metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{4-[(Z)-(4-fluoro­benzyl­amino)(phenyl)­methyl­ene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-onato-κ2N4,O}nickel(II)

aCollege of Chemistry and Life Sciences, Tianjin Normal University, Tianjin 300074, People's Republic of China
*Correspondence e-mail: zxin_tj@126.com

(Received 10 January 2008; accepted 4 April 2008; online 10 April 2008)

The mol­ecule of the title compound, [Ni(C24H19FN3O)2], has twofold rotation symmetry. The NiII ion is in a square-planar coordination geometry which is distorted towards tetra­hedral and is coordinated by two N atoms of imine and two O atoms of pyrazolone from two Schiff base 4-[(Z)-(4-fluoro­benzyl­amino)phenyl­methyl­ene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-onate ligands.

Related literature

For related literature, see: Sesser et al. (1993[Sesser, J. L., Mody, T. D., Hemmi, G. W. & Lynch, V. (1993). Inorg. Chem. 32, 3175-3187.]); Smith et al. (1989[Smith, P. S., Brainard, J. R., Morris, D. E., Jarvinen, G. D. & Ryan, R. R. (1989). J. Am. Chem. Soc. 111, 7437-7443.]); Padhy et al. (1985[Padhy, S. & Kauffman, G. B. (1985). Coord. Chem. Rev. 63, 127-160.]); Yu et al. (1993[Yu, S. Y., Wang, S. X., Luo, Q. H., Wang, L. F., Peng, Z. R. & Gao, X. (1993). Polyhedron, 12, 1093-1096.]); Wu et al. (1993[Wu, J. G., Deng, R. W. & Chen, Z. N. (1993). Transition Met. Chem. 18, 23-26.]); Zhao (2007[Zhao, X.-F. (2007). Acta Cryst. E63, m704-m705.]); Peng et al. (2006[Peng, S., Zhou, C. & Yang, T. (2006). Acta Cryst. E62, m1066-m1068.]); Xu et al. (2006[Xu, H.-Z., Si, X.-K., Zhu, Y.-Q. & Song, H.-B. (2006). Acta Cryst. E62, o3266-o3268.]); Bao et al. (2005[Bao, F., Feng, J. & Ng, S. W. (2005). Acta Cryst. E61, m2393-m2394.]); Ma et al. (2006[Ma, R.-M., Sun, S.-F. & Ng, S. W. (2006). Acta Cryst. E62, m2711-m2712.]); Wang (2006[Wang, C. (2006). Acta Cryst. E62, m1754-m1755.]); Li & Wang (2007[Li, L.-Z. & Wang, L.-H. (2007). Acta Cryst. E63, m1791.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C24H19FN3O)2]

  • Mr = 827.55

  • Orthorhombic, P b c n

  • a = 25.475 (2) Å

  • b = 10.1620 (8) Å

  • c = 15.700 (1) Å

  • V = 4064.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 293 (2) K

  • 0.24 × 0.22 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SAINT, SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.866, Tmax = 0.910

  • 26008 measured reflections

  • 4867 independent reflections

  • 2916 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.076

  • S = 1.42

  • 4867 reflections

  • 268 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SAINT, SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SAINT, SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Complexes of Schiff bases with paramagnetic metal ions have received the much attention as a new class of potential magnetic resonance imaging (MRI) contrast agent [Sesser et al., 1993; Smith et al., 1989]. In addition, a great many Schiff base complexes with metals have also provoked wide interest because they possess a diverse spectrum of biological and pharmaceutical activities and catalytic properties, such as antitumor and antioxidative activities, as well as the inhibition of lipid peroxidation and so on [Padhy et al., 1985; Yu et al., 1993; Wu et al., 1993]. In this paper, we report the synthesis and crystal structure of the title compound, (I), containing β-ketoamine ligand with organic fluorine based on pyrazolone derivatives.

The molecular structure of (I) is shown in Fig. 1. The molecule has approximate twofold rotation symmetry. The NiII ion is in a distorted square-planar coordination geometry which is different from other square-planar geometry (Wang, 2006; Li & Wang, 2007) and is coordinated by two N atoms of imine and two O atoms of pyrazoylone from two Schiff base ligands L. The geometry is distorted towards tetrahedral. The bond angles around NiII center range from 96.63 (5) to 146.30 (8)° and the Ni—N [1.951 (1) Å] and Ni—O [1.924 (1) Å] bond lengths in (I) are in the expected range for such complexes (Zhao, 2007; Peng et al., 2006).

In the crystal structure of (I), the exocyclic CO bond [1.284 (2) Å for C9O1] is lengthened relative to that in the free ligand [1.252 (3) Å; Xu et al., 2006], indicating the ligands in the complex have partially changed into enol form from keto form. Mean devation of 0.049 Å from the least-square plane defined by the nine constituent atoms (Ni O1 C9 N1 N2 C7 C8 C11 N3). The pyrazolone ring is nearly coplanar with the C1—C6 benzene ring and nearly perpendicular to the other two benzene rings (C12—C17 and C19–C24); the dihedral angles are 40.54 (5), 87.78 (5) and 80.99 (5)°, respectively. There are no significant intermolecular interactions in the crystal structure.

The structures of metal complexes with ligands in which the 4-fluorophenyl group of L is replaced by Ph in Cu(L1)2 (distorted square-planar coordination geometry; Bao et al., 2005) and Co(L2)2 (distorted tetrahedral coordination geometry; Ma et al., 2006) have been reported.

Related literature top

For related literature, see: Sesser et al. (1993); Smith et al. (1989); Padhy et al. (1985); Yu et al. (1993); Wu et al. (1993); Zhao (2007); Peng et al. (2006); Xu et al. (2006); Bao et al. (2005); Ma et al. (2006); Wang (2006); Li & Wang(2007).

Experimental top

(4Z)-4-[(4-Fluorobenzylamino)(phenyl)-methylene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one (1.0 mmol) and Ni(Ac)2 (1.0 mmol) were dissolved in MeOH (10 ml). The mixture was stirred at room temperature for about 1 h, then heated to reflux for 3 h. After allowing the solution to stand in air for 7 d, green lock-shaped crystals were formed with a yield of 40%.

Refinement top

Although all H atoms were visible in difference maps, they were placed in geometrically calculated positions, with C—H distances in the range 0.93–0.97 Å, and included in the final refinement in the riding model approximation,with Uiso(H) = 1.2Ueq(C) for aromatic and methylene H atoms,with Uiso(H) = 1.5Ueq(C) for methylic H atoms

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with anisotropic displacement ellipsoids drawn at the 30% probability level [Symmetry code: (i) -x + 1,y,-z + 1/2.]
Bis{4-[(Z)-(4-fluorobenzylamino)phenylmethylene]-3-methyl-1-phenyl- 1H-pyrazol-5(4H)-onato-κ2N4,O}nickel(II) top
Crystal data top
[Ni(C24H19FN3O)2]F(000) = 1720
Mr = 827.55Dx = 1.352 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 3309 reflections
a = 25.475 (2) Åθ = 2.5–22.0°
b = 10.1620 (8) ŵ = 0.54 mm1
c = 15.700 (1) ÅT = 293 K
V = 4064.4 (5) Å3BLOCK, red
Z = 40.24 × 0.22 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
4867 independent reflections
Radiation source: fine-focus sealed tube2916 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 10.0 pixels mm-1θmax = 27.9°, θmin = 2.2°
ϕ and ω scansh = 2133
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 1312
Tmin = 0.866, Tmax = 0.910l = 2018
26008 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.42 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
4867 reflections(Δ/σ)max = 0.001
268 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Ni(C24H19FN3O)2]V = 4064.4 (5) Å3
Mr = 827.55Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 25.475 (2) ŵ = 0.54 mm1
b = 10.1620 (8) ÅT = 293 K
c = 15.700 (1) Å0.24 × 0.22 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
4867 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2916 reflections with I > 2σ(I)
Tmin = 0.866, Tmax = 0.910Rint = 0.043
26008 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.42Δρmax = 0.20 e Å3
4867 reflectionsΔρmin = 0.25 e Å3
268 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.50000.74902 (3)0.25000.03705 (9)
F0.60501 (7)1.27896 (15)0.15762 (10)0.1420 (6)
O0.45522 (4)0.67156 (10)0.33499 (7)0.0455 (3)
N10.37188 (5)0.64453 (14)0.39135 (9)0.0521 (4)
N20.31974 (6)0.66922 (18)0.36965 (10)0.0710 (5)
N30.44445 (5)0.80468 (13)0.17239 (8)0.0445 (3)
C10.42626 (7)0.53082 (17)0.49505 (12)0.0615 (5)
H10.44660.49560.45140.074*
C20.43833 (8)0.50343 (19)0.57895 (14)0.0728 (6)
H20.46720.45080.59150.087*
C30.40835 (9)0.5529 (2)0.64395 (13)0.0712 (6)
H30.41690.53480.70030.085*
C40.36580 (8)0.6288 (2)0.62491 (12)0.0736 (6)
H40.34480.66110.66860.088*
C50.35365 (7)0.65816 (18)0.54168 (11)0.0612 (5)
H50.32470.71060.52960.073*
C60.38418 (6)0.61033 (16)0.47621 (11)0.0473 (4)
C70.32123 (7)0.7208 (2)0.29336 (13)0.0677 (6)
C80.37393 (6)0.73431 (16)0.26211 (10)0.0466 (4)
C90.40520 (6)0.68240 (16)0.32787 (10)0.0428 (4)
C100.26929 (8)0.7559 (2)0.25261 (14)0.1213 (12)
H10A0.26660.71340.19820.182*
H10B0.26720.84960.24510.182*
H10C0.24110.72720.28860.182*
C110.39386 (6)0.79288 (16)0.18624 (10)0.0446 (4)
C120.35452 (6)0.84084 (18)0.12212 (11)0.0498 (4)
C130.33603 (7)0.75812 (19)0.05954 (11)0.0587 (5)
H130.34900.67280.05550.070*
C140.29816 (7)0.8014 (2)0.00249 (13)0.0735 (6)
H140.28600.74520.03990.088*
C150.27871 (8)0.9262 (3)0.00842 (16)0.0874 (8)
H150.25330.95490.02980.105*
C160.29663 (8)1.0086 (2)0.07052 (18)0.0909 (8)
H160.28331.09360.07440.109*
C170.33442 (7)0.9671 (2)0.12765 (14)0.0735 (6)
H170.34641.02400.16980.088*
C180.46406 (6)0.86510 (17)0.09264 (10)0.0527 (5)
H18A0.43460.89850.06010.063*
H18B0.48140.79840.05860.063*
C190.50202 (7)0.97610 (18)0.11001 (10)0.0507 (4)
C200.48434 (9)1.0994 (2)0.13394 (13)0.0776 (6)
H200.44851.11400.13990.093*
C210.51909 (13)1.2011 (3)0.14913 (16)0.0981 (8)
H210.50701.28400.16470.118*
C220.57081 (12)1.1778 (3)0.14100 (14)0.0883 (8)
C230.59040 (9)1.0606 (3)0.11648 (14)0.0788 (7)
H230.62641.04770.11130.095*
C240.55516 (7)0.95964 (19)0.09921 (12)0.0612 (5)
H240.56780.87910.07990.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.02468 (14)0.06300 (18)0.02347 (13)0.0000.00016 (12)0.000
F0.1785 (15)0.1505 (13)0.0970 (12)0.1026 (12)0.0011 (10)0.0095 (10)
O0.0322 (6)0.0664 (7)0.0379 (7)0.0036 (6)0.0040 (5)0.0071 (6)
N10.0325 (8)0.0818 (10)0.0421 (9)0.0017 (7)0.0053 (6)0.0073 (8)
N20.0316 (9)0.1299 (15)0.0514 (11)0.0065 (9)0.0032 (7)0.0108 (10)
N30.0349 (8)0.0695 (9)0.0291 (7)0.0051 (7)0.0005 (6)0.0011 (7)
C10.0614 (13)0.0680 (13)0.0551 (13)0.0088 (10)0.0174 (9)0.0123 (11)
C20.0678 (14)0.0820 (15)0.0686 (15)0.0128 (11)0.0094 (12)0.0304 (12)
C30.0771 (16)0.0885 (15)0.0480 (13)0.0108 (12)0.0019 (11)0.0194 (11)
C40.0771 (16)0.0996 (16)0.0442 (13)0.0030 (13)0.0142 (10)0.0034 (12)
C50.0516 (12)0.0838 (14)0.0482 (12)0.0107 (10)0.0091 (9)0.0030 (10)
C60.0410 (10)0.0609 (11)0.0400 (11)0.0061 (9)0.0066 (8)0.0055 (8)
C70.0327 (10)0.1215 (18)0.0488 (12)0.0031 (10)0.0004 (9)0.0073 (12)
C80.0312 (8)0.0730 (12)0.0357 (11)0.0037 (8)0.0012 (7)0.0015 (9)
C90.0341 (9)0.0583 (10)0.0359 (10)0.0038 (8)0.0052 (8)0.0020 (8)
C100.0306 (11)0.260 (4)0.0731 (16)0.0052 (15)0.0036 (10)0.0410 (19)
C110.0332 (9)0.0644 (11)0.0360 (10)0.0005 (8)0.0043 (7)0.0042 (8)
C120.0321 (10)0.0721 (13)0.0452 (11)0.0058 (9)0.0051 (8)0.0063 (10)
C130.0461 (11)0.0822 (13)0.0479 (11)0.0086 (10)0.0115 (8)0.0055 (11)
C140.0585 (14)0.1094 (17)0.0527 (13)0.0275 (12)0.0213 (10)0.0174 (12)
C150.0522 (14)0.113 (2)0.097 (2)0.0190 (14)0.0315 (12)0.0466 (16)
C160.0561 (14)0.0820 (16)0.134 (2)0.0067 (11)0.0280 (14)0.0224 (16)
C170.0502 (13)0.0788 (14)0.0915 (17)0.0026 (11)0.0198 (11)0.0045 (12)
C180.0408 (10)0.0854 (13)0.0319 (10)0.0046 (9)0.0045 (8)0.0085 (9)
C190.0462 (11)0.0744 (12)0.0316 (9)0.0046 (10)0.0041 (8)0.0125 (8)
C200.0710 (15)0.0945 (17)0.0675 (16)0.0001 (13)0.0161 (11)0.0024 (13)
C210.130 (2)0.0836 (16)0.0808 (19)0.0205 (17)0.0294 (17)0.0168 (14)
C220.108 (2)0.104 (2)0.0527 (14)0.0481 (19)0.0053 (14)0.0039 (14)
C230.0555 (14)0.1039 (18)0.0770 (17)0.0236 (13)0.0132 (11)0.0407 (15)
C240.0466 (12)0.0723 (13)0.0646 (13)0.0031 (10)0.0003 (9)0.0268 (11)
Geometric parameters (Å, º) top
Ni—Oi1.924 (1)C10—H10B0.9600
Ni—O1.924 (1)C10—H10C0.9600
Ni—N3i1.951 (1)C11—C121.502 (2)
Ni—N31.951 (1)C12—C131.376 (2)
F—C221.373 (2)C12—C171.384 (2)
O—C91.284 (2)C13—C141.388 (2)
N1—C91.365 (2)C13—H130.9300
N1—N21.394 (2)C14—C151.365 (3)
N1—C61.412 (2)C14—H140.9300
N2—C71.308 (2)C15—C161.364 (3)
N3—C111.313 (2)C15—H150.9300
N3—C181.481 (2)C16—C171.382 (3)
C1—C61.375 (2)C16—H160.9300
C1—C21.381 (2)C17—H170.9300
C1—H10.9300C18—C191.511 (2)
C2—C31.370 (3)C18—H18A0.9700
C2—H20.9300C18—H18B0.9700
C3—C41.364 (3)C19—C241.374 (2)
C3—H30.9300C19—C201.383 (3)
C4—C51.376 (2)C20—C211.381 (3)
C4—H40.9300C20—H200.9300
C5—C61.378 (2)C21—C221.345 (3)
C5—H50.9300C21—H210.9300
C7—C81.436 (2)C22—C231.347 (3)
C7—C101.513 (3)C23—C241.390 (3)
C8—C91.407 (2)C23—H230.9300
C8—C111.425 (2)C24—H240.9300
C10—H10A0.9600
Oi—Ni—O131.70 (6)H10B—C10—H10C109.5
Oi—Ni—N3i96.99 (5)N3—C11—C8121.8 (1)
O—Ni—N3i96.63 (5)N3—C11—C12121.0 (1)
Oi—Ni—N396.63 (5)C8—C11—C12117.27 (14)
O—Ni—N396.99 (5)C13—C12—C17119.0 (2)
N3i—Ni—N3146.30 (8)C13—C12—C11120.6 (2)
C9—O—Ni119.5 (1)C17—C12—C11120.4 (2)
C9—N1—N2111.3 (1)C12—C13—C14120.4 (2)
C9—N1—C6128.4 (1)C12—C13—H13119.8
N2—N1—C6119.1 (1)C14—C13—H13119.8
C7—N2—N1105.6 (1)C15—C14—C13120.2 (2)
C11—N3—C18120.6 (1)C15—C14—H14119.9
C11—N3—Ni125.6 (1)C13—C14—H14119.9
C18—N3—Ni113.79 (9)C14—C15—C16119.9 (2)
C6—C1—C2119.8 (2)C14—C15—H15120.1
C6—C1—H1120.1C16—C15—H15120.1
C2—C1—H1120.1C15—C16—C17120.6 (2)
C3—C2—C1120.8 (2)C15—C16—H16119.7
C3—C2—H2119.6C17—C16—H16119.7
C1—C2—H2119.6C12—C17—C16120.0 (2)
C4—C3—C2119.2 (2)C12—C17—H17120.0
C4—C3—H3120.4C16—C17—H17120.0
C2—C3—H3120.4N3—C18—C19111.9 (1)
C3—C4—C5120.6 (2)N3—C18—H18A109.2
C3—C4—H4119.7C19—C18—H18A109.2
C5—C4—H4119.7N3—C18—H18B109.2
C6—C5—C4120.3 (2)C19—C18—H18B109.2
C6—C5—H5119.8H18A—C18—H18B107.9
C4—C5—H5119.8C24—C19—C20117.7 (2)
C1—C6—C5119.2 (2)C24—C19—C18121.2 (2)
C1—C6—N1121.4 (2)C20—C19—C18121.1 (2)
C5—C6—N1119.5 (2)C21—C20—C19121.0 (2)
N2—C7—C8112.2 (2)C21—C20—H20119.5
N2—C7—C10117.2 (2)C19—C20—H20119.5
C8—C7—C10130.6 (2)C22—C21—C20118.7 (2)
C9—C8—C11124.6 (2)C22—C21—H21120.7
C9—C8—C7104.1 (2)C20—C21—H21120.7
C11—C8—C7131.2 (2)C21—C22—C23123.1 (2)
O—C9—N1122.0 (2)C21—C22—F118.2 (3)
O—C9—C8131.2 (2)C23—C22—F118.8 (3)
N1—C9—C8106.8 (1)C22—C23—C24118.0 (2)
C7—C10—H10A109.5C22—C23—H23121.0
C7—C10—H10B109.5C24—C23—H23121.0
H10A—C10—H10B109.5C19—C24—C23121.5 (2)
C7—C10—H10C109.5C19—C24—H24119.3
H10A—C10—H10C109.5C23—C24—H24119.3
Oi—Ni—O—C9111.23 (12)C11—C8—C9—N1175.72 (15)
N3i—Ni—O—C9143.24 (12)C7—C8—C9—N10.71 (18)
N3—Ni—O—C95.86 (12)C18—N3—C11—C8179.54 (14)
C9—N1—N2—C70.5 (2)Ni—N3—C11—C80.8 (2)
C6—N1—N2—C7168.80 (16)C18—N3—C11—C120.4 (2)
Oi—Ni—N3—C11137.19 (14)Ni—N3—C11—C12179.28 (12)
O—Ni—N3—C113.64 (14)C9—C8—C11—N31.0 (3)
N3i—Ni—N3—C11109.53 (14)C7—C8—C11—N3174.36 (17)
Oi—Ni—N3—C1843.14 (11)C9—C8—C11—C12178.89 (16)
O—Ni—N3—C18176.69 (11)C7—C8—C11—C125.7 (3)
N3i—Ni—N3—C1870.14 (10)N3—C11—C12—C1390.9 (2)
C6—C1—C2—C31.0 (3)C8—C11—C12—C1389.0 (2)
C1—C2—C3—C40.7 (3)N3—C11—C12—C1792.2 (2)
C2—C3—C4—C51.4 (3)C8—C11—C12—C1787.9 (2)
C3—C4—C5—C60.4 (3)C17—C12—C13—C140.6 (3)
C2—C1—C6—C52.0 (3)C11—C12—C13—C14177.48 (16)
C2—C1—C6—N1177.55 (16)C12—C13—C14—C150.4 (3)
C4—C5—C6—C11.3 (3)C13—C14—C15—C160.1 (3)
C4—C5—C6—N1178.28 (17)C14—C15—C16—C170.1 (4)
C9—N1—C6—C143.5 (3)C13—C12—C17—C160.4 (3)
N2—N1—C6—C1150.35 (16)C11—C12—C17—C16177.32 (19)
C9—N1—C6—C5136.03 (18)C15—C16—C17—C120.1 (4)
N2—N1—C6—C530.1 (2)C11—N3—C18—C19126.69 (16)
N1—N2—C7—C80.9 (2)Ni—N3—C18—C1953.00 (16)
N1—N2—C7—C10179.03 (17)N3—C18—C19—C24104.07 (18)
N2—C7—C8—C91.1 (2)N3—C18—C19—C2078.6 (2)
C10—C7—C8—C9178.9 (2)C24—C19—C20—C212.1 (3)
N2—C7—C8—C11175.04 (18)C18—C19—C20—C21179.47 (19)
C10—C7—C8—C115.0 (4)C19—C20—C21—C220.6 (4)
Ni—O—C9—N1171.42 (12)C20—C21—C22—C231.8 (4)
Ni—O—C9—C86.3 (2)C20—C21—C22—F178.94 (19)
N2—N1—C9—O178.37 (15)C21—C22—C23—C240.2 (4)
C6—N1—C9—O11.4 (3)F—C22—C23—C24179.45 (17)
N2—N1—C9—C80.20 (19)C20—C19—C24—C233.7 (3)
C6—N1—C9—C8166.79 (16)C18—C19—C24—C23178.87 (16)
C11—C8—C9—O2.2 (3)C22—C23—C24—C192.7 (3)
C7—C8—C9—O178.65 (18)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C24H19FN3O)2]
Mr827.55
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)25.475 (2), 10.1620 (8), 15.700 (1)
V3)4064.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.24 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.866, 0.910
No. of measured, independent and
observed [I > 2σ(I)] reflections
26008, 4867, 2916
Rint0.043
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.076, 1.42
No. of reflections4867
No. of parameters268
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.25

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationBao, F., Feng, J. & Ng, S. W. (2005). Acta Cryst. E61, m2393–m2394.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SAINT, SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, L.-Z. & Wang, L.-H. (2007). Acta Cryst. E63, m1791.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, R.-M., Sun, S.-F. & Ng, S. W. (2006). Acta Cryst. E62, m2711–m2712.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPadhy, S. & Kauffman, G. B. (1985). Coord. Chem. Rev. 63, 127–160.  Google Scholar
First citationPeng, S., Zhou, C. & Yang, T. (2006). Acta Cryst. E62, m1066–m1068.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSesser, J. L., Mody, T. D., Hemmi, G. W. & Lynch, V. (1993). Inorg. Chem. 32, 3175–3187.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, P. S., Brainard, J. R., Morris, D. E., Jarvinen, G. D. & Ryan, R. R. (1989). J. Am. Chem. Soc. 111, 7437–7443.  CSD CrossRef CAS Web of Science Google Scholar
First citationWang, C. (2006). Acta Cryst. E62, m1754–m1755.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, J. G., Deng, R. W. & Chen, Z. N. (1993). Transition Met. Chem. 18, 23–26.  CrossRef CAS Web of Science Google Scholar
First citationXu, H.-Z., Si, X.-K., Zhu, Y.-Q. & Song, H.-B. (2006). Acta Cryst. E62, o3266–o3268.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, S. Y., Wang, S. X., Luo, Q. H., Wang, L. F., Peng, Z. R. & Gao, X. (1993). Polyhedron, 12, 1093–1096.  CrossRef CAS Web of Science Google Scholar
First citationZhao, X.-F. (2007). Acta Cryst. E63, m704–m705.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds