organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4′-Fluoro-2′-hy­droxy­aceto­phenone

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 19 March 2008; accepted 20 April 2008; online 26 April 2008)

The title compound, C8H7FO2, crystallizes as discrete mol­ecules, the conformation of which may be influenced by an intra­molecular hydr­oxy–carbonyl O—H⋯O hydrogen bond.

Related literature

For the crystal structures of other substituted acetophenones, see: Filarowski et al. (2004[Filarowski, A., Koll, A., Kochel, A., Kalenik, J. & Hansen, P. E. (2004). J. Mol. Struct. 700, 67-72.], 2005[Filarowski, A., Kochel, A., Cieslik, K. & Koll, A. (2005). J. Phys. Org. Chem. 18, 986-993.]); Hibbs et al. (2003[Hibbs, D. E., Overgaard, J. & Piltz, R. O. (2003). Org. Biomol. Chem. 1, 1191-1198.]); Huang et al. (2004[Huang, H.-R., Xia, X.-K., She, Z.-G., Lin, Y.-C., Vrijmoed, L. L. P. & Jones, E. B. G. (2004). Acta Cryst. E60, o2509-o2510.]); Ng (2007[Ng, S. W. (2007). Acta Cryst. E63, o1805-o1806.]); Xu et al. (2005[Xu, X.-Y., Gao, J., Chen, J., Li, S.-Z., Yang, X.-J. & Song, H.-B. (2005). Chin. J. Struct. Chem. 24, 436-438.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7FO2

  • Mr = 154.14

  • Monoclinic, P 21 /n

  • a = 3.7978 (1) Å

  • b = 14.2421 (3) Å

  • c = 13.0092 (3) Å

  • β = 91.884 (2)°

  • V = 703.27 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 (2) K

  • 0.16 × 0.14 × 0.12 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: none

  • 8762 measured reflections

  • 1601 independent reflections

  • 1224 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.127

  • S = 1.05

  • 1601 reflections

  • 128 parameters

  • 7 restraints

  • All H-atom parameters refined

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.857 (10) 1.76 (1) 2.554 (2) 154 (2)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Acetopheonone is a liquid at room temperature. If a small substituent such as 5'-bromo (Ng, 2007), 5'-chloro (Filarowski et al., 2004), 6'-hydroxy (Huang et al., 2004), 5'-nitro (Hibbs et al., 2003), 4'-methoxy (Filarowski et al., 2005; Xu et al., 2005) or 6'-methoxy (Filarowski et al., 2005) is present the compounds exists as crystalline solids. The compound (I) containing the reltively smaller F substituent sublimes at room temperature. The structure contains discrete molecules (Fig. 1), in which the conformation may be influenced by an intramolecular hydrogen bond between the hydroxy and carbonyl groups.

Related literature top

For the crystal structures of other substituted acetophenones, see: Filarowski et al. (2004, 2005); Hibbs et al. (2003); Huang et al. (2004); Ng (2007); Xu et al. (2005).

Experimental top

The compound was purchased from Aldrich Chemical Company; the chemical exists as prismatic crystals.

Refinement top

All H-atoms were located in a difference Fourier map, and were refined with distance restraints of C—H 0.99±0.01 Å and O–H 0.84±0.01 Å. Their temperature factors were freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. 70% Probability thermal ellipsoid plot of 4'-fluoro-2'-hydroxyacetophenone. Hydrogen atoms are drawn as spheres of arbitrary radius.
4-fluoro-2-hydroxybenzaldehyde top
Crystal data top
C8H7FO2F(000) = 320
Mr = 154.14Dx = 1.456 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1854 reflections
a = 3.7978 (1) Åθ = 2.9–26.4°
b = 14.2421 (3) ŵ = 0.12 mm1
c = 13.0092 (3) ÅT = 100 K
β = 91.884 (2)°Prism, colorless
V = 703.27 (3) Å30.16 × 0.14 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
1224 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 27.5°, θmin = 2.1°
ω scansh = 44
8762 measured reflectionsk = 1818
1601 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0775P)2 + 0.0798P]
where P = (Fo2 + 2Fc2)/3
1601 reflections(Δ/σ)max = 0.001
128 parametersΔρmax = 0.30 e Å3
7 restraintsΔρmin = 0.28 e Å3
Crystal data top
C8H7FO2V = 703.27 (3) Å3
Mr = 154.14Z = 4
Monoclinic, P21/nMo Kα radiation
a = 3.7978 (1) ŵ = 0.12 mm1
b = 14.2421 (3) ÅT = 100 K
c = 13.0092 (3) Å0.16 × 0.14 × 0.12 mm
β = 91.884 (2)°
Data collection top
Bruker SMART APEXII
diffractometer
1224 reflections with I > 2σ(I)
8762 measured reflectionsRint = 0.039
1601 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0437 restraints
wR(F2) = 0.127All H-atom parameters refined
S = 1.05Δρmax = 0.30 e Å3
1601 reflectionsΔρmin = 0.28 e Å3
128 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.1828 (3)0.50469 (6)0.65495 (7)0.0319 (3)
O10.4466 (3)0.72547 (8)0.40329 (8)0.0325 (3)
O20.7055 (3)0.88271 (8)0.46250 (8)0.0320 (3)
C10.5542 (4)0.76649 (10)0.58170 (11)0.0196 (3)
C20.4380 (4)0.70349 (10)0.50349 (11)0.0211 (3)
C30.3106 (4)0.61483 (10)0.52868 (11)0.0229 (3)
C40.3051 (4)0.59128 (10)0.63045 (12)0.0225 (4)
C50.4165 (4)0.64954 (10)0.71015 (11)0.0235 (4)
C60.5398 (4)0.73716 (10)0.68410 (11)0.0216 (4)
C70.6909 (4)0.85914 (10)0.55377 (11)0.0227 (4)
C80.8132 (5)0.92675 (11)0.63595 (12)0.0267 (4)
H10.519 (6)0.7824 (9)0.4037 (19)0.066 (8)*
H30.221 (5)0.5733 (10)0.4729 (11)0.029 (5)*
H50.412 (5)0.6279 (11)0.7807 (8)0.023 (4)*
H60.616 (4)0.7801 (10)0.7398 (10)0.024 (4)*
H810.602 (4)0.9492 (14)0.6716 (15)0.051 (6)*
H820.968 (4)0.8980 (12)0.6899 (12)0.033 (5)*
H830.937 (5)0.9790 (11)0.6047 (15)0.044 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0427 (6)0.0200 (5)0.0331 (5)0.0081 (4)0.0043 (4)0.0043 (4)
O10.0514 (8)0.0275 (6)0.0182 (6)0.0115 (6)0.0021 (5)0.0018 (4)
O20.0457 (8)0.0252 (6)0.0254 (6)0.0091 (5)0.0038 (5)0.0027 (4)
C10.0191 (8)0.0176 (7)0.0221 (7)0.0013 (5)0.0012 (6)0.0019 (5)
C20.0223 (8)0.0221 (8)0.0187 (7)0.0003 (6)0.0002 (6)0.0003 (5)
C30.0235 (8)0.0207 (7)0.0244 (8)0.0012 (6)0.0003 (6)0.0023 (6)
C40.0227 (8)0.0146 (7)0.0304 (8)0.0005 (6)0.0045 (6)0.0030 (6)
C50.0266 (9)0.0240 (8)0.0201 (7)0.0020 (6)0.0028 (6)0.0026 (6)
C60.0226 (8)0.0205 (7)0.0217 (7)0.0022 (6)0.0007 (6)0.0022 (5)
C70.0231 (8)0.0204 (7)0.0247 (8)0.0006 (6)0.0021 (6)0.0004 (6)
C80.0277 (9)0.0220 (8)0.0304 (8)0.0035 (6)0.0026 (7)0.0032 (6)
Geometric parameters (Å, º) top
F1—C41.3594 (16)C3—H30.988 (9)
O1—C21.3420 (17)C4—C51.383 (2)
O1—H10.857 (10)C5—C61.379 (2)
O2—C71.2370 (18)C5—H50.969 (9)
C1—C61.399 (2)C6—H60.984 (9)
C1—C21.416 (2)C7—C81.501 (2)
C1—C71.468 (2)C8—H810.993 (10)
C2—C31.395 (2)C8—H820.989 (9)
C3—C41.367 (2)C8—H830.977 (10)
C2—O1—H1103.5 (17)C6—C5—H5122.5 (10)
C6—C1—C2118.29 (13)C4—C5—H5120.3 (10)
C6—C1—C7121.96 (13)C5—C6—C1121.90 (13)
C2—C1—C7119.74 (13)C5—C6—H6118.4 (10)
O1—C2—C3117.32 (13)C1—C6—H6119.7 (10)
O1—C2—C1122.21 (13)O2—C7—C1120.59 (13)
C3—C2—C1120.47 (13)O2—C7—C8119.14 (14)
C4—C3—C2117.78 (14)C1—C7—C8120.27 (13)
C4—C3—H3123.3 (11)C7—C8—H81107.6 (13)
C2—C3—H3118.9 (10)C7—C8—H82113.7 (11)
F1—C4—C3117.77 (13)H81—C8—H82105.8 (17)
F1—C4—C5117.83 (13)C7—C8—H83109.5 (12)
C3—C4—C5124.40 (14)H81—C8—H83111.0 (18)
C6—C5—C4117.17 (13)H82—C8—H83109.2 (17)
C6—C1—C2—O1179.20 (14)C3—C4—C5—C60.2 (2)
C7—C1—C2—O10.3 (2)C4—C5—C6—C10.3 (2)
C6—C1—C2—C30.4 (2)C2—C1—C6—C50.0 (2)
C7—C1—C2—C3179.37 (14)C7—C1—C6—C5178.94 (14)
O1—C2—C3—C4179.15 (14)C6—C1—C7—O2178.92 (14)
C1—C2—C3—C40.5 (2)C2—C1—C7—O20.0 (2)
C2—C3—C4—F1179.64 (13)C6—C1—C7—C81.4 (2)
C2—C3—C4—C50.2 (2)C2—C1—C7—C8179.68 (14)
F1—C4—C5—C6179.97 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.86 (1)1.76 (1)2.554 (2)154 (2)

Experimental details

Crystal data
Chemical formulaC8H7FO2
Mr154.14
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)3.7978 (1), 14.2421 (3), 13.0092 (3)
β (°) 91.884 (2)
V3)703.27 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.16 × 0.14 × 0.12
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8762, 1601, 1224
Rint0.039
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.127, 1.05
No. of reflections1601
No. of parameters128
No. of restraints7
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.30, 0.28

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.857 (10)1.76 (1)2.554 (2)154 (2)
 

Acknowledgements

We thank the University of Malaya for the purchase of the diffractometer.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFilarowski, A., Kochel, A., Cieslik, K. & Koll, A. (2005). J. Phys. Org. Chem. 18, 986–993.  Web of Science CSD CrossRef CAS Google Scholar
First citationFilarowski, A., Koll, A., Kochel, A., Kalenik, J. & Hansen, P. E. (2004). J. Mol. Struct. 700, 67–72.  Web of Science CSD CrossRef CAS Google Scholar
First citationHibbs, D. E., Overgaard, J. & Piltz, R. O. (2003). Org. Biomol. Chem. 1, 1191–1198.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHuang, H.-R., Xia, X.-K., She, Z.-G., Lin, Y.-C., Vrijmoed, L. L. P. & Jones, E. B. G. (2004). Acta Cryst. E60, o2509–o2510.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNg, S. W. (2007). Acta Cryst. E63, o1805–o1806.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar
First citationXu, X.-Y., Gao, J., Chen, J., Li, S.-Z., Yang, X.-J. & Song, H.-B. (2005). Chin. J. Struct. Chem. 24, 436–438.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds