organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3-oxo-2,3-di­hydro-1,2-benzo­thia­zole-2-acetate 1,1-dioxide

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, bDepartment of Chemistry, University of Science and Technology, Bannu, Pakistan, cInstitute of Chemistry, University of the Punjab, Lahore, Pakistan, dDepartment of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4, and eDepartment of Chemistry, University of Balochistan, Quetta, Pakistan
*Correspondence e-mail: waseeq_786@yahoo.com

(Received 19 March 2008; accepted 11 April 2008; online 16 April 2008)

The title mol­ecule, C10H9NO5S, is composed of two essentially planar units with a dihedral angle of 89.16 (6)° between them. In the crystal structure, there are weak inter­molecular C—H⋯O inter­actions resulting in dimeric pairs of mol­ecules about inversion centres and chains of mol­ecules extended along the a and c axes, thus stabilizing the structure. In addition, benzothia­zole rings lying parallel to each other with centroid–centroid distances of 3.679 (2) and 3.999 (2) Å indicate the existence of ππ stacking inter­actions.

Related literature

For related literature, see: Kapui et al. (2003[Kapui, Z., Varga, M., Urban-Szabo, K., Mikus, E., Szabo, T., Szeredi, J., Finance, O. & Aranyi, P. (2003). J. Pharmacol. Exp. Ther. 305, 1-9.]); Masashi et al. (1999[Masashi, K., Hideo, T., Kentaro, Y. & Masataka, Y. (1999). Tetrahedron, 55, 14885-14900.]); Manjarrez et al. (1996[Manjarrez, N., Pérez, H. I., Solís, A. & Luna, H. (1996). Synth. Commun. 26, 585-591.]); Siddiqui, Ahmad, Khan, Siddiqui & Parvez (2007[Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Parvez, M. (2007). Acta Cryst. E63, o4116.]); Siddiqui, Ahmad, Khan, Siddiqui & Weaver (2007[Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007). Synth. Commun. 37, 767-773.]); Siddiqui, Ahmad, Siddiqui et al. (2007[Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007). Acta Cryst. E63, o4001.]); Siddiqui et al. (2008[Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4-o6.]); Xu et al. (2005[Xu, L.-Z., Si, G.-D., Li, Z.-F., Yang, S.-H. & Li, K. (2005). Acta Cryst. E61, o1329-o1330.], 2006[Xu, L., Shu, H., Liu, Y., Zhang, S. & Trudell, M. (2006). Tetrahedron, 62, 7902-7910.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9NO5S

  • Mr = 255.24

  • Triclinic, [P \overline 1]

  • a = 7.765 (3) Å

  • b = 8.496 (3) Å

  • c = 8.776 (4) Å

  • α = 104.39 (2)°

  • β = 100.58 (2)°

  • γ = 94.30 (2)°

  • V = 546.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 173 (2) K

  • 0.16 × 0.10 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.953, Tmax = 0.976

  • 4654 measured reflections

  • 2468 independent reflections

  • 2040 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.111

  • S = 1.03

  • 2468 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O5i 0.95 2.53 3.435 (3) 160
C4—H4⋯O4ii 0.95 2.54 3.209 (3) 128
C8—H8A⋯O2iii 0.99 2.49 3.435 (3) 159
C10—H10C⋯O1iv 0.98 2.47 3.431 (3) 167
Symmetry codes: (i) x, y, z+1; (ii) -x, -y, -z+2; (iii) -x+1, -y+1, -z+2; (iv) x+1, y, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SAPI91 (Fan, 1991[Fan, H.-F. (1991). SAPI91. Rigaku Corporation, Tokyo, Japan.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Saccharin derivatives are considered to be the most potent orally active human leucocyte elastase (HLE) inhibitors for the treatment of chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), cystic fibrosis, asthma and other inflammatory diseases (Kapui et al., 2003). Various biologically important saccharin skeletons and their N-alkyl derivatives were efficiently prepared (Xu et al., 2006) by chromium oxide-catalyzed oxidation of N-alkyl(o-methyl)arenesulfonamides in acetonitrile besides the already developed methodology utilizing irradiation techniques for similar type of conversions (Masashi et al., 1999). In continuation to our research on benzene, 1,2-benzothiazine 1,1-dioxide and saccharin derivatives (Siddiqui et al., 2008; Siddiqui, Ahmad, Khan, Siddiqui & Weaver, 2007), we report herein the crystal structure of the title compound, (I).

The structure of (I) is composed of an essentially planar moiety, S1/N1/O1/C1—C7 with maximum deviations from the least-square planes being: O1 = -0.0540 (12) and N1 = 0.0540 (13) Å, and an approximately planar moiety C8—C10/O4/O5 with maximum deviation of 0.0766 (13) Å for C8. The two moieties are oriented with a dihedral angle of 89.16 (6)° between their least-squares planes. The structure is stabilized by four rather weak intermolecular interactions of the type C—H···O (Fig. 2 and Table 1). Of these interactions, C4—H4···O5 and C8—H8A···O2 H-bonds result in dimeric pairs of (I) while C10—H10···O1 and C2—H2···O5 result in chains of molecules extended along the a- and c-axes, respectively. The benzothiazole rings in (I) lie parallel to each other about the origin with the shortest distance between the centroids of the benzene rings of the adjacent molecules is 3.679 (2) Å which indicates the existence of π-π stacking interactions. The thiazoline rings located about inversion centers in the middle of the b axis (at 0, 1/2, 0) also show π-π interaction with centroids of these rings separated by 3.999 (2) Å (Fig. 3). The molecular dimensions in (I) are in agreement with the corresponding dimensions reported in similar structures (Xu et al., 2005; Siddiqui, Ahmad, Khan, Siddiqui & Parvez, 2007; Siddiqui, Ahmad, Siddiqui et al., 2007; Siddiqui et al., 2008).

Related literature top

For related literature, see: Kapui et al. (2003); Masashi et al. (1999); Manjarrez et al. (1996); Siddiqui, Ahmad, Khan, Siddiqui & Parvez (2007); Siddiqui, Ahmad, Khan, Siddiqui & Weaver (2007); Siddiqui, Ahmad, Siddiqui et al. (2007); Siddiqui et al. (2008); Xu et al. (2005, 2006).

Experimental top

The compound (I) was prepared following the prcedures reported earlier (Manjarrez et al., 1996). Crystals suitable for X-ray crystallography were grown from a solution of CH3OH by slow evaporation at 313 K.

Refinement top

H-atoms were included in the refinements at geometrically idealized positions with aryl, methylene and methyl C—H distances 0.95, 0.99 and 0.98 Å, respectively, and Uiso = 1.2 times Ueq of the atoms to which they were bonded. The final difference map was free of any chemically significant features.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) drawing of (I) with displacement ellipsoids plotted at 50% probability level.
[Figure 2] Fig. 2. Unit cell packing of (I) showing C—H···O interactions represented by dashed lines; H-atoms not involved in H-bonds have been omitted.
[Figure 3] Fig. 3. Unit cell packing of (I) showing π-π stacking interactions represented by dashed lines; H-atoms have been omitted for clarity.
Methyl 3-oxo-2,3-dihydro-1,2-benzothiazole-2-acetate 1,1-dioxide top
Crystal data top
C10H9NO5SZ = 2
Mr = 255.24F(000) = 264
Triclinic, P1Dx = 1.550 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.765 (3) ÅCell parameters from 4654 reflections
b = 8.496 (3) Åθ = 3.9–27.4°
c = 8.776 (4) ŵ = 0.31 mm1
α = 104.39 (2)°T = 173 K
β = 100.58 (2)°Block, colourless
γ = 94.30 (2)°0.16 × 0.10 × 0.08 mm
V = 546.8 (4) Å3
Data collection top
Nonius KappaCCD
diffractometer
2468 independent reflections
Radiation source: fine-focus sealed tube2040 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and ϕ scansθmax = 27.4°, θmin = 3.9°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 109
Tmin = 0.953, Tmax = 0.976k = 1110
4654 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.056P)2 + 0.29P]
where P = (Fo2 + 2Fc2)/3
2468 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C10H9NO5Sγ = 94.30 (2)°
Mr = 255.24V = 546.8 (4) Å3
Triclinic, P1Z = 2
a = 7.765 (3) ÅMo Kα radiation
b = 8.496 (3) ŵ = 0.31 mm1
c = 8.776 (4) ÅT = 173 K
α = 104.39 (2)°0.16 × 0.10 × 0.08 mm
β = 100.58 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2468 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
2040 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.976Rint = 0.024
4654 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.03Δρmax = 0.46 e Å3
2468 reflectionsΔρmin = 0.43 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.25284 (6)0.37128 (6)1.06522 (6)0.02602 (16)
O10.07412 (18)0.18372 (19)0.67891 (17)0.0354 (3)
O20.40672 (17)0.29152 (17)1.08988 (17)0.0320 (3)
O30.2727 (2)0.54422 (17)1.13620 (18)0.0372 (4)
O40.3882 (2)0.14876 (17)0.70088 (18)0.0369 (4)
O50.41016 (18)0.33528 (17)0.56027 (16)0.0312 (3)
N10.1635 (2)0.3311 (2)0.87005 (18)0.0275 (4)
C10.0687 (2)0.2676 (2)1.1032 (2)0.0243 (4)
C20.0451 (3)0.2516 (2)1.2517 (2)0.0303 (4)
H20.13210.29871.34710.036*
C30.1118 (3)0.1633 (3)1.2543 (3)0.0325 (4)
H30.13210.14821.35350.039*
C40.2397 (3)0.0968 (2)1.1148 (3)0.0329 (5)
H40.34670.03841.12020.040*
C50.2128 (3)0.1147 (2)0.9669 (2)0.0297 (4)
H50.30050.06980.87160.036*
C60.0558 (2)0.1990 (2)0.9619 (2)0.0245 (4)
C70.0003 (2)0.2326 (2)0.8179 (2)0.0263 (4)
C80.2499 (3)0.3960 (2)0.7616 (2)0.0292 (4)
H8A0.32910.49720.82380.035*
H8B0.15930.42560.68190.035*
C90.3566 (2)0.2757 (2)0.6733 (2)0.0268 (4)
C100.5248 (3)0.2391 (3)0.4726 (3)0.0435 (6)
H10A0.55530.29100.39140.052*
H10B0.46380.12840.41950.052*
H10C0.63290.23290.54750.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0241 (3)0.0292 (3)0.0245 (3)0.00447 (18)0.00385 (18)0.00737 (18)
O10.0311 (7)0.0495 (9)0.0236 (7)0.0080 (6)0.0024 (6)0.0076 (6)
O20.0225 (7)0.0398 (8)0.0339 (8)0.0068 (6)0.0027 (6)0.0117 (6)
O30.0426 (9)0.0266 (7)0.0379 (8)0.0026 (6)0.0035 (7)0.0045 (6)
O40.0472 (9)0.0316 (8)0.0378 (8)0.0101 (7)0.0158 (7)0.0136 (6)
O50.0308 (7)0.0441 (8)0.0252 (7)0.0126 (6)0.0102 (6)0.0158 (6)
N10.0242 (8)0.0376 (9)0.0217 (8)0.0022 (7)0.0048 (6)0.0102 (7)
C10.0226 (9)0.0270 (9)0.0251 (9)0.0069 (7)0.0061 (7)0.0083 (7)
C20.0307 (10)0.0375 (11)0.0241 (10)0.0094 (8)0.0053 (8)0.0095 (8)
C30.0377 (11)0.0375 (11)0.0309 (11)0.0155 (9)0.0161 (9)0.0151 (8)
C40.0269 (10)0.0328 (10)0.0452 (12)0.0065 (8)0.0137 (9)0.0164 (9)
C50.0245 (9)0.0314 (10)0.0328 (10)0.0046 (8)0.0035 (8)0.0095 (8)
C60.0252 (9)0.0248 (9)0.0240 (9)0.0086 (7)0.0042 (7)0.0066 (7)
C70.0261 (9)0.0288 (9)0.0237 (10)0.0051 (7)0.0073 (7)0.0042 (7)
C80.0305 (10)0.0329 (10)0.0297 (10)0.0075 (8)0.0115 (8)0.0135 (8)
C90.0230 (9)0.0325 (10)0.0243 (9)0.0000 (7)0.0032 (7)0.0090 (8)
C100.0436 (13)0.0656 (15)0.0302 (11)0.0250 (11)0.0173 (10)0.0169 (10)
Geometric parameters (Å, º) top
S1—O21.4258 (15)C3—C41.389 (3)
S1—O31.4306 (15)C3—H30.9500
S1—N11.6640 (18)C4—C51.395 (3)
S1—C11.7504 (19)C4—H40.9500
O1—C71.202 (2)C5—C61.380 (3)
O4—C91.196 (2)C5—H50.9500
O5—C91.335 (2)C6—C71.492 (3)
O5—C101.449 (2)C8—C91.517 (3)
N1—C71.402 (3)C8—H8A0.9900
N1—C81.449 (2)C8—H8B0.9900
C1—C21.387 (3)C10—H10A0.9800
C1—C61.388 (3)C10—H10B0.9800
C2—C31.389 (3)C10—H10C0.9800
C2—H20.9500
O2—S1—O3116.71 (9)C6—C5—H5120.7
O2—S1—N1110.73 (9)C4—C5—H5120.7
O3—S1—N1109.35 (9)C5—C6—C1119.81 (18)
O2—S1—C1112.26 (9)C5—C6—C7127.38 (17)
O3—S1—C1112.83 (9)C1—C6—C7112.78 (17)
N1—S1—C192.26 (9)O1—C7—N1123.33 (18)
C9—O5—C10115.33 (16)O1—C7—C6128.71 (18)
C7—N1—C8122.31 (16)N1—C7—C6107.93 (16)
C7—N1—S1116.00 (13)N1—C8—C9112.82 (16)
C8—N1—S1121.68 (13)N1—C8—H8A109.0
C2—C1—C6122.73 (18)C9—C8—H8A109.0
C2—C1—S1126.37 (15)N1—C8—H8B109.0
C6—C1—S1110.90 (14)C9—C8—H8B109.0
C1—C2—C3116.80 (19)H8A—C8—H8B107.8
C1—C2—H2121.6O4—C9—O5125.61 (18)
C3—C2—H2121.6O4—C9—C8125.59 (18)
C2—C3—C4121.34 (19)O5—C9—C8108.80 (16)
C2—C3—H3119.3O5—C10—H10A109.5
C4—C3—H3119.3O5—C10—H10B109.5
C3—C4—C5120.73 (19)H10A—C10—H10B109.5
C3—C4—H4119.6O5—C10—H10C109.5
C5—C4—H4119.6H10A—C10—H10C109.5
C6—C5—C4118.57 (18)H10B—C10—H10C109.5
O2—S1—N1—C7111.37 (15)C2—C1—C6—C51.8 (3)
O3—S1—N1—C7118.66 (15)S1—C1—C6—C5178.65 (14)
C1—S1—N1—C73.48 (15)C2—C1—C6—C7179.84 (17)
O2—S1—N1—C869.24 (17)S1—C1—C6—C70.3 (2)
O3—S1—N1—C860.73 (17)C8—N1—C7—O16.2 (3)
C1—S1—N1—C8175.91 (15)S1—N1—C7—O1174.37 (15)
O2—S1—C1—C268.07 (19)C8—N1—C7—C6175.64 (16)
O3—S1—C1—C266.31 (19)S1—N1—C7—C63.7 (2)
N1—S1—C1—C2178.43 (18)C5—C6—C7—O15.9 (3)
O2—S1—C1—C6111.44 (14)C1—C6—C7—O1175.94 (19)
O3—S1—C1—C6114.19 (14)C5—C6—C7—N1176.14 (18)
N1—S1—C1—C62.07 (14)C1—C6—C7—N12.0 (2)
C6—C1—C2—C30.4 (3)C7—N1—C8—C984.4 (2)
S1—C1—C2—C3179.86 (15)S1—N1—C8—C996.29 (18)
C1—C2—C3—C41.0 (3)C10—O5—C9—O43.8 (3)
C2—C3—C4—C51.0 (3)C10—O5—C9—C8175.82 (16)
C3—C4—C5—C60.4 (3)N1—C8—C9—O49.1 (3)
C4—C5—C6—C11.8 (3)N1—C8—C9—O5171.21 (15)
C4—C5—C6—C7179.84 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O5i0.952.533.435 (3)160
C4—H4···O4ii0.952.543.209 (3)128
C8—H8A···O2iii0.992.493.435 (3)159
C10—H10C···O1iv0.982.473.431 (3)167
Symmetry codes: (i) x, y, z+1; (ii) x, y, z+2; (iii) x+1, y+1, z+2; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC10H9NO5S
Mr255.24
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.765 (3), 8.496 (3), 8.776 (4)
α, β, γ (°)104.39 (2), 100.58 (2), 94.30 (2)
V3)546.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.16 × 0.10 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.953, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
4654, 2468, 2040
Rint0.024
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 1.03
No. of reflections2468
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.43

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SAPI91 (Fan, 1991), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O5i0.952.533.435 (3)160
C4—H4···O4ii0.952.543.209 (3)128
C8—H8A···O2iii0.992.493.435 (3)159
C10—H10C···O1iv0.982.473.431 (3)167
Symmetry codes: (i) x, y, z+1; (ii) x, y, z+2; (iii) x+1, y+1, z+2; (iv) x+1, y, z.
 

References

First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFan, H.-F. (1991). SAPI91. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKapui, Z., Varga, M., Urban-Szabo, K., Mikus, E., Szabo, T., Szeredi, J., Finance, O. & Aranyi, P. (2003). J. Pharmacol. Exp. Ther. 305, 1–9.  Web of Science CrossRef PubMed Google Scholar
First citationManjarrez, N., Pérez, H. I., Solís, A. & Luna, H. (1996). Synth. Commun. 26, 585–591.  CrossRef CAS Web of Science Google Scholar
First citationMasashi, K., Hideo, T., Kentaro, Y. & Masataka, Y. (1999). Tetrahedron, 55, 14885–14900.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Parvez, M. (2007). Acta Cryst. E63, o4116.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007). Synth. Commun. 37, 767–773.  Web of Science CrossRef CAS Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007). Acta Cryst. E63, o4001.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, L., Shu, H., Liu, Y., Zhang, S. & Trudell, M. (2006). Tetrahedron, 62, 7902–7910.  Web of Science CrossRef CAS Google Scholar
First citationXu, L.-Z., Si, G.-D., Li, Z.-F., Yang, S.-H. & Li, K. (2005). Acta Cryst. E61, o1329–o1330.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds