metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m675-m676

Tetra­kis(μ3-2-{[1,1-bis­­(hy­droxy­meth­yl)-2-oxidoeth­yl]imino­meth­yl}-6-meth­oxy­phenol­ato)tetra­nickel(II) tetra­hydrate

aSchool of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: lilianzhi1963@yahoo.com.cn

(Received 4 April 2008; accepted 10 April 2008; online 16 April 2008)

The title complex, [Ni4(C12H15NO4)4]·4H2O, has crystal­lographic fourfold inversion symmetry, with each NiII ion coordinated in a slightly distorted square-pyramidal coordination environment and forming an Ni4O4 cubane-like core. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds connect complex and water mol­ecules to form a three-dimensional network. The O atom of one of the unique hydroxy­methyl groups is disordered over two sites, with the ratio of occupancies being approximately 0.79:0.21.

Related literature

For related literature, see: Dong, Li, Xu & Wang (2007[Dong, J.-F., Li, L.-Z., Xu, H.-Y. & Wang, D.-Q. (2007). Acta Cryst. E63, m2300.]); Dong, Li, Xu, Cui & Wang (2007[Dong, J.-F., Li, L.-Z., Xu, T., Cui, H. & Wang, D.-Q. (2007). Acta Cryst. E63, m1501-m1502.]); Koikawa et al. (2005[Koikawa, M., Ohba, M. & Tokii, T. (2005). Polyhedron, 24, 2257-2262.]); Mishtu et al. (2002[Mishtu, D., Chebrolu, P. R., Pauli, K. S. & Kari, R. (2002). Inorg. Chem. Commun. 5, 380-383.]); Nihei et al. (2003[Nihei, M., Hoshino, N., Ito, T. & Oshio, H. (2003). Polyhedron, 22, 2359-2362.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni4(C12H15NO4)4]·4H2O

  • Mr = 1319.90

  • Tetragonal, I 41 /a

  • a = 18.754 (2) Å

  • c = 15.4395 (15) Å

  • V = 5430.3 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.45 mm−1

  • T = 298 (2) K

  • 0.30 × 0.29 × 0.28 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.670, Tmax = 0.686

  • 11110 measured reflections

  • 2399 independent reflections

  • 1840 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.194

  • S = 1.08

  • 2399 reflections

  • 186 parameters

  • H-atom parameters constrained

  • Δρmax = 1.23 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—O1 1.912 (4)
Ni1—O3 1.941 (4)
Ni1—N1 1.949 (6)
Ni1—O3i 1.970 (4)
Ni1—O3ii 2.565 (5)
O1—Ni1—O3 172.2 (2)
O1—Ni1—N1 94.3 (2)
O3—Ni1—N1 84.1 (2)
O1—Ni1—O3i 94.57 (19)
O3—Ni1—O3i 88.47 (19)
N1—Ni1—O3i 166.1 (2)
O1—Ni1—O3ii 94.23 (17)
O3—Ni1—O3ii 79.80 (17)
N1—Ni1—O3ii 117.2 (2)
O3i—Ni1—O3ii 72.63 (17)
Symmetry codes: (i) [y-{\script{1\over 4}}, -x+{\script{5\over 4}}, -z+{\script{9\over 4}}]; (ii) [-x+1, -y+{\script{3\over 2}}, z].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯N1 0.82 2.58 2.988 (9) 112
O4—H4⋯O6iii 0.82 1.94 2.714 (8) 157
O4′—H4′⋯O6iii 0.82 1.96 2.68 (3) 148
O6—H6A⋯O1iv 0.85 1.95 2.803 (7) 180
O6—H6B⋯O4v 0.85 2.04 2.892 (9) 180
Symmetry codes: (iii) [y-{\script{1\over 4}}, -x+{\script{3\over 4}}, z+{\script{3\over 4}}]; (iv) [-y+{\script{5\over 4}}, x+{\script{1\over 4}}, -z+{\script{5\over 4}}]; (v) x, y, z-1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of transition metal ion complexes of hydroxy (aryl-OH and alkyl-OH) rich molecules containing imine/amine group is important in the biomimetic studies of metalloproteins (Mishtu et al., 2002). Polynuclear metal complexes with tridentate ligand containing hydroxyl groups as terminal coordinating atoms have been reported and have attracted much attention (Nihei et al., 2003).

A few structurally characterized multinuclear complexes containing Schiff base ligands has been reported( e.g. Dong, Li, Xu & Wang (2007); Dong, Li, Xu, Cui & Wang (2007); Nihei et al., 2003). Herein, we report the synthesis and crystal structure of a novel tetranickel(II) complex with a tridentate Schiff base ligand derived from the condensation of o-vanillin and trihydroxymethylaminomethane.

The title compound contains a tetranuclear cubane core based on an approximately cubic array of alternating nickel and oxygen atoms (Fig.1). Each NiII ion is in a distorted square-pyramidal coordination environment with one nitrogen and two oxygen atoms from one Schiff base ligand and two oxygen atoms from the symmetry related units of the cubane core. The Ni atom deviates from the basal plane (formed by O1, N1, O3 and O3i, symmetry code (i) y - 7/4, -x + 3/4, -z + 7/4) by 0.1299 (33) Å, with a significantly longer Ni—Oapical bond distance (Table 1). In the molecular structure, the Ni—Ni distances (3.472 (4) Å, 3.182 (3) Å) are longer than some reported values (Koikawa et al., 2005). In addition, there are four H2O solvent molecules, which are involved in intermolecular O-H···O hydrogen bonds (Fig. 2, Table 2) which stabilize the crystal atructure along with van der Waals forces.

Related literature top

For related literature, see: Dong, Li, Xu & Wang (2007); Dong, Li, Xu, Cui & Wang (2007); Koikawa et al. (2005); Mishtu et al. (2002); Nihei et al. (2003).

Experimental top

Trihydroxymethylaminomethane(1 mmol, 121.14 mg) was dissolved in hot methanol (10 ml) and added successively to a methanol solution(3 ml) of o-vanillin (1 mmol, 152.15 mg). The mixture was then stirred at 323 K for 2 h. Subsequently, an aqueous solution(2 ml) of nickel chlorate hexahydrate(1 mmol, 237.66 mg) was added dropwise and stirred for another 5 h. The solution was held at room temperature for ten days, whereupon green blocky crystals suitable for X-ray diffraction were obtained.

Refinement top

Difference Fourier maps revealed that one of the hydroxymethyl group is distorted over two sites. The subsequent refinement of their occupancies gave the value of 0.791 (3) and 0.209 (3), respectively. All the H atoms were placed in geometrically calculated positions (C—H = 0.93 - 0.97 Å, O—H = 0.82 Å) and allowed to ride on their respective parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The water solvent molecules are not shown. Open bonds indicate disordered atoms and only the assymetric unit is labelled.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines. The disorder is not shown.
Tetrakis(µ3-2-{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl}- 6-methoxyphenolato)tetranickel(II) tetrahydrate top
Crystal data top
[Ni4(C12H15NO4)4]·4H2ODx = 1.614 Mg m3
Mr = 1319.90Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 3768 reflections
Hall symbol: -I 4adθ = 2.2–25.2°
a = 18.754 (2) ŵ = 1.45 mm1
c = 15.4395 (15) ÅT = 298 K
V = 5430.3 (10) Å3Block, green
Z = 40.30 × 0.29 × 0.28 mm
F(000) = 2752
Data collection top
Bruker SMART CCD area-detector
diffractometer
2399 independent reflections
Radiation source: fine-focus sealed tube1840 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2222
Tmin = 0.670, Tmax = 0.686k = 2215
11110 measured reflectionsl = 918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.194H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0801P)2 + 60.7787P]
where P = (Fo2 + 2Fc2)/3
2399 reflections(Δ/σ)max = 0.001
186 parametersΔρmax = 1.23 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Ni4(C12H15NO4)4]·4H2OZ = 4
Mr = 1319.90Mo Kα radiation
Tetragonal, I41/aµ = 1.45 mm1
a = 18.754 (2) ÅT = 298 K
c = 15.4395 (15) Å0.30 × 0.29 × 0.28 mm
V = 5430.3 (10) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2399 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1840 reflections with I > 2σ(I)
Tmin = 0.670, Tmax = 0.686Rint = 0.034
11110 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.194H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0801P)2 + 60.7787P]
where P = (Fo2 + 2Fc2)/3
2399 reflectionsΔρmax = 1.23 e Å3
186 parametersΔρmin = 0.70 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.40964 (4)0.72996 (4)1.05945 (5)0.0374 (3)
N10.3971 (4)0.6819 (3)0.9486 (4)0.0575 (16)
O10.3327 (2)0.7952 (2)1.0412 (3)0.0480 (11)
O20.2316 (3)0.8868 (4)1.0480 (5)0.097 (2)
O30.4952 (2)0.6720 (2)1.0675 (3)0.0435 (10)
O40.3704 (5)0.5372 (4)0.9346 (5)0.079 (2)0.791 (10)
H40.35330.50230.91030.119*0.791 (10)
O4'0.3587 (16)0.5547 (15)0.836 (2)0.079 (2)0.209 (10)
H4'0.35620.51340.81900.119*0.209 (10)
O50.4819 (5)0.6865 (5)0.7848 (5)0.120 (3)
H50.43830.68530.78930.181*
O60.3380 (3)0.6042 (3)0.0986 (4)0.0729 (16)
H6A0.37330.59780.13220.088*
H6B0.34720.58460.05030.088*
C10.3427 (4)0.6889 (4)0.9010 (5)0.061 (2)
H10.33920.65860.85350.073*
C20.2852 (4)0.7394 (4)0.9132 (5)0.0529 (18)
C30.2839 (3)0.7900 (4)0.9815 (4)0.0476 (16)
C40.2269 (4)0.8386 (5)0.9823 (5)0.067 (2)
C50.1712 (5)0.8344 (6)0.9218 (6)0.078 (3)
H5A0.13340.86640.92450.094*
C60.1727 (5)0.7834 (6)0.8595 (6)0.078 (3)
H60.13540.78000.82010.094*
C70.2279 (4)0.7377 (5)0.8544 (6)0.068 (2)
H70.22810.70380.81040.081*
C80.1829 (7)0.9466 (7)1.0493 (9)0.130 (5)
H8A0.17970.96680.99230.195*
H8B0.20010.98201.08910.195*
H8C0.13660.93061.06750.195*
C90.4572 (5)0.6290 (5)0.9262 (6)0.075 (3)
C100.4932 (4)0.6144 (4)1.0099 (4)0.0523 (17)
H10A0.46910.57491.03800.063*
H10B0.54180.59950.99810.063*
C110.4273 (5)0.5654 (5)0.8832 (6)0.073 (2)
H11A0.40960.57810.82620.088*0.791 (10)
H11B0.46420.52960.87620.088*0.791 (10)
H11C0.46350.55090.84200.088*0.209 (10)
H11D0.42760.52900.92790.088*0.209 (10)
C120.5136 (5)0.6631 (6)0.8640 (6)0.085 (3)
H12A0.53590.70330.89270.101*
H12B0.55040.62830.85140.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0427 (5)0.0358 (5)0.0337 (5)0.0002 (3)0.0072 (3)0.0007 (3)
N10.080 (4)0.046 (3)0.046 (3)0.015 (3)0.022 (3)0.009 (3)
O10.045 (3)0.055 (3)0.043 (2)0.008 (2)0.009 (2)0.005 (2)
O20.070 (4)0.125 (6)0.095 (5)0.048 (4)0.010 (4)0.019 (4)
O30.056 (3)0.039 (2)0.036 (2)0.010 (2)0.008 (2)0.0013 (19)
O40.094 (6)0.059 (4)0.086 (5)0.007 (4)0.005 (5)0.030 (4)
O4'0.094 (6)0.059 (4)0.086 (5)0.007 (4)0.005 (5)0.030 (4)
O50.111 (6)0.189 (8)0.061 (4)0.038 (6)0.005 (4)0.011 (5)
O60.053 (3)0.096 (4)0.070 (4)0.001 (3)0.011 (3)0.003 (3)
C10.079 (5)0.056 (4)0.048 (4)0.006 (4)0.022 (4)0.007 (3)
C20.055 (4)0.059 (4)0.045 (4)0.010 (3)0.013 (3)0.007 (3)
C30.039 (4)0.059 (4)0.044 (4)0.001 (3)0.002 (3)0.014 (3)
C40.049 (4)0.093 (6)0.058 (5)0.010 (4)0.001 (4)0.002 (5)
C50.050 (5)0.110 (8)0.075 (6)0.014 (5)0.004 (4)0.010 (6)
C60.060 (5)0.106 (7)0.069 (6)0.008 (5)0.018 (4)0.007 (5)
C70.064 (5)0.081 (6)0.058 (5)0.011 (4)0.025 (4)0.005 (4)
C80.105 (9)0.148 (12)0.137 (12)0.064 (9)0.013 (8)0.026 (9)
C90.088 (6)0.076 (6)0.061 (5)0.035 (5)0.005 (5)0.016 (4)
C100.054 (4)0.060 (4)0.043 (4)0.010 (3)0.001 (3)0.013 (3)
C110.081 (6)0.076 (6)0.061 (5)0.016 (5)0.007 (5)0.031 (5)
C120.085 (7)0.104 (8)0.065 (6)0.024 (6)0.001 (5)0.002 (5)
Geometric parameters (Å, º) top
Ni1—O11.912 (4)C2—C71.408 (10)
Ni1—O31.941 (4)C2—C31.419 (10)
Ni1—N11.949 (6)C3—C41.405 (11)
Ni1—O3i1.970 (4)C4—C51.403 (12)
Ni1—O3ii2.565 (5)C5—C61.357 (13)
N1—C11.265 (9)C5—H5A0.9300
N1—C91.541 (10)C6—C71.345 (13)
O1—C31.303 (8)C6—H60.9300
O2—C41.362 (11)C7—H70.9300
O2—C81.446 (12)C8—H8A0.9600
O3—C101.400 (8)C8—H8B0.9600
O3—Ni1iii1.970 (4)C8—H8C0.9600
O4—C111.430 (12)C9—C111.475 (13)
O4—H40.8200C9—C101.484 (11)
O4—H11D1.0883C9—C121.565 (14)
O4'—C111.49 (3)C10—H10A0.9700
O4'—H4'0.8200C10—H10B0.9700
O5—C121.429 (12)C11—H11A0.9700
O5—H50.8200C11—H11B0.9700
O6—H6A0.8500C11—H11C0.9698
O6—H6B0.8499C11—H11D0.9699
C1—C21.447 (11)C12—H12A0.9700
C1—H10.9300C12—H12B0.9700
O1—Ni1—O3172.2 (2)O2—C8—H8A109.5
O1—Ni1—N194.3 (2)O2—C8—H8B109.5
O3—Ni1—N184.1 (2)H8A—C8—H8B109.5
O1—Ni1—O3i94.57 (19)O2—C8—H8C109.5
O3—Ni1—O3i88.47 (19)H8A—C8—H8C109.5
N1—Ni1—O3i166.1 (2)H8B—C8—H8C109.5
O1—Ni1—O3ii94.23 (17)C11—C9—C10114.6 (8)
O3—Ni1—O3ii79.80 (17)C11—C9—N1110.2 (8)
N1—Ni1—O3ii117.2 (2)C10—C9—N1104.9 (6)
O3i—Ni1—O3ii72.63 (17)C11—C9—C12108.1 (8)
C1—N1—C9121.7 (6)C10—C9—C12107.5 (8)
C1—N1—Ni1124.1 (6)N1—C9—C12111.6 (7)
C9—N1—Ni1114.0 (5)O3—C10—C9115.0 (6)
C3—O1—Ni1125.9 (4)O3—C10—H10A108.5
C4—O2—C8119.0 (8)C9—C10—H10A108.5
C10—O3—Ni1111.7 (4)O3—C10—H10B108.5
C10—O3—Ni1iii121.9 (4)C9—C10—H10B108.5
Ni1—O3—Ni1iii108.9 (2)H10A—C10—H10B107.5
C11—O4—H4109.5O4—C11—C9109.4 (7)
H4—O4—H11D103.2O4—C11—O4'65.0 (13)
C11—O4'—H4'109.5C9—C11—O4'130.9 (13)
C12—O5—H5109.5O4—C11—H11A109.8
H6A—O6—H6B108.4C9—C11—H11A109.8
N1—C1—C2126.4 (7)O4'—C11—H11A45.3
N1—C1—H1116.8O4—C11—H11B109.8
C2—C1—H1116.8C9—C11—H11B109.8
C7—C2—C3118.8 (7)O4'—C11—H11B117.9
C7—C2—C1118.0 (7)H11A—C11—H11B108.2
C3—C2—C1123.1 (6)O4—C11—H11C141.6
O1—C3—C4118.7 (7)C9—C11—H11C104.8
O1—C3—C2124.4 (6)O4'—C11—H11C104.3
C4—C3—C2116.9 (7)H11A—C11—H11C73.3
O2—C4—C5125.6 (8)O4—C11—H11D49.5
O2—C4—C3112.8 (7)C9—C11—H11D104.3
C5—C4—C3121.6 (9)O4'—C11—H11D104.9
C6—C5—C4119.7 (9)H11A—C11—H11D145.1
C6—C5—H5A120.1H11B—C11—H11D65.7
C4—C5—H5A120.1H11C—C11—H11D105.4
C7—C6—C5120.5 (8)O5—C12—C9111.7 (8)
C7—C6—H6119.8O5—C12—H12A109.3
C5—C6—H6119.8C9—C12—H12A109.3
C6—C7—C2122.3 (9)O5—C12—H12B109.3
C6—C7—H7118.9C9—C12—H12B109.3
C2—C7—H7118.9H12A—C12—H12B107.9
C1—C2—C3—C4176.2 (7)
Symmetry codes: (i) y1/4, x+5/4, z+9/4; (ii) x+1, y+3/2, z; (iii) y+5/4, x+1/4, z+9/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···N10.822.582.988 (9)112
O4—H4···O6iv0.821.942.714 (8)157
O4—H4···O6iv0.821.962.68 (3)148
O6—H6A···O1v0.851.952.803 (7)180
O6—H6B···O4vi0.852.042.892 (9)180
Symmetry codes: (iv) y1/4, x+3/4, z+3/4; (v) y+5/4, x+1/4, z+5/4; (vi) x, y, z1.

Experimental details

Crystal data
Chemical formula[Ni4(C12H15NO4)4]·4H2O
Mr1319.90
Crystal system, space groupTetragonal, I41/a
Temperature (K)298
a, c (Å)18.754 (2), 15.4395 (15)
V3)5430.3 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.45
Crystal size (mm)0.30 × 0.29 × 0.28
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.670, 0.686
No. of measured, independent and
observed [I > 2σ(I)] reflections
11110, 2399, 1840
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.194, 1.08
No. of reflections2399
No. of parameters186
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0801P)2 + 60.7787P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.23, 0.70

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni1—O11.912 (4)Ni1—O3i1.970 (4)
Ni1—O31.941 (4)Ni1—O3ii2.565 (5)
Ni1—N11.949 (6)
O1—Ni1—O3172.2 (2)N1—Ni1—O3i166.1 (2)
O1—Ni1—N194.3 (2)O1—Ni1—O3ii94.23 (17)
O3—Ni1—N184.1 (2)O3—Ni1—O3ii79.80 (17)
O1—Ni1—O3i94.57 (19)N1—Ni1—O3ii117.2 (2)
O3—Ni1—O3i88.47 (19)O3i—Ni1—O3ii72.63 (17)
Symmetry codes: (i) y1/4, x+5/4, z+9/4; (ii) x+1, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···N10.822.582.988 (9)112.3
O4—H4···O6iii0.821.942.714 (8)156.5
O4'—H4'···O6iii0.821.962.68 (3)147.6
O6—H6A···O1iv0.851.952.803 (7)179.6
O6—H6B···O4v0.852.042.892 (9)179.5
Symmetry codes: (iii) y1/4, x+3/4, z+3/4; (iv) y+5/4, x+1/4, z+5/4; (v) x, y, z1.
 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province (grant No. Y2004B02) for a research grant.

References

First citationDong, J.-F., Li, L.-Z., Xu, T., Cui, H. & Wang, D.-Q. (2007). Acta Cryst. E63, m1501–m1502.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, J.-F., Li, L.-Z., Xu, H.-Y. & Wang, D.-Q. (2007). Acta Cryst. E63, m2300.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoikawa, M., Ohba, M. & Tokii, T. (2005). Polyhedron, 24, 2257–2262.  Web of Science CSD CrossRef CAS Google Scholar
First citationMishtu, D., Chebrolu, P. R., Pauli, K. S. & Kari, R. (2002). Inorg. Chem. Commun. 5, 380–383.  Web of Science CSD CrossRef Google Scholar
First citationNihei, M., Hoshino, N., Ito, T. & Oshio, H. (2003). Polyhedron, 22, 2359–2362.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m675-m676
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds