organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages o902-o903

4-(9-Anthr­yl)-1-(4-meth­oxy­phen­yl)spiro­[azetidin-3,9′-xanthen]-2-one

aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 12 April 2008; accepted 18 April 2008; online 26 April 2008)

In the title mol­ecule, C36H25NO3, the β-lactam ring is essentially planar, with a dihedral angle of 3.3 (2)° between the two separate three-atom N/C/C planes. The β-lactam ring makes dihedral angles of 28.45 (14), 87.4 (1) and 51.8 (1)° with the mean planes of the benzene, xanthene and anthracene ring systems, respectively. In addition to a weak intra­molecular C—H⋯N hydrogen bond, the crystal structure is stabilized by two weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For related literature, see: Alonso et al. (2001[Alonso, E., Lopez-Ortiz, F., DelPozo, C., Peralta, E., Macas, A. & Gonzalez, J. (2001). J. Org. Chem. 66, 6333-6338.], 2002[Alonso, E., Del Pozo, C. & Gonzalez, J. (2002). Synlett, pp. 69-72.]); Bycroft et al. (1988[Bycroft, B. M., Shute, R. E. & Begley, M. J. (1988). J. Chem. Soc. Chem. Commun. pp. 274-276.]); Fukuda & Endo (1988[Fukuda, H. & Endo, T. (1988). Tetrahedron Lett. 29, 2327-2328.]); Jarrahpour & Khalili (2007[Jarrahpour, A. & Khalili, D. (2007). Tetrahedron Lett. 48, 7140-7143.]); Kambara & Tomioka (1999[Kambara, T. & Tomioka, K. (1999). J. Org. Chem. 64, 9282-9285.]); Pinder & Weinreb (2003[Pinder, J. L. & Weinreb, S. M. (2003). Tetrahedron Lett. 44, 4141-4143.]); Sheehan et al. (1978[Sheehan, J. C., Chacko, E., Lo, Y. S., Ponzi, D. R. & Sato, E. (1978). J. Org. Chem. 43, 4856-4859.]); Skiles & McNeil (1990[Skiles, J. W. & McNeil, D. (1990). Tetrahedron Lett. 31, 7277-7280.]); Akkurt et al. (2006[Akkurt, M., Karaca, S., Jarrahpour, A. A., Khalili, D. & Büyükgüngör, O. (2006). Acta Cryst. E62, o866-o868.], 2007[Akkurt, M., Yalçın, Ş. P., Jarrahpour, A. A., Nazari, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3729-o3730.]); Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]); Pınar et al. (2006[Pınar, S., Akkurt, M., Jarrahpour, A. A., Khalili, D. & Büyükgüngör, O. (2006). Acta Cryst. E62, o804-o806.]); Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Spek (2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

[Scheme 1]

Experimental

Crystal data
  • C36H25NO3

  • Mr = 519.57

  • Monoclinic, P 21 /c

  • a = 13.7629 (9) Å

  • b = 10.5845 (4) Å

  • c = 20.5777 (12) Å

  • β = 114.768 (5)°

  • V = 2721.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.61 × 0.33 × 0.16 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: none

  • 19756 measured reflections

  • 5559 independent reflections

  • 3359 reflections with I > 2σ(I)

  • Rint = 0.100

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.133

  • S = 1.03

  • 5559 reflections

  • 361 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O3i 0.93 2.41 3.317 (4) 164
C18—H18⋯O1ii 0.93 2.58 3.419 (3) 150
C25—H25⋯N1 0.93 2.28 2.916 (3) 125
Symmetry codes: (i) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Rizzi, R. (1999). J. Appl. Cryst. 32, 339-340.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Although various examples of β-lactams with spiro structures derived from penicillins or cephalosporins have been reported (Bycroft et al., 1988), only a few examples of simple spiro β-lactams are known today (Fukuda & Endo, 1988; Jarrahpour & Khalili, 2007). Spiro cyclic β-lactams behave as β-turn mimetics (Alonso, Lopez-Ortiz et al., 2001), and as cholesterol absorption inhibitors (Kambara & Tomioka, 1999). They can act as antiviral (Skiles & McNeil, 1990), antibacterial agents (Sheehan et al., 1978), and they are precursors of α,α-disubstituted β-amino acids (Alonso et al., 2002). The spiranic β-lactam moiety is present in chartellines, a family of marine natural products (Pinder & Weinreb, 2003).

In the title molecule (Fig. 1), the bond lengths are within the normal ranges (Allen et al., 1987). The angles exocyclic to and those involving the β-lactam moiety (C13–C15/N1) are comparable with the values in our previously reported structures containing the β-lactam group (Pınar et al., 2006; Akkurt et al., 2007; Akkurt et al., 2006).

The β-lactam ring is nearly planar, with a maximum deviation of 0.017 (2) Å from the ring. The dihedral angle between the N1/C1/C2 and N1/C2/C3 planes is 176.7 (2)° (Nardelli, 1995). The planarity is mainly due to the sp2 hybridization of atoms C14 and N1. Atom O1 lies essentially in the β-lactam ring plane, with a deviation of -0.005 (2) Å. The dihedral angle between the benzene ring C16—C21 attached at N1 and the β-lactam ring is 28.45 (14)°.

In the xanthene ring system, attached at C13, the benzene rings (C1–C6) and (C7–C12) are almost co-planar, forming a dihedral angle of 12.4 (1)° with each other. The central ring, C1/C6/O2/C7/C12/C13, is not planar, with puckering parameters: QT = 0.195 (2) Å, θ = 100.8 (6)° and ϕ = 7.2 (8)° (Cremer & Pople, 1975). The mean planes of the xanthene ring system forms the dihedral angles of 87.4 (1)°, and 59.2 (1)°, with the β-lactam ring and the benzene ring C16–C21, respectively.

The anthracene ring system, attached at C15, is almost planar, with maximum deviations of 0.095 (2) Å for C23, -0.061 (2) Å for C25, -0.052 (2) Å for C26 and 0.041 (3) Å for C28. It forms dihedral angles of 51.8 (1)°, 74.2 (1)° and 62.91 (7)°, with the β-lactam ring, benzene ring (C16–C21) and the mean plane of the xanthene ring system, respectively.

The crystal structure of the title compound is stabilized by two intermolecular C—H···O and an intramolecular C—H···N hydrogen bonding interactions (Table 1 and Fig. 2).

Related literature top

For related literature, see: Alonso et al. (2001, 2002); Bycroft et al. (1988); Fukuda & Endo (1988); Jarrahpour & Khalili (2007); Kambara & Tomioka (1999); Pinder & Weinreb (2003); Sheehan et al. (1978); Skiles & McNeil (1990); Akkurt et al. (2006, 2007); Nardelli (1995); Pınar et al. (2006).

For related literature, see: Allen et al. (1987); Cremer & Pople (1975); Spek (2003).

Experimental top

A mixture of the Schiff base (E)—N-(anthracen-9-ylmethylene)-4-methoxyaniline (0.3 g, 1.45 mmol) and triethylamine (0.73 g, 7.27 mmol), 9H-xanthen-9-carboxylic acid (0. 49 g, 2.18 mmol) and tosyl chloride (0.42 g, 2.18 mmol) in CH2Cl2 (15 ml) was strirred at room temperature for 24 h. Then it was washed with HCl 1 N (20 ml) and saturated sodium bicarbonate solution (20 ml), brine (20 ml), dried (Na2SO4) and the solvent was evaporated to give the crude product as light yellow crystals which was then purified by recrystalization from ethyl acetate (yield 25%) [m.p. 470–472 K]. IR (CHCl3, cm-1): 1747.0 (CO β-lactam). 1H-NMR d (p.p.m.): 3.64 7(s, 3H, OCH3), 6.298 (s, 1H, 4), 6.511–8.826(m, ArH, 21H). 13C-NMR d (p.p.m.): 64.35 (OCH3), 62.84 (C-3), 75.68 (C-4), 116–152 (aromatic carbon), 167.34 (CO β-lactam). Analysis calculated for C36H25NO3: C 83.22, H 4.85, N 2.70%. Found: C 83.95, H 4.90, N 2.82%.

Refinement top

H atoms were included in ideal positions and refined by using a riding model, with C–H = 0.93 Å for aromatic, 0.96 Å for methyl and 0.98 Å for methine, and with Uiso = 1.2 or 1.5Ueq(C).

During the refinement of the structure, electron density peaks were located that were believed to be disordered solvent molecules (water from reactio solvent). The SQUEEZE option in PLATON (Spek, 2003) indicated there was a solvent cavity of volume 34 Å3 containing approximately 1.5 electrons. In the final cycles of refinement, this contribution to the electron density was removed from the observed data. The density, the F(000) value, the molecular weight and the formula are given without taking into account the results obtained with the SQUEEZE option PLATON (Spek, 2003).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999\bbr01); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The title molecular structure, with the atom-numbering scheme and 30% probability displacement ellipsoids
[Figure 2] Fig. 2. A view along the b axis of the packing and hydrogen bonding interactions as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
4-(9-Anthryl)-1-(4-methoxyphenyl)spiro[azetidin-3,9'-xanthen]-2-one top
Crystal data top
C36H25NO3F(000) = 1088
Mr = 519.57Dx = 1.268 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 23499 reflections
a = 13.7629 (9) Åθ = 1.5–28.1°
b = 10.5845 (4) ŵ = 0.08 mm1
c = 20.5777 (12) ÅT = 293 K
β = 114.768 (5)°Prism, light yellow
V = 2721.9 (3) Å30.61 × 0.33 × 0.16 mm
Z = 4
Data collection top
Stoe IPDS-2
diffractometer
3359 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focusRint = 0.100
Plane graphite monochromatorθmax = 26.5°, θmin = 1.6°
Detector resolution: 6.67 pixels mm-1h = 1717
ω scansk = 1313
19756 measured reflectionsl = 2525
5559 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0486P)2]
where P = (Fo2 + 2Fc2)/3
5559 reflections(Δ/σ)max < 0.001
361 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C36H25NO3V = 2721.9 (3) Å3
Mr = 519.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.7629 (9) ŵ = 0.08 mm1
b = 10.5845 (4) ÅT = 293 K
c = 20.5777 (12) Å0.61 × 0.33 × 0.16 mm
β = 114.768 (5)°
Data collection top
Stoe IPDS-2
diffractometer
3359 reflections with I > 2σ(I)
19756 measured reflectionsRint = 0.100
5559 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.03Δρmax = 0.13 e Å3
5559 reflectionsΔρmin = 0.18 e Å3
361 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2^ for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The observed criterion of F^2^ > σ(F^2^) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.30826 (12)0.47676 (17)0.36036 (9)0.0580 (6)
O20.01260 (12)0.56344 (18)0.12243 (10)0.0629 (6)
O30.70434 (13)0.89046 (19)0.54334 (10)0.0671 (7)
N10.36864 (12)0.65460 (17)0.32002 (9)0.0408 (6)
C10.19804 (16)0.4947 (2)0.18251 (11)0.0405 (7)
C20.27536 (18)0.4117 (2)0.17982 (13)0.0502 (8)
C30.2530 (2)0.3274 (3)0.12490 (15)0.0610 (10)
C40.1512 (2)0.3219 (3)0.07022 (15)0.0668 (10)
C50.0726 (2)0.4008 (3)0.07171 (14)0.0611 (9)
C60.09628 (17)0.4865 (2)0.12622 (12)0.0475 (8)
C70.02358 (17)0.6316 (2)0.18153 (15)0.0544 (9)
C80.06802 (19)0.6919 (3)0.17835 (19)0.0781 (10)
C90.0640 (2)0.7611 (4)0.2355 (2)0.0939 (15)
C100.0301 (2)0.7712 (4)0.2973 (2)0.0964 (15)
C110.1208 (2)0.7119 (3)0.29880 (17)0.0729 (10)
C120.12027 (16)0.6437 (2)0.24156 (13)0.0489 (8)
C130.22163 (15)0.5893 (2)0.24046 (12)0.0412 (7)
C140.30342 (16)0.5552 (2)0.31672 (12)0.0410 (7)
C150.30515 (15)0.7010 (2)0.24693 (11)0.0401 (7)
C160.45290 (15)0.7156 (2)0.37759 (11)0.0397 (7)
C170.52326 (16)0.6478 (2)0.43596 (12)0.0466 (8)
C180.60597 (16)0.7098 (2)0.49038 (12)0.0501 (8)
C190.61856 (16)0.8382 (2)0.48725 (12)0.0474 (8)
C200.54858 (18)0.9063 (3)0.43031 (14)0.0578 (8)
C210.46607 (17)0.8438 (3)0.37511 (14)0.0572 (8)
C220.7252 (2)1.0209 (3)0.53897 (18)0.0848 (11)
C230.35611 (16)0.7107 (2)0.19465 (11)0.0416 (7)
C240.46163 (17)0.6711 (2)0.20799 (12)0.0447 (7)
C250.52860 (17)0.5941 (2)0.26651 (13)0.0498 (8)
C260.63122 (19)0.5661 (2)0.27846 (16)0.0589 (9)
C270.6760 (2)0.6116 (3)0.23318 (18)0.0672 (10)
C280.6161 (2)0.6794 (3)0.17531 (18)0.0676 (11)
C290.50704 (19)0.7110 (2)0.15967 (14)0.0535 (9)
C300.4453 (2)0.7773 (3)0.09829 (16)0.0650 (10)
C310.3389 (2)0.8062 (3)0.08063 (14)0.0609 (9)
C320.2736 (3)0.8687 (3)0.01526 (17)0.0853 (13)
C330.1714 (3)0.8974 (4)0.00129 (18)0.0953 (15)
C340.1254 (2)0.8668 (3)0.04666 (17)0.0819 (11)
C350.18394 (19)0.8077 (3)0.11000 (14)0.0622 (9)
C360.29327 (18)0.7731 (2)0.12966 (13)0.0500 (8)
H20.344000.413900.216400.0600*
H30.306300.274000.124400.0730*
H40.135800.265100.032700.0800*
H50.003500.395900.035800.0730*
H80.131800.685300.137500.0940*
H90.125200.802100.232900.1130*
H100.032200.816400.336600.1150*
H110.184400.718400.339900.0870*
H150.273100.782600.249400.0480*
H170.514900.561000.438500.0560*
H180.653500.664300.529400.0600*
H200.556100.993400.428500.0690*
H210.419100.889500.335900.0690*
H22A0.664101.069500.535100.1020*
H22B0.739101.035500.497600.1020*
H22C0.786401.045700.581200.1020*
H250.501300.561900.297500.0600*
H260.672300.515800.317400.0710*
H270.747200.594800.243300.0810*
H280.645600.706500.144500.0810*
H300.476000.803200.067900.0780*
H320.303000.889900.016600.1020*
H330.130400.937600.044300.1150*
H340.054300.887100.034800.0980*
H350.152400.789700.141000.0750*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0620 (10)0.0613 (11)0.0500 (10)0.0043 (8)0.0228 (8)0.0149 (9)
O20.0431 (8)0.0711 (12)0.0598 (11)0.0029 (8)0.0070 (8)0.0105 (10)
O30.0571 (10)0.0691 (13)0.0525 (11)0.0128 (9)0.0007 (8)0.0011 (10)
N10.0390 (9)0.0453 (11)0.0344 (10)0.0005 (8)0.0117 (7)0.0030 (9)
C10.0445 (11)0.0412 (12)0.0388 (12)0.0027 (9)0.0203 (10)0.0034 (10)
C20.0519 (12)0.0503 (14)0.0499 (14)0.0033 (11)0.0229 (11)0.0037 (12)
C30.0782 (17)0.0555 (16)0.0585 (17)0.0071 (13)0.0376 (14)0.0002 (14)
C40.0913 (19)0.0581 (17)0.0512 (16)0.0055 (15)0.0302 (15)0.0113 (14)
C50.0646 (15)0.0624 (17)0.0487 (16)0.0079 (13)0.0163 (12)0.0054 (14)
C60.0483 (12)0.0487 (14)0.0427 (13)0.0020 (10)0.0164 (10)0.0013 (11)
C70.0411 (12)0.0551 (15)0.0635 (17)0.0023 (10)0.0186 (11)0.0073 (13)
C80.0388 (13)0.077 (2)0.105 (2)0.0015 (12)0.0170 (14)0.0199 (19)
C90.0497 (15)0.101 (3)0.131 (3)0.0073 (16)0.0379 (18)0.034 (2)
C100.0661 (18)0.119 (3)0.111 (3)0.0072 (18)0.0440 (19)0.046 (2)
C110.0538 (14)0.093 (2)0.0724 (19)0.0040 (14)0.0269 (13)0.0246 (18)
C120.0409 (11)0.0514 (14)0.0544 (15)0.0019 (10)0.0200 (11)0.0039 (12)
C130.0374 (10)0.0424 (13)0.0452 (13)0.0009 (9)0.0187 (9)0.0025 (11)
C140.0427 (11)0.0432 (13)0.0393 (12)0.0028 (9)0.0193 (9)0.0072 (11)
C150.0396 (10)0.0417 (13)0.0342 (11)0.0030 (9)0.0107 (9)0.0030 (10)
C160.0373 (10)0.0465 (13)0.0353 (11)0.0003 (9)0.0151 (9)0.0018 (10)
C170.0476 (12)0.0470 (14)0.0418 (13)0.0044 (10)0.0155 (10)0.0083 (11)
C180.0444 (12)0.0609 (17)0.0370 (12)0.0066 (11)0.0091 (10)0.0085 (12)
C190.0414 (11)0.0572 (15)0.0377 (13)0.0024 (10)0.0109 (10)0.0001 (12)
C200.0557 (13)0.0469 (14)0.0564 (16)0.0039 (11)0.0093 (12)0.0038 (13)
C210.0503 (13)0.0522 (15)0.0494 (15)0.0028 (11)0.0014 (11)0.0087 (13)
C220.0686 (17)0.068 (2)0.087 (2)0.0150 (15)0.0023 (16)0.0109 (18)
C230.0483 (11)0.0382 (12)0.0361 (12)0.0086 (9)0.0155 (10)0.0005 (10)
C240.0495 (12)0.0405 (12)0.0464 (13)0.0090 (10)0.0223 (10)0.0063 (11)
C250.0504 (12)0.0452 (14)0.0574 (15)0.0021 (10)0.0261 (11)0.0039 (12)
C260.0509 (13)0.0504 (15)0.0765 (19)0.0004 (11)0.0279 (13)0.0082 (14)
C270.0555 (14)0.0589 (17)0.095 (2)0.0077 (13)0.0391 (16)0.0127 (17)
C280.0736 (17)0.0611 (18)0.092 (2)0.0195 (14)0.0583 (17)0.0172 (17)
C290.0673 (15)0.0474 (14)0.0562 (16)0.0163 (12)0.0362 (13)0.0095 (13)
C300.0866 (19)0.0606 (17)0.0637 (18)0.0179 (15)0.0470 (15)0.0037 (15)
C310.0885 (18)0.0510 (16)0.0431 (14)0.0162 (14)0.0275 (13)0.0003 (13)
C320.115 (3)0.084 (2)0.0501 (18)0.009 (2)0.0279 (17)0.0168 (17)
C330.113 (3)0.094 (3)0.0505 (19)0.000 (2)0.0063 (18)0.0278 (19)
C340.0733 (18)0.083 (2)0.0619 (19)0.0001 (16)0.0013 (15)0.0228 (17)
C350.0605 (14)0.0600 (17)0.0518 (15)0.0072 (12)0.0096 (12)0.0109 (14)
C360.0583 (13)0.0452 (14)0.0382 (13)0.0091 (11)0.0121 (10)0.0006 (11)
Geometric parameters (Å, º) top
O1—C141.204 (3)C26—C271.400 (4)
O2—C61.386 (3)C27—C281.338 (5)
O2—C71.367 (3)C28—C291.437 (4)
O3—C191.375 (3)C29—C301.382 (4)
O3—C221.421 (4)C30—C311.387 (4)
N1—C141.366 (3)C31—C321.429 (4)
N1—C151.472 (3)C31—C361.437 (4)
N1—C161.419 (3)C32—C331.336 (6)
C1—C21.399 (3)C33—C341.415 (5)
C1—C61.397 (3)C34—C351.364 (4)
C1—C131.485 (3)C35—C361.432 (4)
C2—C31.370 (4)C2—H20.9300
C3—C41.383 (4)C3—H30.9300
C4—C51.377 (4)C4—H40.9300
C5—C61.372 (4)C5—H50.9300
C7—C81.390 (4)C8—H80.9300
C7—C121.391 (4)C9—H90.9300
C8—C91.367 (5)C10—H100.9300
C9—C101.388 (5)C11—H110.9300
C10—C111.386 (5)C15—H150.9800
C11—C121.379 (4)C17—H170.9300
C12—C131.518 (3)C18—H180.9300
C13—C141.543 (3)C20—H200.9300
C13—C151.615 (3)C21—H210.9300
C15—C231.514 (3)C22—H22A0.9600
C16—C171.386 (3)C22—H22B0.9600
C16—C211.373 (4)C22—H22C0.9600
C17—C181.383 (3)C25—H250.9300
C18—C191.375 (3)C26—H260.9300
C19—C201.369 (4)C27—H270.9300
C20—C211.392 (4)C28—H280.9300
C23—C241.423 (3)C30—H300.9300
C23—C361.416 (3)C32—H320.9300
C24—C251.426 (3)C33—H330.9300
C24—C291.442 (4)C34—H340.9300
C25—C261.361 (4)C35—H350.9300
O1···C173.255 (3)C25···H22.9900
O1···C18i3.419 (3)C25···H3viii3.0900
O3···C8ii3.317 (4)C26···H3viii2.8500
O1···H172.7600C26···H21v2.8500
O1···H18i2.5800C27···H21v2.7800
O2···H10iii2.8900C28···H21v3.1000
O3···H8ii2.4100C29···H20v2.8300
O3···H28iv2.7300C30···H20v3.0500
N1···C113.308 (4)C35···H26viii2.9200
N1···C252.916 (3)C35···H152.6200
N1···H112.8100C36···H26viii2.7500
N1···H252.2800H2···C142.7900
C1···C363.575 (3)H2···C252.9900
C2···C233.326 (3)H3···C19v2.9700
C2···C27v3.569 (4)H3···C20v3.0200
C3···C19v3.447 (4)H3···C25v3.0900
C3···C20v3.471 (4)H3···C26v2.8500
C3···C26v3.389 (4)H5···C5vi2.9500
C3···C27v3.509 (4)H8···O3vii2.4100
C5···C5vi3.489 (4)H8···C22vii3.0700
C8···O3vii3.317 (4)H10···O2ix2.8900
C11···N13.308 (4)H10···C5ix2.9500
C13···C353.414 (4)H10···C6ix2.8400
C16···C243.573 (3)H11···N12.8100
C16···C253.156 (3)H11···C142.5600
C17···O13.255 (3)H11···C153.0200
C17···C253.564 (3)H15···C112.7900
C18···O1i3.419 (3)H15···C212.9000
C19···C3viii3.447 (4)H15···C352.6200
C20···C3viii3.471 (4)H15···H212.3400
C23···C23.326 (3)H15···H352.1500
C24···C163.573 (3)H17···O12.7600
C25···C173.564 (3)H17···C142.9400
C25···C163.156 (3)H18···O1i2.5800
C25···N12.916 (3)H20···C222.5000
C26···C36v3.553 (3)H20···H22A2.2200
C26···C3viii3.389 (4)H20···H22B2.3600
C27···C3viii3.509 (4)H20···C29viii2.8300
C27···C2viii3.569 (4)H20···C30viii3.0500
C35···C133.414 (4)H21···C152.7200
C36···C26viii3.553 (3)H21···H152.3400
C36···C13.575 (3)H21···C26viii2.8500
C5···H5vi2.9500H21···C27viii2.7800
C5···H10iii2.9500H21···C28viii3.1000
C6···H10iii2.8400H22A···C202.7000
C7···H352.8100H22A···H202.2200
C11···H152.7900H22B···C202.7600
C12···H352.7600H22B···H202.3600
C13···H352.8200H25···N12.2800
C14···H252.9100H25···C142.9100
C14···H112.5600H25···C152.8600
C14···H172.9400H25···C162.5900
C14···H22.7900H25···C172.8800
C15···H212.7200H26···C35v2.9200
C15···H352.4900H26···C36v2.7500
C15···H252.8600H28···H302.4300
C15···H113.0200H28···O3x2.7300
C16···H252.5900H30···H282.4300
C17···H30iv3.0900H30···H322.4600
C17···H252.8800H30···C17x3.0900
C18···H30iv2.8600H30···C18x2.8600
C19···H3viii2.9700H32···H302.4600
C20···H22A2.7000H35···C72.8100
C20···H3viii3.0200H35···C122.7600
C20···H22B2.7600H35···C132.8200
C21···H152.9000H35···C152.4900
C22···H8ii3.0700H35···H152.1500
C22···H202.5000
C6—O2—C7118.7 (2)C30—C31—C32121.8 (3)
C19—O3—C22117.6 (2)C30—C31—C36119.1 (3)
C14—N1—C1596.30 (16)C32—C31—C36119.1 (3)
C14—N1—C16133.00 (18)C31—C32—C33121.7 (3)
C15—N1—C16128.98 (18)C32—C33—C34120.1 (3)
C2—C1—C6116.3 (2)C33—C34—C35120.9 (3)
C2—C1—C13122.8 (2)C34—C35—C36121.2 (3)
C6—C1—C13120.9 (2)C23—C36—C31120.2 (2)
C1—C2—C3122.0 (2)C23—C36—C35122.7 (2)
C2—C3—C4120.0 (3)C31—C36—C35117.1 (2)
C3—C4—C5119.6 (3)C1—C2—H2119.00
C4—C5—C6120.0 (3)C3—C2—H2119.00
O2—C6—C1122.1 (2)C2—C3—H3120.00
O2—C6—C5115.8 (2)C4—C3—H3120.00
C1—C6—C5122.1 (2)C3—C4—H4120.00
O2—C7—C8116.1 (3)C5—C4—H4120.00
O2—C7—C12123.1 (2)C4—C5—H5120.00
C8—C7—C12120.7 (3)C6—C5—H5120.00
C7—C8—C9119.8 (3)C7—C8—H8120.00
C8—C9—C10121.0 (3)C9—C8—H8120.00
C9—C10—C11118.1 (3)C8—C9—H9119.00
C10—C11—C12122.4 (3)C10—C9—H9119.00
C7—C12—C11117.9 (2)C9—C10—H10121.00
C7—C12—C13119.7 (2)C11—C10—H10121.00
C11—C12—C13122.4 (2)C10—C11—H11119.00
C1—C13—C12112.00 (19)C12—C11—H11119.00
C1—C13—C14118.68 (18)N1—C15—H15109.00
C1—C13—C15117.93 (19)C13—C15—H15109.00
C12—C13—C14110.92 (19)C23—C15—H15109.00
C12—C13—C15110.36 (17)C16—C17—H17120.00
C14—C13—C1584.07 (16)C18—C17—H17120.00
O1—C14—N1131.6 (2)C17—C18—H18120.00
O1—C14—C13135.1 (2)C19—C18—H18120.00
N1—C14—C1393.13 (17)C19—C20—H20120.00
N1—C15—C1386.41 (15)C21—C20—H20120.00
N1—C15—C23119.70 (19)C16—C21—H21119.00
C13—C15—C23121.11 (18)C20—C21—H21120.00
N1—C16—C17121.18 (19)O3—C22—H22A109.00
N1—C16—C21119.6 (2)O3—C22—H22B109.00
C17—C16—C21119.3 (2)O3—C22—H22C109.00
C16—C17—C18119.7 (2)H22A—C22—H22B109.00
C17—C18—C19120.6 (2)H22A—C22—H22C110.00
O3—C19—C18116.1 (2)H22B—C22—H22C109.00
O3—C19—C20123.7 (2)C24—C25—H25119.00
C18—C19—C20120.2 (2)C26—C25—H25119.00
C19—C20—C21119.3 (3)C25—C26—H26119.00
C16—C21—C20121.0 (3)C27—C26—H26119.00
C15—C23—C24125.59 (19)C26—C27—H27120.00
C15—C23—C36114.9 (2)C28—C27—H27120.00
C24—C23—C36119.3 (2)C27—C28—H28119.00
C23—C24—C25125.3 (2)C29—C28—H28119.00
C23—C24—C29118.9 (2)C29—C30—H30119.00
C25—C24—C29115.9 (2)C31—C30—H30119.00
C24—C25—C26122.1 (2)C31—C32—H32119.00
C25—C26—C27121.2 (3)C33—C32—H32119.00
C26—C27—C28119.9 (3)C32—C33—H33120.00
C27—C28—C29121.4 (3)C34—C33—H33120.00
C24—C29—C28119.4 (2)C33—C34—H34120.00
C24—C29—C30120.1 (3)C35—C34—H34120.00
C28—C29—C30120.5 (3)C34—C35—H35119.00
C29—C30—C31121.9 (3)C36—C35—H35119.00
C7—O2—C6—C5166.4 (2)C12—C13—C14—N1107.24 (19)
C6—O2—C7—C8170.7 (2)C1—C13—C14—N1121.0 (2)
C7—O2—C6—C112.9 (3)C1—C13—C15—N1121.6 (2)
C6—O2—C7—C1210.6 (3)C15—C13—C14—N12.31 (16)
C22—O3—C19—C18174.8 (2)C14—C13—C15—N12.15 (15)
C22—O3—C19—C204.6 (4)C14—C13—C15—C23120.7 (2)
C15—N1—C16—C17162.1 (2)C12—C13—C15—C23129.2 (2)
C15—N1—C14—C132.54 (18)C15—C13—C14—O1178.3 (3)
C14—N1—C16—C21144.4 (3)C13—C15—C23—C24101.0 (3)
C16—N1—C15—C13164.0 (2)C13—C15—C23—C3683.6 (2)
C16—N1—C14—C13163.0 (2)N1—C15—C23—C244.0 (3)
C14—N1—C15—C132.43 (17)N1—C15—C23—C36171.31 (19)
C16—N1—C15—C2372.0 (3)N1—C16—C21—C20179.3 (2)
C15—N1—C14—O1178.8 (3)C17—C16—C21—C200.2 (4)
C16—N1—C14—O113.3 (4)N1—C16—C17—C18178.5 (2)
C14—N1—C15—C23121.6 (2)C21—C16—C17—C180.6 (4)
C14—N1—C16—C1736.5 (4)C16—C17—C18—C190.4 (4)
C15—N1—C16—C2117.0 (3)C17—C18—C19—C200.5 (4)
C2—C1—C13—C1434.3 (3)C17—C18—C19—O3178.9 (2)
C6—C1—C13—C15113.7 (2)O3—C19—C20—C21178.1 (2)
C6—C1—C13—C14147.3 (2)C18—C19—C20—C211.3 (4)
C13—C1—C6—C5179.4 (2)C19—C20—C21—C161.1 (4)
C2—C1—C13—C12165.6 (2)C15—C23—C24—C2513.0 (3)
C2—C1—C13—C1564.7 (3)C15—C23—C24—C29166.6 (2)
C6—C1—C13—C1216.0 (3)C36—C23—C24—C25171.8 (2)
C2—C1—C6—C50.9 (3)C36—C23—C24—C298.6 (3)
C13—C1—C6—O21.4 (3)C15—C23—C36—C31170.1 (2)
C2—C1—C6—O2179.9 (2)C15—C23—C36—C359.0 (3)
C6—C1—C2—C30.4 (4)C24—C23—C36—C315.6 (3)
C13—C1—C2—C3178.1 (2)C24—C23—C36—C35175.4 (2)
C1—C2—C3—C40.5 (4)C23—C24—C25—C26175.9 (2)
C2—C3—C4—C50.5 (5)C29—C24—C25—C263.7 (3)
C3—C4—C5—C61.7 (4)C23—C24—C29—C28175.5 (2)
C4—C5—C6—C12.0 (4)C23—C24—C29—C305.5 (3)
C4—C5—C6—O2178.8 (2)C25—C24—C29—C284.1 (3)
O2—C7—C8—C9179.4 (3)C25—C24—C29—C30174.8 (2)
O2—C7—C12—C11178.2 (2)C24—C25—C26—C270.3 (4)
O2—C7—C12—C135.5 (3)C25—C26—C27—C282.9 (4)
C12—C7—C8—C91.8 (4)C26—C27—C28—C292.3 (5)
C8—C7—C12—C13173.2 (2)C27—C28—C29—C241.3 (4)
C8—C7—C12—C113.2 (4)C27—C28—C29—C30177.7 (3)
C7—C8—C9—C100.7 (5)C24—C29—C30—C310.8 (4)
C8—C9—C10—C111.7 (6)C28—C29—C30—C31178.2 (3)
C9—C10—C11—C120.2 (5)C29—C30—C31—C32176.5 (3)
C10—C11—C12—C72.2 (4)C29—C30—C31—C363.9 (4)
C10—C11—C12—C13174.1 (3)C30—C31—C32—C33179.4 (3)
C11—C12—C13—C1560.6 (3)C36—C31—C32—C330.2 (5)
C7—C12—C13—C14153.1 (2)C30—C31—C36—C230.7 (4)
C7—C12—C13—C118.0 (3)C30—C31—C36—C35178.4 (3)
C11—C12—C13—C1430.8 (3)C32—C31—C36—C23179.8 (2)
C7—C12—C13—C15115.6 (2)C32—C31—C36—C351.2 (4)
C11—C12—C13—C1165.9 (2)C31—C32—C33—C340.5 (5)
C12—C13—C15—N1107.99 (19)C32—C33—C34—C350.2 (5)
C1—C13—C15—C231.3 (3)C33—C34—C35—C360.9 (5)
C1—C13—C14—O163.0 (4)C34—C35—C36—C23179.4 (3)
C12—C13—C14—O168.8 (3)C34—C35—C36—C311.5 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+3/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x, y+3/2, z+1/2; (v) x+1, y1/2, z+1/2; (vi) x, y+1, z; (vii) x1, y+3/2, z1/2; (viii) x+1, y+1/2, z+1/2; (ix) x, y+1/2, z+1/2; (x) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O3vii0.932.413.317 (4)164
C18—H18···O1i0.932.583.419 (3)150
C25—H25···N10.932.282.916 (3)125
Symmetry codes: (i) x+1, y+1, z+1; (vii) x1, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC36H25NO3
Mr519.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.7629 (9), 10.5845 (4), 20.5777 (12)
β (°) 114.768 (5)
V3)2721.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.61 × 0.33 × 0.16
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19756, 5559, 3359
Rint0.100
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.133, 1.03
No. of reflections5559
No. of parameters361
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.18

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999\bbr01), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O3i0.932.413.317 (4)164
C18—H18···O1ii0.932.583.419 (3)150
C25—H25···N10.932.282.916 (3)125
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-2 diffractometer (purchased under grant F.279 of the University Research Fund). AJ and EE thank Shiraz University Research Council for financial support (grant No. 86-GR—SC-23).

References

First citationAkkurt, M., Karaca, S., Jarrahpour, A. A., Khalili, D. & Büyükgüngör, O. (2006). Acta Cryst. E62, o866–o868.  CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Yalçın, Ş. P., Jarrahpour, A. A., Nazari, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3729–o3730.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationAlonso, E., Del Pozo, C. & Gonzalez, J. (2002). Synlett, pp. 69–72.  CrossRef Google Scholar
First citationAlonso, E., Lopez-Ortiz, F., DelPozo, C., Peralta, E., Macas, A. & Gonzalez, J. (2001). J. Org. Chem. 66, 6333–6338.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Rizzi, R. (1999). J. Appl. Cryst. 32, 339–340.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBycroft, B. M., Shute, R. E. & Begley, M. J. (1988). J. Chem. Soc. Chem. Commun. pp. 274–276.  CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFukuda, H. & Endo, T. (1988). Tetrahedron Lett. 29, 2327-2328.  CrossRef CAS Web of Science Google Scholar
First citationJarrahpour, A. & Khalili, D. (2007). Tetrahedron Lett. 48, 7140–7143.  Web of Science CrossRef CAS Google Scholar
First citationKambara, T. & Tomioka, K. (1999). J. Org. Chem. 64, 9282–9285.  Web of Science CrossRef CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationPınar, S., Akkurt, M., Jarrahpour, A. A., Khalili, D. & Büyükgüngör, O. (2006). Acta Cryst. E62, o804–o806.  CSD CrossRef IUCr Journals Google Scholar
First citationPinder, J. L. & Weinreb, S. M. (2003). Tetrahedron Lett. 44, 4141–4143.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheehan, J. C., Chacko, E., Lo, Y. S., Ponzi, D. R. & Sato, E. (1978). J. Org. Chem. 43, 4856–4859.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkiles, J. W. & McNeil, D. (1990). Tetrahedron Lett. 31, 7277–7280.  CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages o902-o903
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds