A111
O10—Mn—O11i98.24 (4)C13—C12—H12B111
Cl1i—Mn—O11164.10 (3)H12A—C12—H12B109
O10i—Mn—O1198.24 (4)C12—C13—H13A111
O11—Mn—O11i84.69 (4)C12—C13—H13B111
Cl1i—Mn—O10i94.26 (3)C14—C13—H13A111
Cl1i—Mn—O11i89.57 (3)C14—C13—H13B111
O10i—Mn—O11i73.22 (4)H13A—C13—H13B109
Mn—O10—C11118.15 (8)O10—C14—H14A111
Mn—O10—C14121.45 (8)O10—C14—H14B111
C11—O10—C14109.20 (10)C13—C14—H14A111
Mn—O11—C15111.64 (8)C13—C14—H14B111
Mn—O11—H11129.6 (17)H14A—C14—H14B109
C15—O11—H11110.0 (17)O11—C15—H15A110
C12—C11—C15112.84 (12)O11—C15—H15B110
O10—C11—C12106.07 (10)C11—C15—H15A110
O10—C11—C15107.03 (11)C11—C15—H15B110
C11—C12—C13103.14 (11)H15A—C15—H15B108
C12—C13—C14101.94 (11)
Cl1—Mn—O10—C1185.96 (8)Mn—O10—C11—C1521.30 (12)
Cl1—Mn—O10—C1453.90 (9)C14—O10—C11—C122.38 (14)
O11—Mn—O10—C112.30 (8)C14—O10—C11—C15123.09 (11)
O11—Mn—O10—C14142.16 (10)Mn—O10—C14—C13117.39 (10)
Cl1i—Mn—O10—C11174.18 (8)C11—O10—C14—C1325.61 (13)
Cl1i—Mn—O10—C1445.96 (9)Mn—O11—C15—C1148.82 (11)
O11i—Mn—O10—C1184.18 (9)O10—C11—C12—C1321.45 (14)
O11i—Mn—O10—C14135.96 (9)C15—C11—C12—C1395.43 (13)
Cl1—Mn—O11—C1567.02 (8)O10—C11—C15—O1144.63 (13)
O10—Mn—O11—C1527.56 (8)C12—C11—C15—O11160.94 (10)
O10i—Mn—O11—C15160.02 (8)C11—C12—C13—C1436.08 (14)
O11i—Mn—O11—C15127.83 (9)C12—C13—C14—O1038.10 (13)
Mn—O10—C11—C12142.01 (9)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···Cl1ii0.79 (2)2.26 (2)3.021 (2)164 (2)
Symmetry code: (ii) x, y1, z.

Experimental details

Crystal data
Chemical formula[MnCl2(C5H10O2)2]
Mr330.10
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)17.463 (3), 6.171 (2), 13.159 (3)
β (°) 100.24 (2)
V3)1395.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.33
Crystal size (mm)0.33 × 0.21 × 0.18
Data collection
DiffractometerKuma KM-4 CCD κ-axis
diffractometer
Absorption correctionAnalytical
(CrysAlis CCD; Oxford Diffraction, 2006)
Tmin, Tmax0.721, 0.818
No. of measured, independent and
observed [I > 2σ(I)] reflections
7753, 1757, 1667
Rint0.034
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.057, 1.13
No. of reflections1757
No. of parameters91
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.32

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), DIAMOND (Brandenburg, 2007), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2003), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2008).

Selected geometric parameters (Å, º) top
Mn—Cl12.459 (1)O10—C111.461 (2)
Mn—O102.222 (2)O10—C141.456 (2)
Mn—O112.222 (2)O11—C151.439 (2)
Cl1—Mn—O1094.26 (3)Mn—O10—C11118.15 (8)
Cl1—Mn—O1189.57 (3)Mn—O10—C14121.45 (8)
Cl1—Mn—Cl1i99.60 (2)C11—O10—C14109.20 (10)
Cl1—Mn—O10i93.03 (3)Mn—O11—C15111.64 (8)
Cl1—Mn—O11i164.10 (3)O10—C11—C12106.07 (10)
O10—Mn—O1173.22 (4)O10—C11—C15107.03 (11)
O10—Mn—O10i168.70 (4)O10—C14—C13104.34 (10)
O10—Mn—O11i98.24 (4)O11—C15—C11110.01 (11)
O11—Mn—O11i84.69 (4)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···Cl1ii0.79 (2)2.26 (2)3.021 (2)164 (2)
Symmetry code: (ii) x, y1, z.
 

Acknowledgements

This work was supported by the Polish State Committee for Scientific Research [grant Nos. PBZ-KBN-118/T09/19 and NN205403633].

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBradley, D. C. (1989). Chem. Rev. 89, 1317–1322.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChoudhury, S. R., Dutta, A., Mukhopadhyay, S., Lu, L.-P. & Zhu, M.-L. (2006). Acta Cryst. E62, m1489–m1491.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHubert-Pfalzgraf, L. G. (1998). Coord. Chem. Rev. 178–180, 967–997.  Web of Science CrossRef CAS Google Scholar
First citationJanas, Z., Jerzykiewicz, L. B., Sobota, P. & Utko, J. (1999). New J. Chem. 23, 185–188.  Web of Science CSD CrossRef CAS Google Scholar
First citationJanas, Z., Sobota, P., Kimowicz, M., Szafert, S., Szczegot, K. & Jerzykiewicz, L. B. (1997). J. Chem. Soc. Dalton Trans. pp. 3897–3901.  CSD CrossRef Web of Science Google Scholar
First citationJerzykiewicz, L. B., Utko, J., Duczmal, M. & Sobota, P. (2007a). Dalton Trans. pp. 825–826.  Web of Science CSD CrossRef Google Scholar
First citationJerzykiewicz, L. B., Utko, J. & Sobota, P. (1997). Acta Cryst. C53, 1393–1396.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJerzykiewicz, L. B., Utko, J. & Sobota, P. (2007b). Acta Cryst. C63, m501–m503.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLumme, P. O. & Lindell, E. (1988). Acta Cryst. C44, 463–465.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wroclaw, Poland.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSobota, P., Utko, J., Brusilovets, A. I. & Jerzykiewicz, L. B. (1998a). J. Organomet. Chem. 553, 379–385.  Web of Science CSD CrossRef CAS Google Scholar
First citationSobota, P., Utko, J., Ejfler, J. & Jerzykiewicz, L. B. (2000b). Organometallics, 19, 4929–4931.  Web of Science CSD CrossRef CAS Google Scholar
First citationSobota, P., Utko, J., Sztajnowska, K., Ejfler, J. & Jerzykiewicz, L. B. (2000a). Inorg. Chem. 39, 235–239.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSobota, P., Utko, J., Sztajnowska, K. & Jerzykiewicz, L. B. (1998b). New J. Chem. 22, 851–855.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUtko, J., Przybylak, S., Jerzykiewicz, L. B., Szafert, S. & Sobota, P. (2003). Chem. Eur. J. 9, 181–190.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar
First citationWu, J.-Z., Bouwman, E., Mills, A. M., Spek, A. L. & Reedijk, J. (2004). Inorg. Chim. Acta, 357, 2694–2702.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, Q. Y., Qi, J. Y., Chan, G., Zhou, Z. Y. & Chan, A. S. C. (2003). Acta Cryst. E59, m982–m984.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m657-m658
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds