organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Ethyl-3-(3-pyrid­yl)-1H-1,2,4-triazole-5(4H)-thione 0.095-hydrate

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: mzareef71@yahoo.com

(Received 12 April 2008; accepted 23 April 2008; online 30 April 2008)

The title compound, C9H10N4S·0.095H2O, consists of discrete 4-ethyl-3-(3-pyrid­yl)-1H-1,2,4-triazole-5(4H)-thione mol­ecules and a disordered mol­ecule of water of hydration with partial occupancy, lying on a twofold rotation axis. The dihedral angle between the pyridine and triazole rings is 41.73 (8)°. In the crystal structure, mol­ecules are hydrogen bonded via triazole NH groups and pyridyl N atoms, forming chains parallel to the a axis.

Related literature

For related literature, see: Ahmad et al. (2001[Ahmad, R., Iqbal, R., Akhtar, R. H., Haq, Z. U., Duddeck, H., Stefaniak, L. & Sitkowski, J. (2001). Nucleosides Nucleotides Nucleic Acids, 20, 1671-1682.]); Chai et al. (2003[Chai, B., Qian, X., Cao, S., Liu, H. & Song, G. (2003). Arkovic. ii, 141-145.]); Dege et al. (2004[Dege, N., Cetin, A., Cansiz, A., Sekerci, M., Kazaz, C., Dincer, M. & Buyukgungor, O. (2004). Acta Cryts. E60, o1883-o1885.], 2005[Dege, N., Özdemir, N., Çetin, A., Cansız, A., Şekerci, M. & Dinçer, M. (2005). Acta Cryst. E61, o17-o19.])); Demir et al. (2006[Demir, S., Dinçer, M., Çetin, A., Dayan, O. & Cansız, A. (2006). Acta Cryst. E62, o2198-o2199.]); Dobosz et al. (2003[Dobosz, M., Pitucha, M., Dybala, I. & Koziol, A. E. (2003). Collect. Czech. Chem. Commun. 68, 792-800.]); Hashimoto et al. (1990[Hashimoto, F., Sugimoto, C. & Hayashi, H. (1990). Chem. Pharm. Bull. 38, 2532-2536.]); Kanazawa et al. (1988[Kanazawa, S., Driscoll, M. & Struhl, K. (1988). Mol. Cell. Biol. 8, 644-673.]); Mazur et al. (2006[Mazur, L., Koziol, A. E., Maliszewska-Guz, A., Wujec, M., Pitucha, M. & Dobosz, M. (2006). Z. Kristallogr. New Cryst. Struct. 221, 151-152.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10N4S·0.095H2O

  • Mr = 207.96

  • Monoclinic, C 2/c

  • a = 14.076 (5) Å

  • b = 8.877 (5) Å

  • c = 16.216 (8) Å

  • β = 93.25 (3)°

  • V = 2023.0 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 173 (2) K

  • 0.18 × 0.16 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.950, Tmax = 0.972

  • 3392 measured reflections

  • 2297 independent reflections

  • 1616 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.107

  • S = 1.05

  • 2297 reflections

  • 137 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N4i 0.88 (2) 1.94 (2) 2.792 (3) 162 (2)
Symmetry code: (i) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. and R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Disubstituted 1,2,4-triazoles and their derivatives are very important five membered heterocyclic compounds for their biological and pharmacological activities, such as antitumoral, inhibition of cholesterol, fungicidal, herbicidal, anticonvulsant (Kanazawa et al., 1988; Chai et al., 2003; Hashimoto et al., 1990). Herein, we report the synthesis and crystal structure of the title compound, (I).

The structure of (I) is composed of independent molecules of 4-ethyl-2,4-dihydro-5-(3-pyridyl)-3H-1,2,4-triazole-3-thione (Fig. 1) and a disordered water of hydration with partial occupancy lying on a two-fold rotation axis. The bond distances and bond angles in (I) agree well with the corresponding bond distances and angles reported in some compounds closely related to (I) (e.g., Dege et al., 2004, 2005; Mazur et al., 2006; Dobosz et al., 2003; Demir, et al., 2006). The mean-planes formed by the pyridyl and triazole rings in (I) lie at 41.73 (8)° with respect to each other while the mean-plane of the ethyl group is inclined with the triazole ring at 80.39 (13)°.

The water of hydration is surrounded by four molecules of (I) with S1···O1 and N1···O1 separation of 3.074 (4) and 3.382 (9) Å, respectively (Fig. 2). The molecules of (I) are hydrogen bonded via N2—H2···N4 forming chains lying parallel to the a axis (details of hydrogen bonding geometry have been given in Table 1). The shortest distance between the centroids of pyridyl and triazole rings from two different molecules lying about inversion centers is 4.350 (3) Å.

Related literature top

For related literature, see: Ahmad et al. (2001); Chai et al. (2003); Dege et al. (2004,2005)); Demir et al. (2006); Dobosz et al. (2003); Hashimoto et al. (1990); Kanazawa et al. (1988); Mazur et al. (2006).

For related literature, see: Dege et al. (2005).

Experimental top

The title compound was prepared from the corresponding thiosemicarbazide by following the reported procedure (Ahmad et al., 2001). 4-Ethyl-1-(2-pyridoyl)thiosemicarbazide (12 mmol) was dissolved in an aqueous 4 N sodium hydroxide solution (65 ml). The solution was heated to reflux for 11.5 h, cooled and filtered. The filtrate was acidified to pH of 4–5, with 4 N hydrochloric acid. The solid product was filtered off, washed with water and recrystallized from aqueous ethanol (60%). Crystals of (I) were grown by slow evaporation of the ethanol over 15 days at room temperature (yield 72%).

Refinement top

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms bonded to C-atoms were included at geometrically idealized positions and refined in riding-model approximation with the following constraints: pyridyl, methyl and methylene C—H distances were set to 0.95, 0.98 and 0.99 Å, respectively; in all these instances Uiso(H) = 1.2 Ueq(C). H-atom bonded to N2 was taken from the difference map and was allowed to refine with Uiso = 1.2 times Ueq of N2. Towards the end of the refinement, a difference Fourier map revealed a peak that was included in the refinement as an O-atom the site occupancy factor of which refined to 0.095; its s.o.f. was fixed at that value during the final rounds of calculations. The H-atoms bonded to the O atom of the water molecule could not be located and were not included in the refinement but are included in the molecular formula. The atmospheric moisture was assumed to be the source of this partially occupied water of hydration. The final difference map was free of any chemically significant features.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) drawing of (I) with displacement ellipsoids plotted at 50% probability level.
[Figure 2] Fig. 2. Unit cell packing of (I) showing hydrogen bonds with dashed lines; H-atoms not involved in H-bonds have been omitted.
4-Ethyl-3-(3-pyridyl)-1H-1,2,4-triazole-5(4H)-thione 0.095-hydrate top
Crystal data top
C9H10N4S·0.095H2OF(000) = 872
Mr = 207.96Dx = 1.366 Mg m3
Monoclinic, C2/cMelting point = 440–441 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 14.076 (5) ÅCell parameters from 3392 reflections
b = 8.877 (5) Åθ = 3.6–27.4°
c = 16.216 (8) ŵ = 0.29 mm1
β = 93.25 (3)°T = 173 K
V = 2023.0 (17) Å3Block, colorless
Z = 80.18 × 0.16 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
2297 independent reflections
Radiation source: fine-focus sealed tube1616 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and ϕ scansθmax = 27.4°, θmin = 3.6°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1718
Tmin = 0.950, Tmax = 0.972k = 119
3392 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0405P)2 + 1.636P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2297 reflectionsΔρmax = 0.24 e Å3
137 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0038 (9)
Crystal data top
C9H10N4S·0.095H2OV = 2023.0 (17) Å3
Mr = 207.96Z = 8
Monoclinic, C2/cMo Kα radiation
a = 14.076 (5) ŵ = 0.29 mm1
b = 8.877 (5) ÅT = 173 K
c = 16.216 (8) Å0.18 × 0.16 × 0.10 mm
β = 93.25 (3)°
Data collection top
Nonius KappaCCD
diffractometer
2297 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
1616 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.972Rint = 0.030
3392 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.24 e Å3
2297 reflectionsΔρmin = 0.25 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.12974 (4)0.05644 (7)0.11164 (3)0.0415 (2)
O10.00000.0319 (16)0.25000.070 (4)0.19
N10.07296 (10)0.26787 (18)0.09536 (9)0.0256 (4)
N20.13013 (11)0.19176 (19)0.03795 (10)0.0276 (4)
H20.1854 (16)0.158 (3)0.0530 (12)0.033*
N30.00251 (10)0.22103 (18)0.01818 (9)0.0228 (4)
N40.21945 (11)0.53359 (19)0.10227 (10)0.0290 (4)
C10.00713 (12)0.2838 (2)0.05951 (10)0.0217 (4)
C20.08639 (13)0.1576 (2)0.03071 (12)0.0267 (4)
C30.14695 (12)0.4604 (2)0.06268 (11)0.0246 (4)
H30.13430.47940.00550.029*
C40.08963 (12)0.3582 (2)0.10142 (11)0.0220 (4)
C50.10899 (13)0.3310 (2)0.18541 (11)0.0263 (4)
H50.07140.26160.21400.032*
C60.18343 (14)0.4061 (2)0.22654 (12)0.0313 (5)
H60.19770.38970.28380.038*
C70.23642 (13)0.5050 (2)0.18282 (12)0.0313 (5)
H70.28780.55590.21130.038*
C80.07912 (14)0.1998 (2)0.07478 (12)0.0300 (5)
H8A0.07560.09620.09730.036*
H8B0.14120.21100.04360.036*
C90.07367 (17)0.3113 (3)0.14570 (13)0.0406 (6)
H9A0.12160.28570.18490.049*
H9B0.08560.41320.12430.049*
H9C0.01020.30720.17380.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0476 (4)0.0346 (4)0.0398 (3)0.0034 (3)0.0202 (3)0.0060 (2)
O10.107 (12)0.043 (9)0.063 (9)0.0000.034 (9)0.000
N10.0194 (8)0.0271 (10)0.0300 (8)0.0060 (7)0.0022 (6)0.0005 (7)
N20.0201 (8)0.0283 (10)0.0339 (9)0.0080 (7)0.0032 (7)0.0017 (7)
N30.0228 (8)0.0221 (9)0.0232 (8)0.0008 (7)0.0026 (6)0.0016 (6)
N40.0220 (8)0.0282 (10)0.0367 (9)0.0042 (7)0.0002 (7)0.0000 (7)
C10.0209 (9)0.0215 (10)0.0225 (9)0.0007 (8)0.0008 (7)0.0031 (7)
C20.0256 (10)0.0221 (11)0.0315 (10)0.0015 (8)0.0076 (8)0.0044 (8)
C30.0199 (9)0.0269 (11)0.0267 (9)0.0012 (8)0.0001 (7)0.0024 (8)
C40.0180 (9)0.0212 (10)0.0267 (9)0.0001 (7)0.0005 (7)0.0007 (8)
C50.0234 (10)0.0288 (11)0.0268 (9)0.0024 (8)0.0027 (7)0.0005 (8)
C60.0298 (10)0.0399 (13)0.0237 (9)0.0020 (9)0.0034 (8)0.0027 (9)
C70.0226 (10)0.0333 (12)0.0373 (11)0.0047 (9)0.0052 (8)0.0081 (9)
C80.0316 (10)0.0289 (12)0.0299 (10)0.0029 (9)0.0044 (8)0.0006 (9)
C90.0540 (14)0.0397 (14)0.0289 (11)0.0010 (11)0.0096 (10)0.0024 (10)
Geometric parameters (Å, º) top
S1—C21.676 (2)C3—C41.388 (3)
S1—O13.074 (4)C3—H30.9500
O1—S1i3.074 (4)C4—C51.395 (3)
O1—N1ii3.382 (9)C5—C61.381 (3)
N1—C11.305 (2)C5—H50.9500
N1—N21.373 (2)C6—C71.375 (3)
N2—C21.337 (3)C6—H60.9500
N2—H20.88 (2)C7—H70.9500
N3—C11.376 (2)C8—C91.516 (3)
N3—C21.377 (2)C8—H8A0.9900
N3—C81.467 (2)C8—H8B0.9900
N4—C71.339 (3)C9—H9A0.9800
N4—C31.342 (2)C9—H9B0.9800
C1—C41.469 (2)C9—H9C0.9800
C2—S1—O1120.21 (15)C5—C4—C1118.66 (16)
S1—O1—S1i150.4 (5)C6—C5—C4119.26 (18)
S1—O1—N1ii77.57 (10)C6—C5—H5120.4
S1i—O1—N1ii122.08 (18)C4—C5—H5120.4
C1—N1—N2103.82 (16)C7—C6—C5118.57 (18)
C2—N2—N1113.35 (16)C7—C6—H6120.7
C2—N2—H2127.4 (14)C5—C6—H6120.7
N1—N2—H2118.2 (14)N4—C7—C6123.51 (17)
C1—N3—C2107.22 (15)N4—C7—H7118.2
C1—N3—C8128.79 (15)C6—C7—H7118.2
C2—N3—C8123.33 (16)N3—C8—C9112.54 (17)
C7—N4—C3117.62 (17)N3—C8—H8A109.1
N1—C1—N3111.53 (16)C9—C8—H8A109.1
N1—C1—C4121.52 (16)N3—C8—H8B109.1
N3—C1—C4126.94 (16)C9—C8—H8B109.1
N2—C2—N3104.00 (16)H8A—C8—H8B107.8
N2—C2—S1127.52 (15)C8—C9—H9A109.5
N3—C2—S1128.46 (16)C8—C9—H9B109.5
N4—C3—C4123.08 (17)H9A—C9—H9B109.5
N4—C3—H3118.5C8—C9—H9C109.5
C4—C3—H3118.5H9A—C9—H9C109.5
C3—C4—C5117.95 (16)H9B—C9—H9C109.5
C3—C4—C1123.31 (16)
C2—S1—O1—S1i60.83 (15)O1—S1—C2—N35.5 (3)
C2—S1—O1—N1ii74.7 (3)C7—N4—C3—C40.2 (3)
C1—N1—N2—C21.6 (2)N4—C3—C4—C50.1 (3)
N2—N1—C1—N30.1 (2)N4—C3—C4—C1176.65 (18)
N2—N1—C1—C4178.76 (16)N1—C1—C4—C3137.4 (2)
C2—N3—C1—N11.8 (2)N3—C1—C4—C343.9 (3)
C8—N3—C1—N1172.57 (17)N1—C1—C4—C539.3 (3)
C2—N3—C1—C4177.06 (18)N3—C1—C4—C5139.4 (2)
C8—N3—C1—C46.3 (3)C3—C4—C5—C60.2 (3)
N1—N2—C2—N32.7 (2)C1—C4—C5—C6176.73 (18)
N1—N2—C2—S1175.75 (14)C4—C5—C6—C70.3 (3)
C1—N3—C2—N22.6 (2)C3—N4—C7—C60.4 (3)
C8—N3—C2—N2174.01 (16)C5—C6—C7—N40.4 (3)
C1—N3—C2—S1175.82 (15)C1—N3—C8—C9105.1 (2)
C8—N3—C2—S14.4 (3)C2—N3—C8—C985.4 (2)
O1—S1—C2—N2172.6 (3)
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N4iii0.88 (2)1.94 (2)2.792 (3)162 (2)
Symmetry code: (iii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC9H10N4S·0.095H2O
Mr207.96
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)14.076 (5), 8.877 (5), 16.216 (8)
β (°) 93.25 (3)
V3)2023.0 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.18 × 0.16 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.950, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
3392, 2297, 1616
Rint0.030
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.107, 1.05
No. of reflections2297
No. of parameters137
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.25

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N4i0.88 (2)1.94 (2)2.792 (3)162 (2)
Symmetry code: (i) x1/2, y1/2, z.
 

References

First citationAhmad, R., Iqbal, R., Akhtar, R. H., Haq, Z. U., Duddeck, H., Stefaniak, L. & Sitkowski, J. (2001). Nucleosides Nucleotides Nucleic Acids, 20, 1671–1682.  CrossRef PubMed CAS Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChai, B., Qian, X., Cao, S., Liu, H. & Song, G. (2003). Arkovic. ii, 141–145.  CrossRef Google Scholar
First citationDege, N., Cetin, A., Cansiz, A., Sekerci, M., Kazaz, C., Dincer, M. & Buyukgungor, O. (2004). Acta Cryts. E60, o1883–o1885.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDege, N., Özdemir, N., Çetin, A., Cansız, A., Şekerci, M. & Dinçer, M. (2005). Acta Cryst. E61, o17–o19.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDemir, S., Dinçer, M., Çetin, A., Dayan, O. & Cansız, A. (2006). Acta Cryst. E62, o2198–o2199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDobosz, M., Pitucha, M., Dybala, I. & Koziol, A. E. (2003). Collect. Czech. Chem. Commun. 68, 792–800.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHashimoto, F., Sugimoto, C. & Hayashi, H. (1990). Chem. Pharm. Bull. 38, 2532–2536.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKanazawa, S., Driscoll, M. & Struhl, K. (1988). Mol. Cell. Biol. 8, 644–673.  Google Scholar
First citationMazur, L., Koziol, A. E., Maliszewska-Guz, A., Wujec, M., Pitucha, M. & Dobosz, M. (2006). Z. Kristallogr. New Cryst. Struct. 221, 151–152.  CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds