organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(4-Hydr­­oxy-3-meth­oxy­benzyl­­idene)-4-(4-hy­droxy­phen­yl)pyrrolidin-2-one

aDepartment of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 210038, People's Republic of China, and bDepartment of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
*Correspondence e-mail: boyangyu59@163.com

(Received 28 February 2008; accepted 31 March 2008; online 10 April 2008)

The title compound, C18H17NO4, was isolated from an ethanol extract of Ophiopogon japonicus. The dihedral angle between the 4-hydroxy-3-methoxyphenyl ring and the pyrrolidine ring is 17.4 (1)°. The 4-hydroxyphenyl ring makes a dihedral angle of 69.74 (6)° with the least-squares plane through the 4-hydroxy-3-methoxyphenyl ring and the pyrrolidine ring. The conformation of the pyrrolidine fragment is similar to a T-form. The crystal structure is stabilized by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For the chemical components and pharmacological properties of the plant Ophiopogon japonicus, see: Anh et al. (2003[Anh, N. T. H., Sung, T. V., Porzel, A., Frankeb, K. & Wessjohann, L. A. (2003). Phytochemistry, 62, 1153-1158.]); Kou et al. (2005[Kou, J. P., Yu, B. Y. & Xu, Q. (2005). Vasc. Pharmcol, 43, 157-163.]) & Yu (2007[Yu, B. Y. (2007). Chin. J. Nat. Med. , 43, 10-14.]). For related literature, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17NO4

  • Mr = 311.33

  • Monoclinic, P 21 /c

  • a = 6.388 (1) Å

  • b = 14.520 (2) Å

  • c = 16.880 (2) Å

  • β = 96.514 (2)°

  • V = 1555.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.47 × 0.42 × 0.35 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.954, Tmax = 0.969

  • 9225 measured reflections

  • 3387 independent reflections

  • 1756 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.137

  • S = 1.02

  • 3387 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H1⋯O1i 0.86 2.09 2.948 (2) 172
O2—H2⋯O1ii 0.82 1.95 2.675 (2) 147
O4—H4⋯O2iii 0.82 2.00 2.721 (2) 147
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT; data reduction: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The plant of Ophiopogon japonicus (L. f.) Ker-Gawl.(Liliaceae) is widely distributed in South-east Asia, especially in most areaof China, and its tuber root as a famous traditional medicine are widely usedin China to cure acute and chronic inflammation and cardiovascular diseasesincluding thrombotic diseases for thousands of years (Yu, 2007; Kou, et al., 2005). Chemical studies have shown that this plant includes steroidal saponins, homoisoflavonoids andmonoterpene glycosides etc (Anh, et al., 2003). Herein we report the molecular and crystal structure of the title compound (Fig.1), which was isolated from an ethanol extract of the plant of Ophiopogon japonicus.

The main components of the title compound were two aromatic rings, A(C5—C10) and B(C12—C17) and a pyrrolidine ring C(N1/C1—C4) as shown in Fig. 1. Fig. 2 presents the packing diagram of the title compound. Paired molecules at the inversional position assembled via supromolecular sython R22(8) (Bernstein, et al., 1995) which consist of hydrogen bonds N1—H1···O1i, O2—H2···O1ii and O4—H4···O2iii (Symmetry code as in Fig. 2.).

Related literature top

For the chemical components and pharmacological properties of the plant Ophiopogon japonicus, see: Anh et al. (2003); Kou et al. (2005) & Yu (2007). For related literature, see: Bernstein et al. (1995).

Experimental top

Material from the dried subterranean parts of Ophiopogon japonicus (L. f.) Ker-Gawl.(Liliaceae) (40 kg),collected from Sichuan Province in China, was extracted with hot 60% EtOH (3×3 h) under refluxing. The concentrated extract was subjected to D-101 macroporous resin column chromatography eluted successively with EtOH-H2O(0:100, 30:70, 90:100) to give three fractions (I-III). The concentratedresidue of fraction III (EtOH-H2O, 90:10) (330 g) was further dissolved in water, and extractedwith EtOAc and n-BuOH successively. The EtOAc extract (107 g) was loaded onto a silica-gel column (200–300 mesh, 600 g) eluted with a gradientof 100% CHCl3 to CHCl3—MeOH (50:50) to give 18 fractions,which was pooled by common thin-layer chromatography characteristics. Fraction9 was subjected to repeated chromatography over silica-gel and Sephadex LH-20columns, gave compound (I) (yield 6 mg, m.p. 518 K). Prismatic crystalssuitable for X-ray studies were grown from MeOH by slow evaporation at roomtemperature.

Refinement top

(type here to add refinement details)

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A drawing of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. N—H···O and O—H···O hydrogen bond interactions (dotted lines) in the title compound. [Symmetry code: (i) -x, -y+1, -z+1; (ii) -x, y+1/2, -z+1/2; (iii) -x+1, -y+1, -z.]
(E)-3-(4-Hydroxy-3-methoxybenzylidene)-4-(4-hydroxyphenyl)pyrrolidin- 2-one top
Crystal data top
C18H17NO4F(000) = 656
Mr = 311.33Dx = 1.329 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1858 reflections
a = 6.388 (1) Åθ = 2.4–23.1°
b = 14.520 (2) ŵ = 0.09 mm1
c = 16.880 (2) ÅT = 298 K
β = 96.514 (2)°Block, colourless
V = 1555.6 (4) Å30.47 × 0.42 × 0.35 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3387 independent reflections
Radiation source: fine-focus sealed tube1756 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 1.9°
ϕ and ω scansh = 87
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
k = 1318
Tmin = 0.954, Tmax = 0.969l = 2021
9225 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0524P)2 + 0.295P]
where P = (Fo2 + 2Fc2)/3
3387 reflections(Δ/σ)max < 0.000
209 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C18H17NO4V = 1555.6 (4) Å3
Mr = 311.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.388 (1) ŵ = 0.09 mm1
b = 14.520 (2) ÅT = 298 K
c = 16.880 (2) Å0.47 × 0.42 × 0.35 mm
β = 96.514 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3387 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
1756 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.969Rint = 0.041
9225 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.02Δρmax = 0.22 e Å3
3387 reflectionsΔρmin = 0.20 e Å3
209 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.1955 (3)0.50621 (13)0.43227 (10)0.0407 (5)
H10.16940.53040.47660.049*
O10.1146 (2)0.42888 (11)0.40852 (9)0.0482 (4)
O20.3756 (3)0.78432 (11)0.09921 (11)0.0678 (6)
H20.26210.81120.09210.102*
O30.5094 (3)0.35253 (12)0.04340 (10)0.0600 (5)
O40.2796 (3)0.20997 (13)0.01836 (11)0.0762 (6)
H40.39570.22770.02830.114*
C10.0580 (4)0.45390 (14)0.38830 (13)0.0372 (5)
C20.1463 (3)0.43166 (15)0.31329 (12)0.0358 (5)
C30.3493 (3)0.48408 (15)0.31322 (12)0.0382 (5)
H30.46100.44080.30310.046*
C40.3928 (4)0.5193 (2)0.39970 (13)0.0536 (7)
H4A0.50450.48400.42940.064*
H4B0.43250.58380.40080.064*
C50.3457 (3)0.56253 (15)0.25340 (12)0.0365 (5)
C60.1668 (4)0.59272 (15)0.20783 (14)0.0433 (6)
H60.03950.56310.21210.052*
C70.1720 (4)0.66655 (16)0.15552 (14)0.0472 (6)
H70.04950.68580.12500.057*
C80.3594 (4)0.71071 (16)0.14939 (14)0.0476 (6)
C90.5397 (4)0.68061 (18)0.19335 (17)0.0562 (7)
H90.66710.70980.18840.067*
C100.5334 (4)0.60767 (17)0.24462 (15)0.0523 (7)
H100.65720.58800.27410.063*
C110.0515 (4)0.37125 (15)0.26114 (13)0.0401 (6)
H110.07710.34930.27410.048*
C120.1159 (4)0.33400 (15)0.18741 (13)0.0396 (6)
C130.2897 (4)0.36572 (15)0.15170 (13)0.0419 (6)
H130.36900.41450.17470.050*
C140.3449 (4)0.32596 (16)0.08338 (13)0.0431 (6)
C150.2293 (4)0.25225 (17)0.04909 (14)0.0507 (7)
C160.0567 (4)0.22166 (18)0.08261 (15)0.0619 (8)
H160.02290.17320.05910.074*
C170.0002 (4)0.26206 (17)0.15097 (14)0.0536 (7)
H170.11820.24070.17290.064*
C180.6343 (4)0.4276 (2)0.07462 (17)0.0672 (8)
H18A0.54820.48180.07490.101*
H18B0.74570.43820.04200.101*
H18C0.69370.41370.12810.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0424 (11)0.0505 (12)0.0299 (10)0.0051 (9)0.0069 (8)0.0053 (9)
O10.0476 (10)0.0547 (11)0.0451 (10)0.0041 (8)0.0177 (8)0.0079 (8)
O20.0807 (14)0.0491 (11)0.0812 (14)0.0105 (10)0.0418 (11)0.0189 (10)
O30.0623 (11)0.0676 (12)0.0549 (11)0.0166 (10)0.0276 (9)0.0155 (9)
O40.0992 (15)0.0755 (13)0.0612 (12)0.0284 (11)0.0411 (11)0.0326 (10)
C10.0417 (13)0.0371 (13)0.0333 (12)0.0044 (11)0.0064 (10)0.0001 (10)
C20.0380 (12)0.0397 (13)0.0300 (12)0.0038 (10)0.0053 (10)0.0047 (10)
C30.0396 (13)0.0456 (14)0.0298 (12)0.0048 (11)0.0053 (10)0.0016 (10)
C40.0417 (14)0.085 (2)0.0340 (14)0.0061 (13)0.0032 (11)0.0047 (13)
C50.0387 (13)0.0396 (13)0.0319 (12)0.0006 (10)0.0071 (10)0.0053 (10)
C60.0380 (13)0.0444 (14)0.0483 (15)0.0005 (11)0.0087 (11)0.0033 (11)
C70.0463 (15)0.0490 (15)0.0466 (15)0.0082 (12)0.0070 (12)0.0062 (12)
C80.0598 (17)0.0367 (14)0.0506 (15)0.0017 (12)0.0251 (13)0.0006 (11)
C90.0492 (16)0.0550 (17)0.0660 (18)0.0134 (13)0.0137 (14)0.0001 (14)
C100.0410 (15)0.0613 (17)0.0540 (16)0.0058 (13)0.0026 (12)0.0039 (13)
C110.0427 (14)0.0413 (13)0.0373 (13)0.0026 (11)0.0090 (11)0.0029 (10)
C120.0480 (14)0.0402 (13)0.0314 (12)0.0016 (11)0.0077 (10)0.0009 (10)
C130.0490 (14)0.0412 (13)0.0361 (13)0.0059 (11)0.0073 (11)0.0052 (10)
C140.0497 (14)0.0435 (14)0.0376 (13)0.0030 (11)0.0117 (11)0.0006 (11)
C150.0682 (18)0.0477 (15)0.0384 (14)0.0065 (13)0.0164 (13)0.0084 (11)
C160.079 (2)0.0590 (18)0.0512 (16)0.0282 (15)0.0212 (14)0.0149 (13)
C170.0654 (18)0.0560 (16)0.0424 (15)0.0190 (13)0.0198 (13)0.0089 (12)
C180.0575 (18)0.079 (2)0.0671 (19)0.0173 (16)0.0167 (15)0.0032 (16)
Geometric parameters (Å, º) top
N—C11.323 (3)C6—H60.9300
N—C41.444 (3)C7—C81.372 (3)
N—H10.8600C7—H70.9300
O1—C11.245 (2)C8—C91.369 (3)
O2—C81.375 (3)C9—C101.371 (3)
O2—H20.8200C9—H90.9300
O3—C141.367 (3)C10—H100.9300
O3—C181.417 (3)C11—C121.458 (3)
O4—C151.364 (3)C11—H110.9300
O4—H40.8200C12—C171.384 (3)
C1—C21.479 (3)C12—C131.400 (3)
C2—C111.338 (3)C13—C141.371 (3)
C2—C31.504 (3)C13—H130.9300
C3—C51.521 (3)C14—C151.389 (3)
C3—C41.542 (3)C15—C161.369 (3)
C3—H30.9800C16—C171.379 (3)
C4—H4A0.9700C16—H160.9300
C4—H4B0.9700C17—H170.9300
C5—C61.375 (3)C18—H18A0.9600
C5—C101.389 (3)C18—H18B0.9600
C6—C71.392 (3)C18—H18C0.9600
C1—N—C4114.5 (2)C7—C8—O2122.5 (2)
C1—N—H1122.8C8—C9—C10120.4 (2)
C4—N—H1122.8C8—C9—H9119.8
C8—O2—H2109.5C10—C9—H9119.8
C14—O3—C18117.7 (2)C9—C10—C5121.3 (2)
C15—O4—H4109.5C9—C10—H10119.4
O1—C1—N124.4 (2)C5—C10—H10119.4
O1—C1—C2127.4 (2)C2—C11—C12130.9 (2)
N—C1—C2108.20 (19)C2—C11—H11114.6
C11—C2—C1121.2 (2)C12—C11—H11114.6
C11—C2—C3131.1 (2)C17—C12—C13117.9 (2)
C1—C2—C3107.6 (2)C17—C12—C11118.1 (2)
C2—C3—C5115.6 (2)C13—C12—C11124.0 (2)
C2—C3—C4103.3 (2)C14—C13—C12121.0 (2)
C5—C3—C4111.6 (2)C14—C13—H13119.5
C2—C3—H3108.7C12—C13—H13119.5
C5—C3—H3108.7O3—C14—C13125.6 (2)
C4—C3—H3108.7O3—C14—C15114.4 (2)
N—C4—C3104.2 (2)C13—C14—C15120.0 (2)
N—C4—H4A110.9O4—C15—C16118.4 (2)
C3—C4—H4A110.9O4—C15—C14122.0 (2)
N—C4—H4B110.9C16—C15—C14119.5 (2)
C3—C4—H4B110.9C15—C16—C17120.6 (2)
H4A—C4—H4B108.9C15—C16—H16119.7
C6—C5—C10117.5 (2)C17—C16—H16119.7
C6—C5—C3124.0 (2)C16—C17—C12120.9 (2)
C10—C5—C3118.4 (2)C16—C17—H17119.5
C5—C6—C7121.5 (2)C12—C17—H17119.5
C5—C6—H6119.2O3—C18—H18A109.5
C7—C6—H6119.2O3—C18—H18B109.5
C8—C7—C6119.4 (2)H18A—C18—H18B109.5
C8—C7—H7120.3O3—C18—H18C109.5
C6—C7—H7120.3H18A—C18—H18C109.5
C9—C8—C7119.8 (2)H18B—C18—H18C109.5
C9—C8—O2117.7 (2)
C4—N—C1—O1174.6 (2)O2—C8—C9—C10179.8 (2)
C4—N—C1—C25.3 (3)C8—C9—C10—C50.0 (4)
O1—C1—C2—C117.4 (4)C6—C5—C10—C91.0 (3)
N—C1—C2—C11172.5 (2)C3—C5—C10—C9178.1 (2)
O1—C1—C2—C3175.2 (2)C1—C2—C11—C12175.0 (2)
N—C1—C2—C34.9 (2)C3—C2—C11—C121.8 (4)
C11—C2—C3—C572.8 (3)C2—C11—C12—C17170.9 (2)
C1—C2—C3—C5110.1 (2)C2—C11—C12—C138.2 (4)
C11—C2—C3—C4165.1 (2)C17—C12—C13—C140.9 (4)
C1—C2—C3—C412.0 (2)C11—C12—C13—C14178.3 (2)
C1—N—C4—C312.9 (3)C18—O3—C14—C130.1 (4)
C2—C3—C4—N14.5 (2)C18—O3—C14—C15179.8 (2)
C5—C3—C4—N110.3 (2)C12—C13—C14—O3179.0 (2)
C2—C3—C5—C67.3 (3)C12—C13—C14—C150.8 (4)
C4—C3—C5—C6110.3 (2)O3—C14—C15—O40.8 (4)
C2—C3—C5—C10173.59 (19)C13—C14—C15—O4179.3 (2)
C4—C3—C5—C1068.8 (2)O3—C14—C15—C16177.9 (2)
C10—C5—C6—C70.9 (3)C13—C14—C15—C162.0 (4)
C3—C5—C6—C7178.2 (2)O4—C15—C16—C17179.8 (2)
C5—C6—C7—C80.3 (3)C14—C15—C16—C171.5 (4)
C6—C7—C8—C91.4 (4)C15—C16—C17—C120.3 (4)
C6—C7—C8—O2179.7 (2)C13—C12—C17—C161.4 (4)
C7—C8—C9—C101.2 (4)C11—C12—C17—C16177.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H1···O1i0.862.092.948 (2)172
O2—H2···O1ii0.821.952.675 (2)147
O4—H4···O2iii0.822.002.721 (2)147
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H17NO4
Mr311.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)6.388 (1), 14.520 (2), 16.880 (2)
β (°) 96.514 (2)
V3)1555.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.47 × 0.42 × 0.35
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.954, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
9225, 3387, 1756
Rint0.041
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.137, 1.02
No. of reflections3387
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.20

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H1···O1i0.862.092.948 (2)172.0
O2—H2···O1ii0.821.952.675 (2)146.7
O4—H4···O2iii0.822.002.721 (2)146.5
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1, z.
 

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (grant No. 30672603 to Dr Bo-Yang Yu).

References

First citationAnh, N. T. H., Sung, T. V., Porzel, A., Frankeb, K. & Wessjohann, L. A. (2003). Phytochemistry, 62, 1153–1158.  PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKou, J. P., Yu, B. Y. & Xu, Q. (2005). Vasc. Pharmcol, 43, 157–163.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, B. Y. (2007). Chin. J. Nat. Med. , 43, 10–14.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds