metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m614-m615

Low-temperature phase of hexaguanidinium hepta­molybdate monohydrate

aSchool of Engineering and Science, Jacobs University Bremen, PO Box 750561, 28725 Bremen, Germany
*Correspondence e-mail: m.dickman@jacobs-university.de

(Received 4 March 2008; accepted 26 March 2008; online 2 April 2008)

The crystal structure of the title compound, [C(NH2)3]6[Mo7O24]·H2O, previously determined at room temperature in the monoclinic space group C2/c from Weissenberg techniques [Don & Weakley (1981[Don, A. & Weakley, T. J. R. (1981). Acta Cryst. B37, 451-453.]). Acta Cryst. B37, 451–453], has been redetermined from low-temperature single-crystal data in the monoclinic space group P21/c. The asymmetric unit contains one hepta­molybdate anion, six guanidinium cations and one water mol­ecule of hydration. The anions and cations are linked by an extensive network of N—H⋯O hydrogen bonds.

Related literature

For the previous determination of the title compound in the monoclinic space group C2/c, see: Don & Weakley (1981[Don, A. & Weakley, T. J. R. (1981). Acta Cryst. B37, 451-453.]). For an example of a structurally characterized [Mo7O24]6− anion, see: Kortz & Pope (1995[Kortz, U. & Pope, M. T. (1995). Acta Cryst. C51, 1717-1719.]). For more information about isopolymolybdates and polyoxometalates in general, see: Pope (1983[Pope, M. T. (1983). Heteropoly and Isopoly Oxometalates. Berlin: Springer-Verlag.]).

[Scheme 1]

Experimental

Crystal data
  • (CH6N3)6[Mo7O24].H2O

  • Mr = 1434.12

  • Monoclinic, P 21 /c

  • a = 11.9402 (6) Å

  • b = 15.9131 (9) Å

  • c = 19.8223 (13) Å

  • β = 92.312 (4)°

  • V = 3763.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.37 mm−1

  • T = 173 (2) K

  • 0.17 × 0.17 × 0.08 mm

Data collection
  • Bruker X8 APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.689, Tmax = 0.833

  • 153838 measured reflections

  • 15842 independent reflections

  • 9689 reflections with I > 2s(I)

  • Rint = 0.150

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.164

  • S = 1.05

  • 15842 reflections

  • 506 parameters

  • H-atom parameters constrained

  • Δρmax = 1.77 e Å−3

  • Δρmin = −2.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11A⋯O1W 0.88 1.90 2.765 (6) 168
N11—H11B⋯O3A 0.88 2.35 3.091 (6) 142
N12—H12A⋯O2Ai 0.88 2.00 2.845 (5) 160
N12—H12B⋯O5B 0.88 2.14 2.903 (5) 145
N13—H13A⋯O6Aii 0.88 1.96 2.828 (5) 169
N13—H13B⋯O3B 0.88 2.23 2.930 (5) 136
N14—H14B⋯O13 0.88 1.93 2.774 (4) 159
N14—H14A⋯O57iii 0.88 1.98 2.814 (4) 159
N15—H15A⋯O2Biv 0.88 2.03 2.843 (5) 153
N15—H15B⋯O3Av 0.88 2.13 2.866 (5) 141
N15—H15B⋯O34v 0.88 2.62 3.302 (5) 135
N16—H16B⋯O1Aii 0.88 2.13 2.967 (5) 159
N16—H16A⋯O45vi 0.88 2.18 2.977 (5) 151
N21—H21A⋯O1Bvi 0.88 2.18 3.006 (5) 156
N21—H21A⋯O2Bvi 0.88 2.40 2.926 (5) 118
N21—H21B⋯O3A 0.88 2.22 2.992 (5) 147
N22—H22A⋯O36vii 0.88 2.32 3.087 (5) 145
N22—H22A⋯O467vii 0.88 2.50 3.216 (5) 139
N22—H22A⋯O6Bvii 0.88 2.64 3.290 (5) 131
N22—H22B⋯O25 0.88 2.10 2.977 (5) 177
N23—H23A⋯O36 0.88 2.07 2.937 (5) 169
N23—H23B⋯O25vi 0.88 2.26 3.023 (5) 145
N23—H23B⋯O124vi 0.88 2.50 3.219 (5) 140
N24—H24A⋯O13 0.88 2.45 3.154 (5) 137
N24—H24A⋯O3A 0.88 2.50 3.186 (5) 135
N24—H24B⋯O12viii 0.88 2.09 2.855 (5) 145
N25—H25A⋯O34v 0.88 2.22 2.990 (5) 146
N25—H25B⋯O7Aiii 0.88 2.08 2.931 (5) 162
N26—H26A⋯O3Bii 0.88 1.98 2.859 (5) 175
N26—H26B⋯O1Wii 0.88 2.50 3.084 (6) 124
N26—H26B⋯O6A 0.88 2.57 3.197 (5) 129
N31—H31A⋯O1Bvi 0.88 2.50 3.248 (6) 143
N31—H31B⋯O5Aix 0.88 2.38 3.188 (6) 152
N32—H32A⋯N34x 0.88 2.50 3.242 (6) 143
N32—H32B⋯O467vii 0.88 2.02 2.864 (5) 160
N33—H33A⋯N24vi 0.88 2.60 3.334 (6) 142
N33—H33B⋯O124vi 0.88 2.02 2.867 (5) 160
N34—H34B⋯O67viii 0.88 1.94 2.776 (5) 157
N34—H34A⋯O57iii 0.88 2.44 3.154 (5) 139
N34—H34A⋯O5Aiii 0.88 2.55 3.195 (5) 131
N35—H35A⋯O2Aiv 0.88 2.29 3.040 (5) 144
N35—H35B⋯O5Biii 0.88 1.98 2.849 (5) 170
N36—H36A⋯O5Avi 0.88 2.16 2.913 (5) 144
N36—H36B⋯O6B 0.88 2.13 2.868 (5) 141
O1W—H1OW⋯O6Biii 0.86 2.22 2.948 (5) 142
O1W—H1OW⋯O7Biii 0.86 2.44 3.086 (5) 133
O1W—H2OW⋯O5Aix 0.86 2.35 2.973 (5) 130
Symmetry codes: (i) -x+1, -y, -z; (ii) -x, -y, -z+1; (iii) x-1, y, z; (iv) -x, -y, -z; (v) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (viii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ix) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (x) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and WINGX Farrugia (1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.])..

Supporting information


Comment top

Acidification of aqueous molybdate solutions gives rise to the formation of different isopolymolybdate(VI) anions depending on the pH. The heptamolybdate anion, [Mo7O24]6-, is known to be the predominant species in neutral to moderately acidic solutions (Pope, 1983). Single crystals of the title compound, [C(NH2)3]6[Mo7O24].H2O (I), were obtained in an attempt to prepare a guanidinium salt of a dimethyltin-containing phosphomolybdate species.

Routine examination of (I) at low temperature resulted in the assignment of the monoclinic space group P21/c, with the C-centered reflections being systematically weak. However, a previous room-temperature study using Weissenberg techniques reported the structure of (I) in the monoclinic space group C2/c (Don & Weakley, 1981). Therefore, data were collected on a second crystal at room temperature, confirming the original assignment of C2/c; data were then collected on this same crystal cooled to 173 K, confirming the low-temperature assignment of P21/c. The value of Rint for the low-temperature data was 15.0%. We attribute this higher than usual value to the phase change; the value of Rint for the room-temperature data was less than 10%. The low-temperature structure consists of one [Mo7O24]6- anion, six [C(NH2)3]+ cations, and one molecule of water of hydration in the asymmetric unit (Fig. 1). The [Mo7O24]6- anion shows the well known bent arrangement of seven edge-sharing MoO6 distorted octahedra (Kortz & Pope, 1995), which can be formally derived from the parent {M10O28} decametalate framework by removal of three octahedra from the central level (Pope, 1983). The anions and the cations are linked by an extensive and intricate three-dimensional network of N—H···O hydrogen bonds involving all guanidinium –NH2 groups and all heptamolybdate terminal and bridging O atoms, with the exception of the terminal O7B and the bridging µ4-O atoms (O1M4 and O2M4).

Related literature top

For the previous determination of the title compound in the monoclinic C2/c space group, see: Don & Weakley (1981). For an example of a structurally characterized [Mo7O24]6- anion, see: Kortz & Pope (1995). For more information about isopolymolybdates and polyoxometalates in general, see: Pope (1983). For related literature, see: Farrugia (1999).

Experimental top

To an aqueous solution (30 ml) of Na2MoO4.2H2O (0.726 g) and Na2HPO4 (0.071 g) was added solid (CH3)SnCl2 (0.220 g). After stirring for 30 min at room temperature, few drops of aqueous 1M [C(NH2)3]Cl were added, and the resulting solution was left to slowly evaporate at room temperature, colorless block-like single crystals of the title compound forming in a few days.

Refinement top

The H atoms of the guanidinium cations were positioned geometrically and refined as riding. The positional parameters of the H atoms of the water molecule were calculated using the CALCOH tool of WinGX (Farrugia, 1999) and fixed during the refinment. All H atoms were refined with isotropic displacement parameters fixed at 1.2 times Ueq of their parent atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP plot of (I) showing 50% probability displacement ellipsoids.
hexaguanidinium heptamolybdate monohydrate top
Crystal data top
(CH6N3)6[Mo7O24]·H2OF(000) = 2776
Mr = 1434.12Dx = 2.531 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7762 reflections
a = 11.9402 (6) Åθ = 2.3–29.7°
b = 15.9131 (9) ŵ = 2.37 mm1
c = 19.8223 (13) ÅT = 173 K
β = 92.312 (4)°Prism, colourless
V = 3763.3 (4) Å30.17 × 0.17 × 0.08 mm
Z = 4
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
15842 independent reflections
Radiation source: sealed tube9689 reflections with I > 2s(I)
Graphite monochromatorRint = 0.150
ϕ and ω scansθmax = 34.4°, θmin = 1.7°
Absorption correction: multi-scan
APEXII (Bruker, 2005)
h = 1818
Tmin = 0.689, Tmax = 0.833k = 2525
153838 measured reflectionsl = 3131
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.065P)2 + 1.0536P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.053(Δ/σ)max = 0.001
wR(F2) = 0.164Δρmax = 1.77 e Å3
S = 1.06Δρmin = 2.33 e Å3
15842 reflectionsExtinction correction: SHELXL
506 parametersExtinction coefficient: 0.00102 (9)
0 restraints
Crystal data top
(CH6N3)6[Mo7O24]·H2OV = 3763.3 (4) Å3
Mr = 1434.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.9402 (6) ŵ = 2.37 mm1
b = 15.9131 (9) ÅT = 173 K
c = 19.8223 (13) Å0.17 × 0.17 × 0.08 mm
β = 92.312 (4)°
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
15842 independent reflections
Absorption correction: multi-scan
APEXII (Bruker, 2005)
9689 reflections with I > 2s(I)
Tmin = 0.689, Tmax = 0.833Rint = 0.150
153838 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.06Δρmax = 1.77 e Å3
15842 reflectionsΔρmin = 2.33 e Å3
506 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.02068 (3)0.06939 (2)0.221800 (17)0.01551 (8)
Mo20.22006 (3)0.06307 (2)0.115322 (17)0.01597 (8)
Mo30.04258 (3)0.17323 (2)0.359758 (18)0.01829 (9)
Mo40.24555 (3)0.20215 (2)0.245700 (16)0.01436 (8)
Mo50.44752 (3)0.16970 (2)0.131721 (18)0.01815 (9)
Mo60.26730 (3)0.06331 (2)0.377162 (17)0.01662 (8)
Mo70.46759 (3)0.06731 (2)0.270582 (18)0.01634 (8)
O1B0.0700 (3)0.0900 (2)0.15428 (15)0.0235 (7)
O1A0.0382 (3)0.0105 (2)0.26587 (16)0.0249 (7)
O2B0.1171 (3)0.0798 (2)0.05310 (15)0.0238 (7)
O2A0.2968 (3)0.0190 (2)0.08550 (16)0.0246 (7)
O3B0.0348 (3)0.1000 (2)0.40054 (16)0.0270 (7)
O3A0.0090 (3)0.2697 (2)0.38553 (16)0.0266 (7)
O5B0.5214 (3)0.0936 (2)0.09095 (16)0.0256 (7)
O5A0.5025 (3)0.2644 (2)0.10420 (17)0.0271 (7)
O6B0.3707 (3)0.0785 (2)0.43900 (15)0.0241 (7)
O6A0.1877 (3)0.0173 (2)0.40575 (16)0.0269 (7)
O7B0.5567 (3)0.0861 (2)0.33821 (16)0.0248 (7)
O7A0.5255 (3)0.0139 (2)0.22726 (17)0.0256 (7)
O120.1370 (2)0.00412 (18)0.18077 (14)0.0186 (6)
O130.0327 (2)0.16739 (19)0.27278 (15)0.0201 (6)
O1M40.1493 (2)0.10064 (18)0.29826 (13)0.0156 (5)
O2M40.3391 (2)0.09888 (18)0.19337 (13)0.0152 (5)
O250.3103 (2)0.16081 (19)0.08014 (14)0.0203 (6)
O340.1626 (3)0.26978 (19)0.29144 (15)0.0215 (6)
O360.1794 (2)0.16226 (19)0.41150 (14)0.0208 (6)
O450.3298 (3)0.26854 (19)0.19892 (15)0.0216 (6)
O570.5234 (2)0.16324 (19)0.21861 (15)0.0205 (6)
O670.3490 (2)0.00393 (18)0.31125 (14)0.0184 (6)
O1240.1415 (2)0.16496 (18)0.17796 (14)0.0160 (5)
O4670.3486 (2)0.16389 (18)0.31372 (14)0.0175 (6)
C10.1887 (4)0.2916 (3)0.5167 (3)0.0331 (11)
C20.4571 (4)0.1742 (3)0.0860 (2)0.0231 (9)
C30.0480 (4)0.1669 (3)0.5786 (2)0.0227 (9)
C40.2559 (3)0.2966 (3)0.24617 (19)0.0216 (9)
C50.2245 (4)0.0488 (3)0.1085 (2)0.0199 (8)
C60.2837 (4)0.0415 (3)0.6044 (2)0.0225 (9)
N110.2273 (4)0.2477 (3)0.4624 (3)0.0513 (14)
H11A0.28970.21860.46430.062*
H11B0.19000.24810.42500.062*
N120.5055 (3)0.1087 (3)0.0551 (2)0.0288 (9)
H12A0.55970.08140.07440.035*
H12B0.48330.09270.01530.035*
N130.0031 (4)0.1011 (3)0.5475 (2)0.0308 (9)
H13A0.05060.07260.56630.037*
H13B0.02670.08570.50790.037*
N140.2542 (3)0.2142 (3)0.24754 (19)0.0298 (10)
H14A0.31540.18560.23690.036*
H14B0.19170.18750.25910.036*
N150.1334 (3)0.0878 (3)0.0894 (2)0.0275 (9)
H15A0.10710.07760.04940.033*
H15B0.09900.12380.11680.033*
N160.2399 (3)0.0624 (3)0.66201 (18)0.0269 (9)
H16A0.27050.10280.68690.032*
H16B0.18010.03610.67560.032*
N210.0947 (3)0.3375 (3)0.5144 (2)0.0349 (11)
H21A0.07120.36670.55000.042*
H21B0.05660.33850.47730.042*
N220.3746 (3)0.2148 (2)0.05681 (19)0.0274 (9)
H22A0.34200.25790.07730.033*
H22B0.35260.19860.01700.033*
N230.1296 (3)0.2099 (2)0.55026 (19)0.0253 (8)
H23A0.15360.19440.51080.030*
H23B0.15960.25380.57110.030*
N240.1629 (3)0.3397 (2)0.2631 (2)0.0299 (9)
H24A0.10090.31280.27510.036*
H24B0.16380.39500.26220.036*
N250.2628 (3)0.0643 (3)0.16922 (19)0.0266 (8)
H25A0.22750.10020.19630.032*
H25B0.32340.03860.18240.032*
N260.2384 (3)0.0186 (2)0.5654 (2)0.0273 (8)
H26A0.17800.04510.57790.033*
H26B0.26870.03170.52700.033*
N310.2477 (4)0.2892 (3)0.5725 (2)0.0454 (12)
H31A0.22520.31800.60840.054*
H31B0.30920.25880.57340.054*
N320.4905 (4)0.1984 (3)0.1459 (2)0.0301 (9)
H32A0.54470.17120.16520.036*
H32B0.45840.24180.16630.036*
N330.0121 (4)0.1901 (3)0.63845 (19)0.0292 (9)
H33A0.04160.16160.65720.035*
H33B0.04200.23400.65930.035*
N340.3495 (3)0.3368 (2)0.2289 (2)0.0281 (9)
H34A0.41080.30830.21830.034*
H34B0.35040.39210.22800.034*
N350.2762 (3)0.0054 (2)0.06749 (19)0.0268 (8)
H35A0.25000.01550.02740.032*
H35B0.33690.03130.08020.032*
N360.3742 (3)0.0814 (3)0.58373 (19)0.0269 (9)
H36A0.40490.12170.60860.032*
H36B0.40340.06730.54520.032*
O1W0.4098 (3)0.1463 (3)0.4856 (2)0.0446 (10)
H1OW0.45890.13300.45450.054*
H2OW0.44190.13800.52330.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01223 (16)0.01668 (17)0.01772 (15)0.00120 (12)0.00174 (12)0.00124 (12)
Mo20.01468 (17)0.01756 (17)0.01579 (15)0.00145 (13)0.00233 (12)0.00065 (12)
Mo30.01455 (17)0.02142 (19)0.01925 (16)0.00144 (13)0.00494 (13)0.00450 (13)
Mo40.01179 (16)0.01357 (16)0.01786 (15)0.00013 (12)0.00221 (12)0.00014 (12)
Mo50.01378 (17)0.01978 (19)0.02126 (17)0.00092 (13)0.00547 (13)0.00439 (13)
Mo60.01591 (17)0.01855 (18)0.01550 (15)0.00138 (13)0.00215 (12)0.00095 (12)
Mo70.01257 (16)0.01696 (17)0.01955 (16)0.00162 (12)0.00167 (12)0.00165 (12)
O1B0.0211 (16)0.0266 (17)0.0224 (14)0.0034 (13)0.0041 (12)0.0003 (12)
O1A0.0231 (16)0.0247 (17)0.0272 (16)0.0041 (13)0.0043 (13)0.0016 (13)
O2B0.0231 (16)0.0286 (17)0.0196 (14)0.0017 (13)0.0012 (12)0.0002 (12)
O2A0.0238 (16)0.0236 (16)0.0269 (16)0.0061 (13)0.0066 (13)0.0020 (13)
O3B0.0231 (17)0.0334 (19)0.0250 (15)0.0062 (14)0.0072 (13)0.0005 (14)
O3A0.0227 (16)0.0247 (17)0.0326 (17)0.0006 (13)0.0054 (13)0.0126 (13)
O5B0.0198 (16)0.0301 (18)0.0274 (16)0.0055 (13)0.0089 (13)0.0005 (13)
O5A0.0251 (17)0.0239 (17)0.0328 (17)0.0002 (14)0.0080 (14)0.0125 (13)
O6B0.0224 (16)0.0309 (18)0.0191 (14)0.0006 (13)0.0009 (12)0.0004 (12)
O6A0.0265 (17)0.0263 (17)0.0281 (16)0.0050 (14)0.0054 (14)0.0031 (13)
O7B0.0205 (16)0.0263 (17)0.0274 (16)0.0008 (13)0.0036 (13)0.0049 (13)
O7A0.0224 (16)0.0227 (16)0.0323 (17)0.0052 (13)0.0074 (13)0.0033 (13)
O120.0198 (15)0.0160 (14)0.0201 (13)0.0007 (11)0.0021 (11)0.0017 (11)
O130.0118 (13)0.0249 (16)0.0239 (14)0.0013 (12)0.0040 (11)0.0038 (12)
O1M40.0137 (14)0.0170 (14)0.0163 (12)0.0003 (11)0.0018 (10)0.0002 (10)
O2M40.0135 (13)0.0157 (13)0.0169 (12)0.0014 (11)0.0048 (10)0.0018 (10)
O250.0175 (15)0.0258 (16)0.0179 (13)0.0009 (12)0.0045 (11)0.0038 (11)
O340.0189 (15)0.0204 (15)0.0254 (15)0.0003 (12)0.0025 (12)0.0039 (12)
O360.0191 (15)0.0235 (16)0.0201 (14)0.0012 (12)0.0029 (11)0.0057 (11)
O450.0215 (15)0.0178 (15)0.0255 (15)0.0038 (12)0.0019 (12)0.0044 (12)
O570.0118 (13)0.0215 (16)0.0283 (15)0.0008 (11)0.0027 (12)0.0050 (12)
O670.0171 (14)0.0159 (14)0.0225 (14)0.0009 (11)0.0041 (11)0.0016 (11)
O1240.0144 (13)0.0164 (14)0.0174 (12)0.0009 (11)0.0006 (10)0.0004 (10)
O4670.0151 (14)0.0194 (15)0.0179 (13)0.0005 (11)0.0017 (11)0.0017 (11)
C10.030 (3)0.037 (3)0.032 (2)0.005 (2)0.001 (2)0.007 (2)
C20.021 (2)0.022 (2)0.027 (2)0.0038 (17)0.0003 (17)0.0043 (17)
C30.021 (2)0.021 (2)0.026 (2)0.0001 (17)0.0010 (17)0.0003 (16)
C40.023 (2)0.020 (2)0.0227 (19)0.0002 (17)0.0064 (17)0.0016 (16)
C50.020 (2)0.019 (2)0.0199 (18)0.0045 (16)0.0018 (16)0.0040 (15)
C60.027 (2)0.020 (2)0.0203 (18)0.0015 (18)0.0011 (17)0.0021 (16)
N110.044 (3)0.066 (4)0.044 (3)0.018 (3)0.004 (2)0.017 (3)
N120.029 (2)0.029 (2)0.0289 (19)0.0158 (17)0.0043 (17)0.0043 (16)
N130.037 (2)0.025 (2)0.031 (2)0.0157 (18)0.0049 (18)0.0070 (16)
N140.0161 (19)0.0166 (19)0.056 (3)0.0017 (14)0.0017 (19)0.0027 (17)
N150.027 (2)0.030 (2)0.0255 (18)0.0131 (17)0.0029 (16)0.0001 (16)
N160.029 (2)0.032 (2)0.0203 (17)0.0072 (17)0.0101 (15)0.0042 (15)
N210.0174 (19)0.050 (3)0.038 (2)0.0126 (19)0.0076 (17)0.016 (2)
N220.029 (2)0.027 (2)0.0259 (18)0.0129 (17)0.0019 (16)0.0031 (15)
N230.028 (2)0.0222 (19)0.0256 (18)0.0116 (16)0.0055 (16)0.0008 (15)
N240.025 (2)0.0193 (19)0.045 (2)0.0076 (16)0.0025 (18)0.0027 (17)
N250.023 (2)0.034 (2)0.0229 (18)0.0077 (17)0.0041 (15)0.0004 (15)
N260.0222 (19)0.032 (2)0.0276 (19)0.0117 (17)0.0050 (15)0.0039 (16)
N310.043 (3)0.059 (3)0.036 (2)0.009 (2)0.014 (2)0.011 (2)
N320.031 (2)0.032 (2)0.0278 (19)0.0099 (18)0.0049 (17)0.0057 (17)
N330.031 (2)0.033 (2)0.0240 (18)0.0061 (18)0.0097 (16)0.0054 (16)
N340.025 (2)0.0180 (19)0.042 (2)0.0055 (15)0.0019 (17)0.0034 (16)
N350.025 (2)0.030 (2)0.0249 (18)0.0118 (17)0.0001 (15)0.0004 (16)
N360.030 (2)0.028 (2)0.0230 (18)0.0130 (17)0.0045 (16)0.0012 (15)
O1W0.027 (2)0.058 (3)0.049 (2)0.0094 (19)0.0001 (17)0.016 (2)
Geometric parameters (Å, º) top
Mo1—O1A1.710 (3)C3—N131.317 (6)
Mo1—O1B1.719 (3)C3—N331.330 (6)
Mo1—O121.939 (3)C3—N231.334 (6)
Mo1—O131.978 (3)C4—N141.311 (6)
Mo1—O1M42.171 (3)C4—N341.321 (6)
Mo1—O1242.291 (3)C4—N241.336 (6)
Mo1—Mo33.1968 (5)C5—N151.320 (5)
Mo2—O2A1.714 (3)C5—N351.321 (5)
Mo2—O2B1.726 (3)C5—N251.328 (5)
Mo2—O121.910 (3)C6—N161.318 (5)
Mo2—O252.032 (3)C6—N361.332 (6)
Mo2—O2M42.136 (3)C6—N261.331 (6)
Mo2—O1242.268 (3)N11—H11A0.8800
Mo2—Mo53.2078 (5)N11—H11B0.8800
Mo3—O3B1.711 (3)N12—H12A0.8800
Mo3—O3A1.738 (3)N12—H12B0.8800
Mo3—O361.902 (3)N13—H13A0.8800
Mo3—O131.914 (3)N13—H13B0.8800
Mo3—O1M42.138 (3)N14—H14A0.8800
Mo3—Mo63.2099 (5)N14—H14B0.8800
Mo4—O341.742 (3)N15—H15A0.8800
Mo4—O451.751 (3)N15—H15B0.8800
Mo4—O1241.887 (3)N16—H16A0.8800
Mo4—O4671.889 (3)N16—H16B0.8800
Mo4—O1M42.261 (3)N21—H21A0.8800
Mo4—O2M42.262 (3)N21—H21B0.8800
Mo5—O5B1.719 (3)N22—H22A0.8800
Mo5—O5A1.740 (3)N22—H22B0.8800
Mo5—O251.901 (3)N23—H23A0.8800
Mo5—O571.916 (3)N23—H23B0.8800
Mo5—O2M42.137 (3)N24—H24A0.8800
Mo5—Mo73.1993 (5)N24—H24B0.8800
Mo6—O6A1.708 (3)N25—H25A0.8800
Mo6—O6B1.721 (3)N25—H25B0.8800
Mo6—O671.911 (3)N26—H26A0.8800
Mo6—O362.025 (3)N26—H26B0.8800
Mo6—O1M42.146 (3)N31—H31A0.8800
Mo6—O4672.277 (3)N31—H31B0.8800
Mo7—O7B1.704 (3)N32—H32A0.8800
Mo7—O7A1.713 (3)N32—H32B0.8800
Mo7—O671.941 (3)N33—H33A0.8800
Mo7—O571.973 (3)N33—H33B0.8800
Mo7—O2M42.181 (3)N34—H34A0.8800
Mo7—O4672.282 (3)N34—H34B0.8800
C1—N311.336 (6)N35—H35A0.8800
C1—N211.342 (6)N35—H35B0.8800
C1—N111.350 (7)N36—H36A0.8800
C2—N321.326 (6)N36—H36B0.8800
C2—N121.328 (5)O1W—H1OW0.8600
C2—N221.330 (6)O1W—H2OW0.8620
O1A—Mo1—O1B106.28 (16)O467—Mo6—Mo386.03 (7)
O1A—Mo1—O1297.62 (14)O7B—Mo7—O7A105.95 (16)
O1B—Mo1—O12102.41 (14)O7B—Mo7—O67101.99 (14)
O1A—Mo1—O13100.22 (14)O7A—Mo7—O6797.60 (14)
O1B—Mo1—O1392.39 (14)O7B—Mo7—O5793.52 (14)
O12—Mo1—O13152.57 (12)O7A—Mo7—O5799.81 (14)
O1A—Mo1—O1M496.18 (13)O67—Mo7—O57152.48 (12)
O1B—Mo1—O1M4154.88 (14)O7B—Mo7—O2M4155.59 (14)
O12—Mo1—O1M485.24 (11)O7A—Mo7—O2M496.25 (13)
O13—Mo1—O1M472.31 (11)O67—Mo7—O2M484.65 (11)
O1A—Mo1—O124164.91 (13)O57—Mo7—O2M472.44 (11)
O1B—Mo1—O12487.97 (13)O7B—Mo7—O46788.02 (13)
O12—Mo1—O12473.97 (11)O7A—Mo7—O467164.99 (14)
O13—Mo1—O12483.74 (11)O67—Mo7—O46773.65 (11)
O1M4—Mo1—O12470.99 (10)O57—Mo7—O46784.44 (11)
O1A—Mo1—Mo388.18 (11)O2M4—Mo7—O46771.16 (10)
O1B—Mo1—Mo3126.50 (11)O7B—Mo7—Mo5127.59 (11)
O12—Mo1—Mo3126.89 (9)O7A—Mo7—Mo588.33 (11)
O13—Mo1—Mo334.13 (9)O67—Mo7—Mo5126.26 (9)
O1M4—Mo1—Mo341.71 (7)O57—Mo7—Mo534.08 (9)
O124—Mo1—Mo387.15 (7)O2M4—Mo7—Mo541.66 (7)
O2A—Mo2—O2B104.26 (15)O467—Mo7—Mo587.32 (7)
O2A—Mo2—O1299.18 (14)Mo2—O12—Mo1114.96 (15)
O2B—Mo2—O12100.77 (14)Mo3—O13—Mo1110.45 (14)
O2A—Mo2—O2599.57 (14)Mo3—O1M4—Mo697.06 (11)
O2B—Mo2—O2590.51 (14)Mo3—O1M4—Mo195.78 (11)
O12—Mo2—O25154.96 (12)Mo6—O1M4—Mo1150.49 (15)
O2A—Mo2—O2M495.94 (13)Mo3—O1M4—Mo4101.69 (12)
O2B—Mo2—O2M4155.53 (13)Mo6—O1M4—Mo4101.69 (11)
O12—Mo2—O2M489.29 (11)Mo1—O1M4—Mo4101.56 (11)
O25—Mo2—O2M472.40 (11)Mo2—O2M4—Mo597.31 (11)
O2A—Mo2—O124166.43 (13)Mo2—O2M4—Mo7151.10 (15)
O2B—Mo2—O12489.00 (13)Mo5—O2M4—Mo795.61 (11)
O12—Mo2—O12475.04 (11)Mo2—O2M4—Mo4101.50 (11)
O25—Mo2—O12482.96 (11)Mo5—O2M4—Mo4101.59 (11)
O2M4—Mo2—O12471.98 (10)Mo7—O2M4—Mo4101.07 (11)
O2A—Mo2—Mo588.60 (11)Mo5—O25—Mo2109.26 (14)
O2B—Mo2—Mo5124.49 (11)Mo3—O36—Mo6109.60 (14)
O12—Mo2—Mo5130.65 (9)Mo5—O57—Mo7110.69 (14)
O25—Mo2—Mo534.02 (8)Mo6—O67—Mo7115.34 (15)
O2M4—Mo2—Mo541.36 (7)Mo4—O124—Mo2109.78 (13)
O124—Mo2—Mo586.20 (7)Mo4—O124—Mo1110.17 (12)
O3B—Mo3—O3A104.96 (16)Mo2—O124—Mo190.79 (10)
O3B—Mo3—O3698.70 (15)Mo4—O467—Mo6109.92 (13)
O3A—Mo3—O36103.26 (14)Mo4—O467—Mo7110.30 (13)
O3B—Mo3—O1398.61 (14)Mo6—O467—Mo791.11 (10)
O3A—Mo3—O1398.55 (14)N31—C1—N21120.9 (5)
O36—Mo3—O13147.48 (12)N31—C1—N11118.1 (5)
O3B—Mo3—O1M4104.31 (14)N21—C1—N11120.9 (5)
O3A—Mo3—O1M4150.60 (13)N32—C2—N12120.0 (4)
O36—Mo3—O1M474.87 (11)N32—C2—N22120.1 (4)
O13—Mo3—O1M474.28 (11)N12—C2—N22119.8 (4)
O3B—Mo3—Mo191.43 (11)N13—C3—N33119.9 (4)
O3A—Mo3—Mo1133.64 (11)N13—C3—N23120.1 (4)
O36—Mo3—Mo1116.92 (9)N33—C3—N23120.0 (4)
O13—Mo3—Mo135.43 (9)N14—C4—N34120.1 (4)
O1M4—Mo3—Mo142.52 (7)N14—C4—N24119.8 (4)
O3B—Mo3—Mo692.46 (12)N34—C4—N24120.1 (5)
O3A—Mo3—Mo6138.95 (11)N15—C5—N35120.1 (4)
O36—Mo3—Mo636.46 (9)N15—C5—N25119.3 (4)
O13—Mo3—Mo6115.49 (9)N35—C5—N25120.6 (4)
O1M4—Mo3—Mo641.57 (7)N16—C6—N36120.1 (4)
Mo1—Mo3—Mo681.340 (13)N16—C6—N26121.2 (4)
O34—Mo4—O45104.71 (17)N36—C6—N26118.6 (4)
O34—Mo4—O124101.08 (13)C1—N11—H11A120.0
O45—Mo4—O124100.86 (13)C1—N11—H11B120.0
O34—Mo4—O467101.26 (13)H11A—N11—H11B120.0
O45—Mo4—O467101.58 (13)C2—N12—H12A120.0
O124—Mo4—O467142.93 (14)C2—N12—H12B120.0
O34—Mo4—O1M483.76 (13)H12A—N12—H12B120.0
O45—Mo4—O1M4171.52 (13)C3—N13—H13A120.0
O124—Mo4—O1M476.79 (11)C3—N13—H13B120.0
O467—Mo4—O1M476.67 (11)H13A—N13—H13B120.0
O34—Mo4—O2M4171.58 (12)C4—N14—H14A120.0
O45—Mo4—O2M483.71 (12)C4—N14—H14B120.0
O124—Mo4—O2M476.66 (11)H14A—N14—H14B120.0
O467—Mo4—O2M476.92 (11)C5—N15—H15A120.0
O1M4—Mo4—O2M487.82 (11)C5—N15—H15B120.0
O5B—Mo5—O5A104.80 (16)H15A—N15—H15B120.0
O5B—Mo5—O2598.17 (14)C6—N16—H16A120.0
O5A—Mo5—O25102.93 (14)C6—N16—H16B120.0
O5B—Mo5—O5798.72 (14)H16A—N16—H16B120.0
O5A—Mo5—O5799.06 (15)C1—N21—H21A120.0
O25—Mo5—O57147.72 (12)C1—N21—H21B120.0
O5B—Mo5—O2M4103.37 (13)H21A—N21—H21B120.0
O5A—Mo5—O2M4151.75 (13)C2—N22—H22A120.0
O25—Mo5—O2M474.91 (11)C2—N22—H22B120.0
O57—Mo5—O2M474.52 (11)H22A—N22—H22B120.0
O5B—Mo5—Mo791.35 (11)C3—N23—H23A120.0
O5A—Mo5—Mo7134.00 (11)C3—N23—H23B120.0
O25—Mo5—Mo7117.25 (9)H23A—N23—H23B120.0
O57—Mo5—Mo735.23 (9)C4—N24—H24A120.0
O2M4—Mo5—Mo742.73 (7)C4—N24—H24B120.0
O5B—Mo5—Mo291.60 (11)H24A—N24—H24B120.0
O5A—Mo5—Mo2139.02 (11)C5—N25—H25A120.0
O25—Mo5—Mo236.72 (9)C5—N25—H25B120.0
O57—Mo5—Mo2115.50 (9)H25A—N25—H25B120.0
O2M4—Mo5—Mo241.33 (7)C6—N26—H26A120.0
Mo7—Mo5—Mo281.460 (12)C6—N26—H26B120.0
O6A—Mo6—O6B105.22 (15)H26A—N26—H26B120.0
O6A—Mo6—O6799.29 (14)C1—N31—H31A120.0
O6B—Mo6—O67100.69 (14)C1—N31—H31B120.0
O6A—Mo6—O3699.78 (15)H31A—N31—H31B120.0
O6B—Mo6—O3691.00 (14)C2—N32—H32A120.0
O67—Mo6—O36154.12 (12)C2—N32—H32B120.0
O6A—Mo6—O1M495.27 (14)H32A—N32—H32B120.0
O6B—Mo6—O1M4155.62 (14)C3—N33—H33A120.0
O67—Mo6—O1M488.66 (12)C3—N33—H33B120.0
O36—Mo6—O1M472.31 (11)H33A—N33—H33B120.0
O6A—Mo6—O467165.28 (13)C4—N34—H34A120.0
O6B—Mo6—O46789.13 (13)C4—N34—H34B120.0
O67—Mo6—O46774.30 (11)H34A—N34—H34B120.0
O36—Mo6—O46782.95 (11)C5—N35—H35A120.0
O1M4—Mo6—O46771.64 (10)C5—N35—H35B120.0
O6A—Mo6—Mo388.34 (12)H35A—N35—H35B120.0
O6B—Mo6—Mo3124.90 (11)C6—N36—H36A120.0
O67—Mo6—Mo3130.03 (9)C6—N36—H36B120.0
O36—Mo6—Mo333.93 (8)H36A—N36—H36B120.0
O1M4—Mo6—Mo341.37 (7)H1OW—O1W—H2OW105.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···O1W0.881.902.765 (6)168
N11—H11B···O3A0.882.353.091 (6)142
N12—H12A···O2Ai0.882.002.845 (5)160
N12—H12B···O5B0.882.142.903 (5)145
N13—H13A···O6Aii0.881.962.828 (5)169
N13—H13B···O3B0.882.232.930 (5)136
N14—H14B···O130.881.932.774 (4)159
N14—H14A···O57iii0.881.982.814 (4)159
N15—H15A···O2Biv0.882.032.843 (5)153
N15—H15B···O3Av0.882.132.866 (5)141
N15—H15B···O34v0.882.623.302 (5)135
N16—H16B···O1Aii0.882.132.967 (5)159
N16—H16A···O45vi0.882.182.977 (5)151
N21—H21A···O1Bvi0.882.183.006 (5)156
N21—H21A···O2Bvi0.882.402.926 (5)118
N21—H21B···O3A0.882.222.992 (5)147
N22—H22A···O36vii0.882.323.087 (5)145
N22—H22A···O467vii0.882.503.216 (5)139
N22—H22A···O6Bvii0.882.643.290 (5)131
N22—H22B···O250.882.102.977 (5)177
N23—H23A···O360.882.072.937 (5)169
N23—H23B···O25vi0.882.263.023 (5)145
N23—H23B···O124vi0.882.503.219 (5)140
N24—H24A···O130.882.453.154 (5)137
N24—H24A···O3A0.882.503.186 (5)135
N24—H24B···O12viii0.882.092.855 (5)145
N25—H25A···O34v0.882.222.990 (5)146
N25—H25B···O7Aiii0.882.082.931 (5)162
N26—H26A···O3Bii0.881.982.859 (5)175
N26—H26B···O1Wii0.882.503.084 (6)124
N26—H26B···O6A0.882.573.197 (5)129
N31—H31A···O1Bvi0.882.503.248 (6)143
N31—H31B···O5Aix0.882.383.188 (6)152
N32—H32A···N34x0.882.503.242 (6)143
N32—H32B···O467vii0.882.022.864 (5)160
N33—H33A···N24vi0.882.603.334 (6)142
N33—H33B···O124vi0.882.022.867 (5)160
N34—H34B···O67viii0.881.942.776 (5)157
N34—H34A···O57iii0.882.443.154 (5)139
N34—H34A···O5Aiii0.882.553.195 (5)131
N35—H35A···O2Aiv0.882.293.040 (5)144
N35—H35B···O5Biii0.881.982.849 (5)170
N36—H36A···O5Avi0.882.162.913 (5)144
N36—H36B···O6B0.882.132.868 (5)141
O1W—H1OW···O6Biii0.862.222.948 (5)142.0
O1W—H1OW···O7Biii0.862.443.086 (5)132.8
O1W—H2OW···O5Aix0.862.352.973 (5)129.6
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x1, y, z; (iv) x, y, z; (v) x, y1/2, z+1/2; (vi) x, y+1/2, z+1/2; (vii) x, y+1/2, z1/2; (viii) x, y+1/2, z+1/2; (ix) x1, y+1/2, z+1/2; (x) x+1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula(CH6N3)6[Mo7O24]·H2O
Mr1434.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)11.9402 (6), 15.9131 (9), 19.8223 (13)
β (°) 92.312 (4)
V3)3763.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.37
Crystal size (mm)0.17 × 0.17 × 0.08
Data collection
DiffractometerBruker X8 APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
APEXII (Bruker, 2005)
Tmin, Tmax0.689, 0.833
No. of measured, independent and
observed [I > 2s(I)] reflections
153838, 15842, 9689
Rint0.150
(sin θ/λ)max1)0.796
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.164, 1.06
No. of reflections15842
No. of parameters506
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.77, 2.33

Computer programs: APEX2 (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···O1W0.881.902.765 (6)167.8
N11—H11B···O3A0.882.353.091 (6)141.6
N12—H12A···O2Ai0.882.002.845 (5)160.3
N12—H12B···O5B0.882.142.903 (5)145.2
N13—H13A···O6Aii0.881.962.828 (5)169.3
N13—H13B···O3B0.882.232.930 (5)135.7
N14—H14B···O130.881.932.774 (4)158.9
N14—H14A···O57iii0.881.982.814 (4)158.6
N15—H15A···O2Biv0.882.032.843 (5)152.9
N15—H15B···O3Av0.882.132.866 (5)140.7
N15—H15B···O34v0.882.623.302 (5)135.1
N16—H16B···O1Aii0.882.132.967 (5)158.5
N16—H16A···O45vi0.882.182.977 (5)150.9
N21—H21A···O1Bvi0.882.183.006 (5)156.4
N21—H21A···O2Bvi0.882.402.926 (5)118.4
N21—H21B···O3A0.882.222.992 (5)146.5
N22—H22A···O36vii0.882.323.087 (5)145.3
N22—H22A···O467vii0.882.503.216 (5)139.4
N22—H22A···O6Bvii0.882.643.290 (5)131.2
N22—H22B···O250.882.102.977 (5)176.5
N23—H23A···O360.882.072.937 (5)169.3
N23—H23B···O25vi0.882.263.023 (5)145.4
N23—H23B···O124vi0.882.503.219 (5)139.6
N24—H24A···O130.882.453.154 (5)136.9
N24—H24A···O3A0.882.503.186 (5)134.8
N24—H24B···O12viii0.882.092.855 (5)145.0
N25—H25A···O34v0.882.222.990 (5)145.9
N25—H25B···O7Aiii0.882.082.931 (5)162.2
N26—H26A···O3Bii0.881.982.859 (5)175.0
N26—H26B···O1Wii0.882.503.084 (6)124.2
N26—H26B···O6A0.882.573.197 (5)129.4
N31—H31A···O1Bvi0.882.503.248 (6)142.8
N31—H31B···O5Aix0.882.383.188 (6)152.4
N32—H32A···N34x0.882.503.242 (6)142.9
N32—H32B···O467vii0.882.022.864 (5)159.9
N33—H33A···N24vi0.882.603.334 (6)141.7
N33—H33B···O124vi0.882.022.867 (5)160.2
N34—H34B···O67viii0.881.942.776 (5)157.4
N34—H34A···O57iii0.882.443.154 (5)138.8
N34—H34A···O5Aiii0.882.553.195 (5)131.2
N35—H35A···O2Aiv0.882.293.040 (5)143.7
N35—H35B···O5Biii0.881.982.849 (5)169.5
N36—H36A···O5Avi0.882.162.913 (5)143.5
N36—H36B···O6B0.882.132.868 (5)140.5
O1W—H1OW···O6Biii0.862.222.948 (5)142.0
O1W—H1OW···O7Biii0.862.443.086 (5)132.8
O1W—H2OW···O5Aix0.862.352.973 (5)129.6
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x1, y, z; (iv) x, y, z; (v) x, y1/2, z+1/2; (vi) x, y+1/2, z+1/2; (vii) x, y+1/2, z1/2; (viii) x, y+1/2, z+1/2; (ix) x1, y+1/2, z+1/2; (x) x+1, y+1/2, z1/2.
 

Acknowledgements

SR thanks Gobierno Vasco/Eusko Jaurlaritza for his postdoctoral fellowship.

References

First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDon, A. & Weakley, T. J. R. (1981). Acta Cryst. B37, 451–453.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKortz, U. & Pope, M. T. (1995). Acta Cryst. C51, 1717–1719.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPope, M. T. (1983). Heteropoly and Isopoly Oxometalates. Berlin: Springer–Verlag.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m614-m615
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds