organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Di­chloro­salicylaldehyde

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 19 March 2008; accepted 20 April 2008; online 26 April 2008)

The title compound (systematic name: 3,5-dichloro-2-hydroxy­benzaldehyde), C7H4Cl2O2, crystallizes as discrete mol­ecules, the conformation of which may be influenced by an intra­molecular hydr­oxy–carbonyl O—H⋯O hydrogen bond.

Related literature

For the crystal structure of 3′,5′-dichloro­acetophenone, see: Filarowski et al. (2004[Filarowski, A., Koll, A., Kochel, A., Kalenik, J. & Hansen, P. E. (2004). J. Mol. Struct. 700, 67-72.]).

[Scheme 1]

Experimental

Crystal data
  • C7H4Cl2O2

  • Mr = 191.00

  • Monoclinic, P 21 /c

  • a = 8.2823 (2) Å

  • b = 13.7412 (3) Å

  • c = 7.0973 (2) Å

  • β = 115.185 (2)°

  • V = 730.95 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 100 (2) K

  • 0.25 × 0.15 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.701, Tmax = 0.960

  • 8436 measured reflections

  • 1672 independent reflections

  • 1303 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.101

  • S = 1.05

  • 1672 reflections

  • 104 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.84 (1) 1.87 (2) 2.628 (3) 149 (3)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The intramolecular hydrogen bonds in small molecules such as ortho-hydroxyacetopheonone and its derivatives has been extensively studied, both theoretically and crystallographically. Such compounds can exist in a keto-enol equilibrium. For 3',5'-dichloroacetophenone, geometry-optimization calculations suggest that the presence of two chlorine substituents raises the acidity of the hydroxyl proton and decreases the basicity of the carbonyl function. The O···O distance in the hydrogen bond is 2.567 (3) Å (Filarowski et al., 2004).

The hydrogen bond in the title molecule (I) is longer with an O···O distance of 2.628 (3) Å. 3,5-Dichlorosalicylaldehyde (I) exists as a monomeric compound (Fig. 1); the molecule is flat and all bond dimensions are normal.

Related literature top

For the crystal structure of 3',5'-dichloroacetophenone, see: Filarowski et al. (2004).

Experimental top

The compound was purchased from Aldrich Chemical Company; the chemical exists as colorless prismatic crystals. The bulk chemical has a yellow color.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The oxygen-bound H atom was located in a difference Fourier map, and was refined with a distance restraint of O–H 0.84±0.01 Å; its temperature factor was freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. 70% Probability thermal ellipsoid plot of 3,5-dichlorosalicylaldehyde. Hydrogen atoms are drawn as spheres of arbitrary radius.
3,5-dichloro-2-hydroxybenzaldehyde top
Crystal data top
C7H4Cl2O2F(000) = 384
Mr = 191.00Dx = 1.736 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3128 reflections
a = 8.2823 (2) Åθ = 3.0–28.2°
b = 13.7412 (3) ŵ = 0.82 mm1
c = 7.0973 (2) ÅT = 100 K
β = 115.185 (2)°Block, colorless
V = 730.95 (3) Å30.25 × 0.15 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
1672 independent reflections
Radiation source: fine-focus sealed tube1303 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.701, Tmax = 0.960k = 1717
8436 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0416P)2 + 0.8939P]
where P = (Fo2 + 2Fc2)/3
1672 reflections(Δ/σ)max = 0.001
104 parametersΔρmax = 0.59 e Å3
1 restraintΔρmin = 0.49 e Å3
Crystal data top
C7H4Cl2O2V = 730.95 (3) Å3
Mr = 191.00Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.2823 (2) ŵ = 0.82 mm1
b = 13.7412 (3) ÅT = 100 K
c = 7.0973 (2) Å0.25 × 0.15 × 0.05 mm
β = 115.185 (2)°
Data collection top
Bruker SMART APEXII
diffractometer
1672 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1303 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 0.960Rint = 0.058
8436 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.59 e Å3
1672 reflectionsΔρmin = 0.49 e Å3
104 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.17794 (9)0.14230 (4)0.48280 (10)0.01972 (18)
Cl20.15345 (9)0.53148 (4)0.39904 (11)0.02166 (19)
O10.5328 (3)0.17615 (13)0.8080 (3)0.0200 (4)
H10.631 (3)0.192 (3)0.905 (4)0.038 (10)*
O20.7916 (3)0.28892 (14)1.0580 (3)0.0252 (4)
C10.4488 (3)0.25960 (17)0.7232 (4)0.0155 (5)
C20.2766 (3)0.25497 (17)0.5629 (4)0.0164 (5)
C30.1851 (4)0.33804 (17)0.4659 (4)0.0168 (5)
H30.06800.33390.35720.020*
C40.2680 (4)0.42815 (17)0.5306 (4)0.0177 (5)
C50.4355 (4)0.43592 (17)0.6906 (4)0.0179 (5)
H50.48900.49800.73360.021*
C60.5266 (3)0.35155 (17)0.7897 (4)0.0160 (5)
C70.7028 (4)0.35892 (18)0.9634 (4)0.0206 (6)
H70.75170.42201.00580.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0225 (3)0.0110 (3)0.0228 (3)0.0036 (2)0.0068 (3)0.0026 (2)
Cl20.0204 (3)0.0122 (3)0.0276 (4)0.0029 (2)0.0056 (3)0.0051 (2)
O10.0193 (10)0.0111 (8)0.0243 (11)0.0025 (7)0.0042 (9)0.0025 (7)
O20.0211 (10)0.0197 (9)0.0272 (11)0.0004 (8)0.0030 (9)0.0033 (8)
C10.0182 (13)0.0111 (10)0.0180 (12)0.0028 (9)0.0083 (11)0.0016 (9)
C20.0216 (13)0.0106 (10)0.0186 (12)0.0017 (9)0.0100 (11)0.0016 (9)
C30.0163 (13)0.0162 (12)0.0172 (13)0.0004 (9)0.0063 (11)0.0007 (9)
C40.0201 (14)0.0114 (11)0.0213 (13)0.0038 (9)0.0086 (12)0.0032 (9)
C50.0202 (14)0.0108 (11)0.0228 (14)0.0024 (9)0.0093 (12)0.0000 (9)
C60.0151 (13)0.0123 (11)0.0195 (13)0.0004 (9)0.0064 (11)0.0003 (9)
C70.0212 (14)0.0149 (12)0.0229 (14)0.0029 (10)0.0068 (12)0.0003 (10)
Geometric parameters (Å, º) top
Cl1—C21.730 (2)C3—C41.395 (3)
Cl2—C41.742 (2)C3—H30.9500
O1—C11.343 (3)C4—C51.373 (4)
O1—H10.840 (10)C5—C61.399 (3)
O2—C71.223 (3)C5—H50.9500
C1—C21.397 (4)C6—C71.459 (4)
C1—C61.406 (3)C7—H70.9500
C2—C31.381 (3)
C1—O1—H1107 (3)C5—C4—Cl2120.53 (19)
O1—C1—C2118.7 (2)C3—C4—Cl2117.9 (2)
O1—C1—C6122.7 (2)C4—C5—C6119.4 (2)
C2—C1—C6118.5 (2)C4—C5—H5120.3
C3—C2—C1121.5 (2)C6—C5—H5120.3
C3—C2—Cl1119.6 (2)C5—C6—C1120.3 (2)
C1—C2—Cl1118.96 (18)C5—C6—C7119.9 (2)
C2—C3—C4118.7 (2)C1—C6—C7119.8 (2)
C2—C3—H3120.6O2—C7—C6124.1 (2)
C4—C3—H3120.6O2—C7—H7118.0
C5—C4—C3121.6 (2)C6—C7—H7118.0
O1—C1—C2—C3178.3 (2)Cl2—C4—C5—C6178.17 (19)
C6—C1—C2—C32.0 (4)C4—C5—C6—C11.3 (4)
O1—C1—C2—Cl10.8 (3)C4—C5—C6—C7178.4 (2)
C6—C1—C2—Cl1178.90 (18)O1—C1—C6—C5177.7 (2)
C1—C2—C3—C40.1 (4)C2—C1—C6—C52.7 (4)
Cl1—C2—C3—C4179.03 (19)O1—C1—C6—C72.6 (4)
C2—C3—C4—C51.5 (4)C2—C1—C6—C7177.1 (2)
C2—C3—C4—Cl2177.52 (18)C5—C6—C7—O2179.8 (3)
C3—C4—C5—C60.9 (4)C1—C6—C7—O20.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.84 (1)1.87 (2)2.628 (3)149 (3)

Experimental details

Crystal data
Chemical formulaC7H4Cl2O2
Mr191.00
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.2823 (2), 13.7412 (3), 7.0973 (2)
β (°) 115.185 (2)
V3)730.95 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.25 × 0.15 × 0.05
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.701, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
8436, 1672, 1303
Rint0.058
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 1.05
No. of reflections1672
No. of parameters104
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.49

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.84 (1)1.87 (2)2.628 (3)149 (3)
 

Acknowledgements

We thank the University of Malaya for the purchase of the diffractometer.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFilarowski, A., Koll, A., Kochel, A., Kalenik, J. & Hansen, P. E. (2004). J. Mol. Struct. 700, 67–72.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds