metal-organic compounds
cis-Dichloridobis[2-(hydroxymethyl)tetrahydrofuran-κ2O,O′]manganese(II)
aFaculty of Chemistry, University of Wrocław, 14. F. Joliot Curie, 50-383 Wrocław, Poland
*Correspondence e-mail: jerzyk@wchuwr.pl
The structure of the title compound, [MnCl2(C5H10O2)2], was solved from low-temperature data collected at 100 (2) K. The contains one half-molecule with the MnII ion located on a twofold axis. A distorted octahedral environment around the Mn atom is formed by two ether and two hydroxyl O atoms of two 2-(hydroxymethyl)tetrahydrofuran ligands, and by two chloride ions. The chelating tetrahydrofuran ligands, which form five-membered rings, are cis oriented. The is stabilized by hydrogen bonding between the coordinated OH groups and the chloride ions.
Related literature
For general background, see: Bradley (1989); Hubert-Pfalzgraf (1998); Jerzykiewicz et al. (1997, 2007a,b); Janas et al. (1997, 1999); Sobota et al. (1998a,b, 2000a,b); Utko et al. (2003)·For related compounds, see: Wu et al. (2004); Lumme & Lindell (1988); Choudhury et al. (2006); Yang et al. (2003).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: SHELXTL, PLATON (Spek, 2003), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2008).
Supporting information
10.1107/S1600536808009549/kp2165sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808009549/kp2165Isup2.hkl
The air- and moisture-sensitive title compound was prepared under dried N2. A mixture of 1.26 g (10 mmol) MnC12 and 1.93 cm3 (20 mmol) tetrahydrofurfuryl alcohol (thffoH, Aldrich) in 15 mL of absolute ethanol was refluxed for 50 min, and the resulting precipitate was filtered, washed with ethanol, dried and recrystallized from ethanol.
Carbon bonded hydrogen atoms were included in calculated positions and refined in the riding mode using SHELXTL default parameters. The remaining H atoms were located in a difference map and refined freely.
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2003), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2008).Fig. 1. A view of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. Mn(II) is located at the two-fold axes. | |
Fig. 2. The packing of the title compound, viewed down the c axis, showing one layer of molecules connected by O—H···Cl hydrogen bonds (dashed lines). |
[MnCl2(C5H10O2)2] | F(000) = 684 |
Mr = 330.10 | Dx = 1.571 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 4812 reflections |
a = 17.463 (3) Å | θ = 3–29° |
b = 6.171 (2) Å | µ = 1.33 mm−1 |
c = 13.159 (3) Å | T = 100 K |
β = 100.24 (2)° | Block, colorless |
V = 1395.5 (6) Å3 | 0.33 × 0.21 × 0.18 mm |
Z = 4 |
Kuma KM-4 CCD κ-axis diffractometer | 1757 independent reflections |
Radiation source: fine-focus sealed tube | 1667 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
ω scans | θmax = 28.5°, θmin = 3.6° |
Absorption correction: analytical (CrysAlis CCD; Oxford Diffraction, 2006) | h = −23→23 |
Tmin = 0.721, Tmax = 0.818 | k = −8→8 |
7753 measured reflections | l = −11→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.057 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.13 | w = 1/[σ2(Fo2) + (0.0255P)2 + 0.9537P] where P = (Fo2 + 2Fc2)/3 |
1757 reflections | (Δ/σ)max < 0.001 |
91 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
[MnCl2(C5H10O2)2] | V = 1395.5 (6) Å3 |
Mr = 330.10 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 17.463 (3) Å | µ = 1.33 mm−1 |
b = 6.171 (2) Å | T = 100 K |
c = 13.159 (3) Å | 0.33 × 0.21 × 0.18 mm |
β = 100.24 (2)° |
Kuma KM-4 CCD κ-axis diffractometer | 1757 independent reflections |
Absorption correction: analytical (CrysAlis CCD; Oxford Diffraction, 2006) | 1667 reflections with I > 2σ(I) |
Tmin = 0.721, Tmax = 0.818 | Rint = 0.034 |
7753 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.057 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.13 | Δρmax = 0.36 e Å−3 |
1757 reflections | Δρmin = −0.32 e Å−3 |
91 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mn | 0.0000 | 0.60449 (4) | 0.2500 | 0.01153 (8) | |
Cl1 | 0.097635 (19) | 0.86166 (5) | 0.33711 (2) | 0.01677 (9) | |
O10 | 0.05616 (5) | 0.56904 (15) | 0.11203 (7) | 0.01400 (19) | |
O11 | 0.08645 (6) | 0.33832 (17) | 0.28441 (8) | 0.0203 (2) | |
H11 | 0.0799 (13) | 0.215 (4) | 0.2945 (16) | 0.035 (6)* | |
C11 | 0.11816 (8) | 0.4088 (2) | 0.11569 (11) | 0.0158 (3) | |
H11A | 0.0972 | 0.2725 | 0.0801 | 0.017 (4)* | |
C12 | 0.17872 (8) | 0.5110 (2) | 0.05927 (11) | 0.0192 (3) | |
H12A | 0.2323 | 0.4768 | 0.0946 | 0.021 (4)* | |
H12B | 0.1719 | 0.4602 | −0.0132 | 0.028 (5)* | |
C13 | 0.16192 (8) | 0.7537 (2) | 0.06439 (12) | 0.0203 (3) | |
H13A | 0.1872 | 0.8166 | 0.1311 | 0.029 (5)* | |
H13B | 0.1794 | 0.8332 | 0.0073 | 0.033 (5)* | |
C14 | 0.07401 (8) | 0.7568 (2) | 0.05337 (11) | 0.0171 (3) | |
H14A | 0.0562 | 0.8921 | 0.0822 | 0.028 (5)* | |
H14B | 0.0490 | 0.7444 | −0.0200 | 0.024 (5)* | |
C15 | 0.14969 (8) | 0.3643 (2) | 0.22866 (11) | 0.0183 (3) | |
H15A | 0.1817 | 0.2310 | 0.2352 | 0.024 (4)* | |
H15B | 0.1832 | 0.4862 | 0.2584 | 0.017 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn | 0.01366 (14) | 0.00883 (13) | 0.01296 (14) | 0.000 | 0.00471 (10) | 0.000 |
Cl1 | 0.01853 (17) | 0.01165 (15) | 0.01927 (17) | −0.00251 (11) | 0.00099 (12) | −0.00065 (11) |
O10 | 0.0142 (4) | 0.0143 (4) | 0.0147 (4) | 0.0012 (3) | 0.0060 (4) | 0.0023 (3) |
O11 | 0.0236 (5) | 0.0134 (5) | 0.0276 (6) | 0.0050 (4) | 0.0145 (4) | 0.0082 (4) |
C11 | 0.0138 (6) | 0.0133 (6) | 0.0211 (7) | 0.0007 (5) | 0.0055 (5) | −0.0028 (5) |
C12 | 0.0154 (6) | 0.0251 (7) | 0.0187 (7) | 0.0004 (5) | 0.0073 (5) | 0.0007 (5) |
C13 | 0.0153 (6) | 0.0231 (7) | 0.0224 (7) | −0.0042 (5) | 0.0027 (5) | 0.0073 (5) |
C14 | 0.0166 (6) | 0.0183 (6) | 0.0167 (6) | −0.0014 (5) | 0.0041 (5) | 0.0070 (5) |
C15 | 0.0161 (6) | 0.0178 (6) | 0.0226 (7) | 0.0042 (5) | 0.0076 (5) | 0.0056 (5) |
Mn—Cl1 | 2.459 (1) | C13—C14 | 1.516 (2) |
Mn—O10 | 2.222 (2) | O11—H11 | 0.78 (2) |
Mn—O11 | 2.222 (2) | C11—H11A | 1.00 |
Mn—Cl1i | 2.459 (1) | C12—H12A | 0.99 |
Mn—O10i | 2.222 (2) | C12—H12B | 0.99 |
Mn—O11i | 2.222 (2) | C13—H13A | 0.99 |
O10—C11 | 1.461 (2) | C13—H13B | 0.99 |
O10—C14 | 1.456 (2) | C14—H14A | 0.99 |
O11—C15 | 1.439 (2) | C14—H14B | 0.99 |
C11—C12 | 1.532 (2) | C15—H15A | 0.99 |
C11—C15 | 1.516 (2) | C15—H15B | 0.99 |
C12—C13 | 1.530 (2) | ||
Cl1—Mn—O10 | 94.26 (3) | O10—C14—C13 | 104.34 (10) |
Cl1—Mn—O11 | 89.57 (3) | O11—C15—C11 | 110.01 (11) |
Cl1—Mn—Cl1i | 99.60 (2) | O10—C11—H11A | 110 |
Cl1—Mn—O10i | 93.03 (3) | C12—C11—H11A | 110 |
Cl1—Mn—O11i | 164.10 (3) | C15—C11—H11A | 110 |
O10—Mn—O11 | 73.22 (4) | C11—C12—H12A | 111 |
Cl1i—Mn—O10 | 93.03 (3) | C11—C12—H12B | 111 |
O10—Mn—O10i | 168.70 (4) | C13—C12—H12A | 111 |
O10—Mn—O11i | 98.24 (4) | C13—C12—H12B | 111 |
Cl1i—Mn—O11 | 164.10 (3) | H12A—C12—H12B | 109 |
O10i—Mn—O11 | 98.24 (4) | C12—C13—H13A | 111 |
O11—Mn—O11i | 84.69 (4) | C12—C13—H13B | 111 |
Cl1i—Mn—O10i | 94.26 (3) | C14—C13—H13A | 111 |
Cl1i—Mn—O11i | 89.57 (3) | C14—C13—H13B | 111 |
O10i—Mn—O11i | 73.22 (4) | H13A—C13—H13B | 109 |
Mn—O10—C11 | 118.15 (8) | O10—C14—H14A | 111 |
Mn—O10—C14 | 121.45 (8) | O10—C14—H14B | 111 |
C11—O10—C14 | 109.20 (10) | C13—C14—H14A | 111 |
Mn—O11—C15 | 111.64 (8) | C13—C14—H14B | 111 |
Mn—O11—H11 | 129.6 (17) | H14A—C14—H14B | 109 |
C15—O11—H11 | 110.0 (17) | O11—C15—H15A | 110 |
C12—C11—C15 | 112.84 (12) | O11—C15—H15B | 110 |
O10—C11—C12 | 106.07 (10) | C11—C15—H15A | 110 |
O10—C11—C15 | 107.03 (11) | C11—C15—H15B | 110 |
C11—C12—C13 | 103.14 (11) | H15A—C15—H15B | 108 |
C12—C13—C14 | 101.94 (11) | ||
Cl1—Mn—O10—C11 | 85.96 (8) | Mn—O10—C11—C15 | −21.30 (12) |
Cl1—Mn—O10—C14 | −53.90 (9) | C14—O10—C11—C12 | 2.38 (14) |
O11—Mn—O10—C11 | −2.30 (8) | C14—O10—C11—C15 | 123.09 (11) |
O11—Mn—O10—C14 | −142.16 (10) | Mn—O10—C14—C13 | 117.39 (10) |
Cl1i—Mn—O10—C11 | −174.18 (8) | C11—O10—C14—C13 | −25.61 (13) |
Cl1i—Mn—O10—C14 | 45.96 (9) | Mn—O11—C15—C11 | −48.82 (11) |
O11i—Mn—O10—C11 | −84.18 (9) | O10—C11—C12—C13 | 21.45 (14) |
O11i—Mn—O10—C14 | 135.96 (9) | C15—C11—C12—C13 | −95.43 (13) |
Cl1—Mn—O11—C15 | −67.02 (8) | O10—C11—C15—O11 | 44.63 (13) |
O10—Mn—O11—C15 | 27.56 (8) | C12—C11—C15—O11 | 160.94 (10) |
O10i—Mn—O11—C15 | −160.02 (8) | C11—C12—C13—C14 | −36.08 (14) |
O11i—Mn—O11—C15 | 127.83 (9) | C12—C13—C14—O10 | 38.10 (13) |
Mn—O10—C11—C12 | −142.01 (9) |
Symmetry code: (i) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O11—H11···Cl1ii | 0.79 (2) | 2.26 (2) | 3.021 (2) | 164 (2) |
Symmetry code: (ii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | [MnCl2(C5H10O2)2] |
Mr | 330.10 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 100 |
a, b, c (Å) | 17.463 (3), 6.171 (2), 13.159 (3) |
β (°) | 100.24 (2) |
V (Å3) | 1395.5 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.33 |
Crystal size (mm) | 0.33 × 0.21 × 0.18 |
Data collection | |
Diffractometer | Kuma KM-4 CCD κ-axis diffractometer |
Absorption correction | Analytical (CrysAlis CCD; Oxford Diffraction, 2006) |
Tmin, Tmax | 0.721, 0.818 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7753, 1757, 1667 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.671 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.057, 1.13 |
No. of reflections | 1757 |
No. of parameters | 91 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.36, −0.32 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), DIAMOND (Brandenburg, 2007), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2003), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2008).
Mn—Cl1 | 2.459 (1) | O10—C11 | 1.461 (2) |
Mn—O10 | 2.222 (2) | O10—C14 | 1.456 (2) |
Mn—O11 | 2.222 (2) | O11—C15 | 1.439 (2) |
Cl1—Mn—O10 | 94.26 (3) | Mn—O10—C11 | 118.15 (8) |
Cl1—Mn—O11 | 89.57 (3) | Mn—O10—C14 | 121.45 (8) |
Cl1—Mn—Cl1i | 99.60 (2) | C11—O10—C14 | 109.20 (10) |
Cl1—Mn—O10i | 93.03 (3) | Mn—O11—C15 | 111.64 (8) |
Cl1—Mn—O11i | 164.10 (3) | O10—C11—C12 | 106.07 (10) |
O10—Mn—O11 | 73.22 (4) | O10—C11—C15 | 107.03 (11) |
O10—Mn—O10i | 168.70 (4) | O10—C14—C13 | 104.34 (10) |
O10—Mn—O11i | 98.24 (4) | O11—C15—C11 | 110.01 (11) |
O11—Mn—O11i | 84.69 (4) |
Symmetry code: (i) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O11—H11···Cl1ii | 0.79 (2) | 2.26 (2) | 3.021 (2) | 164 (2) |
Symmetry code: (ii) x, y−1, z. |
Acknowledgements
This work was supported by the Polish State Committee for Scientific Research [grant Nos. PBZ-KBN-118/T09/19 and NN205403633].
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bradley, D. C. (1989). Chem. Rev. 89, 1317–1322. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Choudhury, S. R., Dutta, A., Mukhopadhyay, S., Lu, L.-P. & Zhu, M.-L. (2006). Acta Cryst. E62, m1489–m1491. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hubert-Pfalzgraf, L. G. (1998). Coord. Chem. Rev. 178–180, 967–997. Web of Science CrossRef CAS Google Scholar
Janas, Z., Jerzykiewicz, L. B., Sobota, P. & Utko, J. (1999). New J. Chem. 23, 185–188. Web of Science CSD CrossRef CAS Google Scholar
Janas, Z., Sobota, P., Kimowicz, M., Szafert, S., Szczegot, K. & Jerzykiewicz, L. B. (1997). J. Chem. Soc. Dalton Trans. pp. 3897–3901. CSD CrossRef Web of Science Google Scholar
Jerzykiewicz, L. B., Utko, J., Duczmal, M. & Sobota, P. (2007a). Dalton Trans. pp. 825–826. Web of Science CSD CrossRef Google Scholar
Jerzykiewicz, L. B., Utko, J. & Sobota, P. (1997). Acta Cryst. C53, 1393–1396. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Jerzykiewicz, L. B., Utko, J. & Sobota, P. (2007b). Acta Cryst. C63, m501–m503. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lumme, P. O. & Lindell, E. (1988). Acta Cryst. C44, 463–465. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wroclaw, Poland. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sobota, P., Utko, J., Brusilovets, A. I. & Jerzykiewicz, L. B. (1998a). J. Organomet. Chem. 553, 379–385. Web of Science CSD CrossRef CAS Google Scholar
Sobota, P., Utko, J., Ejfler, J. & Jerzykiewicz, L. B. (2000b). Organometallics, 19, 4929–4931. Web of Science CSD CrossRef CAS Google Scholar
Sobota, P., Utko, J., Sztajnowska, K., Ejfler, J. & Jerzykiewicz, L. B. (2000a). Inorg. Chem. 39, 235–239. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sobota, P., Utko, J., Sztajnowska, K. & Jerzykiewicz, L. B. (1998b). New J. Chem. 22, 851–855. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Utko, J., Przybylak, S., Jerzykiewicz, L. B., Szafert, S. & Sobota, P. (2003). Chem. Eur. J. 9, 181–190. Web of Science CSD CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2008). publCIF. In preparation. Google Scholar
Wu, J.-Z., Bouwman, E., Mills, A. M., Spek, A. L. & Reedijk, J. (2004). Inorg. Chim. Acta, 357, 2694–2702. Web of Science CSD CrossRef CAS Google Scholar
Yang, Q. Y., Qi, J. Y., Chan, G., Zhou, Z. Y. & Chan, A. S. C. (2003). Acta Cryst. E59, m982–m984. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The investigation presented in this work is a part of our research project concerning complexes with O,O'–bifunctional ligands (Jerzykiewicz et al., 1997; Janas et al., 1997; Sobota et al., 1998a; Sobota et al., 1998b; Janas et al., 1999; Sobota et al., 2000a; Sobota et al., 2000b; Utko et al., 2003, Jerzykiewicz et al., 2007a; Jerzykiewicz et al. 2007b). The use of chelating alkoxides can provide new compounds which are potential candidates for both sol-gel and metal-organic chemical vapour (MOCV) conversion of the precursor into the ceramic materials (Hubert-Pfalzgraf, 1998; Bradley, 1989). In this paper we describe the structure of a monomeric manganese(II) alkoxide complex: Mn(thffoH)2Cl2 (thffoH – tetrahydrofurfuryl alcohol) (Fig. 1). The MnII atom located at the special position (0, y, 1/4) on the two-fold axes displays a slightly distorted octahedral geometry (Table 1). The thffoH molecules bond to Mn atom as bidentate ligands through O11 hydroxyl group and O10 of ether group close two five-membered rings. The hydroxyl groups are cis arranged, whereas ether oxygen atoms of chelating ligands are situated trans. The coordination sphere of metal ion is completed by the Cl- ions, which are in cis-positions. In contrast to other structures with O,O'–functional ligand MnBr2(MeOH)(Hmepap) (where mepma = N–(2–methoxyethyl)–N–(pyridin–2–ylmethyl)amine) (Wu et al., 2004) and Mn4Cl4(OCH2CH2OCH3)4(EtOH)4 (Jerzykiewicz et al., 2007a) the lengths of Mn–O(ether) and Mn–O(hydroxyl) bonds do not differ significantly. The Mn–Cl bond length of 2.459 (1) Å is similar to corresponding bonds distances in other monomeric octahedral manganese (II) compounds with cis–Cl atoms Mn(2,2'-bpy)2(C1)2 (where 2,2'-bpy = 2,2'-bipyridine) (Lumme & Lindell, 1988), Mn(2,2'-bpy)2(C1)2.SC(NH2)2 (Choudhury et al., 2006), MnCl2(HL)2 (where HL = N–(3–chlorophenyl)pyridine–2–carboxamide) (Yang et al., 2003). The tetrahydrofouran ring adopts an envelope conformation. The whole structure is held together by intermolecular hydrogen bonds of O–H···Cl type (Table 2, Fig. 2).