metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(benzo-15-crown-5-κ5O)strontium bis­­(triiodide)

aInstitut für Anorganische Chemie, Universität zu Köln, Greinstrasse 6, D-50939 Köln, Germany
*Correspondence e-mail: ac118@uni-koeln.de

(Received 23 April 2008; accepted 28 April 2008; online 30 April 2008)

The title compound, [Sr(C14H20O5)2](I3)2, obtained by slow evaporation of an ethanol/dichloro­methane solution (1:1) of SrCl2, benzo-15-crown-5 and I2, is built of sandwich-like [Sr(benzo-15-crown-5)2]2+ cations and isolated linear I3 anions which are arranged in alternating layers parallel to (010). The triiodide anions are located in general positions, whereas the cations are located on centres of inversion.

Related literature

For related literature, see: Pantenburg et al. (2002[Pantenburg, I., Hohn, F. & Tebbe, K.-F. (2002). Z. Anorg. Allg. Chem. 628, 383-388.]); Walbaum et al. (2007[Walbaum, C., Pantenburg, I. & Meyer, G. (2007). Z. Anorg. Allg. Chem. 633, 1609-1617.]) and references cited therein. For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Sr(C14H20O5)2](I3)2

  • Mr = 1385.62

  • Monoclinic, P 21 /n

  • a = 12.0127 (17) Å

  • b = 12.8666 (12) Å

  • c = 13.085 (2) Å

  • β = 90.245 (18)°

  • V = 2022.5 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.96 mm−1

  • T = 293 (2) K

  • 0.2 × 0.2 × 0.15 mm

Data collection
  • Stoe IPDS-I diffractometer

  • Absorption correction: numerical [X-RED (Stoe & Cie, 2001[Stoe & Cie (2001). X-RED. Stoe & Cie, Darmstadt, Germany.]); after optimizing the crystal shape using X-SHAPE (Stoe & Cie, 1999[Stoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany.])] Tmin = 0.393, Tmax = 0.465

  • 18994 measured reflections

  • 4869 independent reflections

  • 1779 reflections with I > 2σ(I)

  • Rint = 0.124

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.069

  • S = 0.71

  • 4869 reflections

  • 207 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Selected geometric parameters (Å, °)

I2—I1 2.8754 (13)
I2—I3 2.9210 (13)
Sr1—O13 2.679 (5)
Sr1—O13i 2.679 (5)
Sr1—O4 2.682 (5)
Sr1—O4i 2.682 (5)
Sr1—O1 2.691 (5)
Sr1—O1i 2.691 (5)
Sr1—O7i 2.706 (5)
Sr1—O7 2.706 (5)
Sr1—O10i 2.778 (5)
Sr1—O10 2.778 (5)
I1—I2—I3 177.54 (4)
Symmetry code: (i) -x+2, -y, -z+2.

Data collection: IPDS (Stoe & Cie, 1996[Stoe & Cie (1996). IPDS. Stoe & Cie, Darmstadt, Germany.]); cell refinement: IPDS; data reduction: IPDS; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2004[Brandenburg, K. (2004). DIAMOND. Bonn, Germany.]); software used to prepare material for publication: CIF-Editor (Wieczorrek, 2004[Wieczorrek, C. (2004). CIF-Editor. Universität zu Köln, Germany.]).

Supporting information


Comment top

Polyiodide anions are synthesized by the addition of elemental iodine to iodide ions and can be incorporated into crystalline solids in the presence of suitable cations. They show considerable diversity in I - I bond lengths, covering the whole range between a strongly covalent bond and the sum of the van der Waals radii of two iodine atoms. However, the bond lengths are never uniform. As a consequence, the structural diversity of polyiodide ions is remarkably high. To date, no systematic procedure for the synthesis and crystallization of iodine-rich polyiodides is known, and this remains the ultimate goal of our work. We try to control the structures and composition of polyiodide matrices by variation of the shape, charge and size of the corresponding cations. In previous work, we have shown that bulky low-charged cations of the general formula [M(crown-ether)]x+ (where M is an element of group 1 or 2, or a rare earth-metal, crown-ether is benzo-18-crown-6, benzo-15-crown-5 or dibenzo-18-crown-6 and x = 1, 2 or 3) positively influence the stabilitity of polyiodides in the solid state (Walbaum et al., 2007).

[Sr(benzo-15-crown-5)2](I3)2 is isotypic with the respective Ba compound (Pantenburg et al., 2002). The Sr2+ ion (2a; 1,0,1) is located slightly above the centre of two benzo-15-crown ligands and coordinated in a sandwich-like manner by ten O atoms. The Sr—O distances vary between 2.679 (5) Å and 2.778 (5) Å (Table 1). Distances and angles within the crown-ether moiety are in good agreement with published data [mean values from the Cambridge Structural Database (Allen, 2002): CH2—O = 1.43 (3) Å, CH2—CH2 = 1.51 (2) Å, O—CH2—CH2 = 108.9 (13)°, CH2—O—CH2 = 111.4 (10)°]. The triiodide anion is almost symmetrical (I1—I2 = 2.8754 (13) Å, I2—I3 = 2.9210 (13) Å) and only slightly angular (I1—I2—I3 = 177.54 (4)°).

Although polyiodide ions tend to form even larger arrays through weak attractions between the anions, the shortest distance between the triiodide anions in [Sr(benzo-15-crown-5)2](I3)2 is 4.6623 (19) Å (I2—I1i; (i) = -x + 2, -y + 1, -z + 2) (Fig. 2). Thus, the anions may be considered as isolated. Distances between the [Sr(benzo-15-crown-5)2]2+ cations and the anions are also rather large, beginning with (I—H) = 3.138 (1) Å, (I—C) = 3.872 (9) Å, and (I—O) = 3.896 (5) Å.

Related literature top

For related literature, see: Pantenburg et al. (2002); Walbaum et al. (2007) and references cited therein. For bond-length, see: Allen et al. (1987). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

[Sr(benzo-15-crown-5)2](I3)2 was prepared by dissolving SrCl2 (0.05 g, 0.3 mmol), C14H20O5 (0.08 g, 0.3 mmol), and I2 (0.08 g, 0.3 mmol) in ethanol/dichloromethane (1:1) (40 ml). Red crystals were obtained after a few days by slow evaporation of the solvent under ambient conditions.

Refinement top

The H atom were placed in idealized positions and constrained to ride on their parent atom, with C(ar)—H distances of 0.930 Å and Uiso(H) values of 0.081 Å2 and C(al)—H distances of 0.970 Å and Uiso(H) values of 0.092 Å2.

Computing details top

Data collection: IPDS (Stoe & Cie, 1996); cell refinement: IPDS (Stoe & Cie, 1996); data reduction: IPDS (Stoe & Cie, 1996); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: CIF-Editor (Wieczorrek, 2004).

Figures top
[Figure 1] Fig. 1. The structure of [Sr(benzo-15-crown-5)2](I3)2, showing the atom-numbering scheme and 50% probability displacement ellipsoids. Dashed lines denote Sr—O contacts. H atoms are omitted for clarity. Symmetry code: (i) = -x + 2, -y, -z + 2.
[Figure 2] Fig. 2. A projection of the structure of [Sr(benzo-15-crown-5)2](I3)2 along the ab plane. Hydrogen atoms are omitted for clarity.
Bis(1,4,7,10,13-pentaoxa[13]orthocyclophane)strontium bis(triiodide) top
Crystal data top
[Sr(C14H20O5)2](I3)2F(000) = 1288
Mr = 1385.62Dx = 2.275 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1765 reflections
a = 12.0127 (17) Åθ = 2.8–28.1°
b = 12.8666 (12) ŵ = 5.96 mm1
c = 13.085 (2) ÅT = 293 K
β = 90.245 (18)°Polyhedron, red
V = 2022.5 (5) Å30.2 × 0.2 × 0.15 mm
Z = 2
Data collection top
Stoe IPDS-I
diffractometer
4869 independent reflections
Radiation source: fine-focus sealed tube1779 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.124
Detector resolution: not measured pixels mm-1θmax = 28.1°, θmin = 2.8°
ϕ scansh = 1515
Absorption correction: numerical
[X-RED (Stoe & Cie, 2001); after optimizing the crystal shape using X-SHAPE (Stoe & Cie, 1999)]
k = 1617
Tmin = 0.393, Tmax = 0.465l = 1717
18994 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 0.71 w = 1/[σ2(Fo2) + (0.0175P)2]
where P = (Fo2 + 2Fc2)/3
4869 reflections(Δ/σ)max = 0.001
207 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
[Sr(C14H20O5)2](I3)2V = 2022.5 (5) Å3
Mr = 1385.62Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.0127 (17) ŵ = 5.96 mm1
b = 12.8666 (12) ÅT = 293 K
c = 13.085 (2) Å0.2 × 0.2 × 0.15 mm
β = 90.245 (18)°
Data collection top
Stoe IPDS-I
diffractometer
4869 independent reflections
Absorption correction: numerical
[X-RED (Stoe & Cie, 2001); after optimizing the crystal shape using X-SHAPE (Stoe & Cie, 1999)]
1779 reflections with I > 2σ(I)
Tmin = 0.393, Tmax = 0.465Rint = 0.124
18994 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 0.71Δρmax = 0.54 e Å3
4869 reflectionsΔρmin = 0.72 e Å3
207 parameters
Special details top

Experimental. A suitable single-crystal was carefully selected under a polarizing microscope and mounted in a glass capillary. The scattering intensities were collected on an imaging plate diffractometer (IPDS I, Stoe & Cie) equipped with a fine focus sealed tube X-ray source (Mo Kα, λ = 0.71073 Å) operating at 50 kV and 40 mA. Intensity data for the title compound were collected at room temperature by ϕ-scans in 100 frames (0 < ϕ < 200°, Δϕ = 2°, exposure time of 7 min) in the 2 Θ range 3.8 to 56.3°. Structure solution and refinement were carried out using the programs SIR92 (Altomare et al., 1993) and SHELXL97 (Sheldrick, 1997). A numerical absorption correction (X-RED (Stoe & Cie, 2001) was applied after optimization of the crystal shape (X-SHAPE (Stoe & Cie, 1999)). The last cycles of refinement included atomic positions for all atoms, anisotropic parameters for all non-hydrogen atoms and isotropic thermal parameters for all hydrogen atoms. The final difference maps were free of any chemically significant features. The refinement was based on F2 for ALL reflections.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I21.13518 (5)0.42408 (4)1.15064 (4)0.05056 (16)
I31.05971 (6)0.38042 (5)1.35816 (5)0.0757 (2)
I11.21912 (7)0.46748 (4)0.94966 (5)0.0820 (2)
Sr11.00000.00001.00000.0349 (3)
O101.1629 (5)0.1317 (4)1.0776 (4)0.0519 (15)
O41.1188 (5)0.1460 (4)0.9031 (4)0.0641 (17)
O71.1714 (4)0.0601 (4)0.8803 (4)0.0541 (15)
O131.0602 (4)0.0068 (4)1.1973 (3)0.0508 (14)
O11.0583 (5)0.1762 (3)1.0971 (4)0.0479 (14)
C191.0374 (6)0.1842 (5)1.1998 (6)0.040 (2)
C21.0947 (9)0.2637 (6)1.0413 (7)0.074 (3)
H2A1.14440.30491.08360.092 (8)*
H2B1.03110.30651.02340.092 (8)*
C31.1501 (10)0.2336 (7)0.9523 (8)0.092 (4)
H3A1.22840.22650.96930.092 (8)*
H3B1.14390.29050.90400.092 (8)*
C141.0380 (6)0.0936 (5)1.2541 (6)0.0406 (19)
C91.2562 (8)0.1596 (7)1.0116 (7)0.066 (3)
H9A1.28340.22831.02930.092 (8)*
H9B1.31660.11041.02100.092 (8)*
C121.1048 (7)0.0853 (5)1.2453 (6)0.048 (2)
H12A1.13090.06931.31380.092 (8)*
H12B1.04780.13851.25000.092 (8)*
C111.1984 (7)0.1221 (6)1.1812 (6)0.054 (2)
H11A1.22440.18891.20610.092 (8)*
H11B1.25970.07321.18560.092 (8)*
C81.2194 (8)0.1583 (6)0.9073 (7)0.064 (3)
H8A1.16460.21270.89690.092 (8)*
H8B1.28200.17240.86290.092 (8)*
C61.2505 (7)0.0175 (7)0.8513 (7)0.065 (3)
H6A1.30050.03230.90790.092 (8)*
H6B1.29440.00680.79400.092 (8)*
C51.1885 (8)0.1121 (6)0.8224 (7)0.070 (3)
H5A1.14340.09800.76230.092 (8)*
H5B1.24070.16690.80540.092 (8)*
C181.0111 (7)0.2778 (6)1.2495 (6)0.048 (2)
H181.00870.34001.21340.081 (15)*
C151.0124 (7)0.0933 (6)1.3557 (6)0.056 (2)
H151.01190.03091.39150.081 (15)*
C160.9875 (8)0.1844 (7)1.4055 (7)0.064 (3)
H160.96980.18371.47460.081 (15)*
C170.9890 (7)0.2757 (7)1.3526 (8)0.063 (3)
H170.97480.33771.38680.081 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I20.0578 (4)0.0404 (3)0.0535 (3)0.0024 (3)0.0036 (3)0.0060 (2)
I30.0831 (5)0.0782 (4)0.0659 (4)0.0055 (4)0.0195 (4)0.0070 (3)
I10.1280 (7)0.0605 (4)0.0576 (4)0.0092 (4)0.0162 (4)0.0063 (3)
Sr10.0393 (7)0.0292 (5)0.0362 (6)0.0017 (5)0.0024 (5)0.0010 (4)
O100.058 (4)0.048 (3)0.049 (4)0.011 (3)0.013 (3)0.003 (3)
O40.074 (5)0.047 (3)0.072 (4)0.022 (3)0.026 (4)0.015 (3)
O70.045 (4)0.046 (3)0.072 (4)0.006 (3)0.014 (3)0.007 (3)
O130.074 (4)0.042 (3)0.037 (3)0.012 (3)0.004 (3)0.003 (2)
O10.070 (4)0.037 (3)0.037 (3)0.009 (3)0.001 (3)0.003 (2)
C190.035 (5)0.038 (4)0.048 (5)0.005 (4)0.008 (4)0.000 (4)
C20.108 (9)0.035 (5)0.078 (7)0.023 (5)0.022 (6)0.005 (5)
C30.138 (11)0.064 (6)0.074 (7)0.023 (6)0.043 (7)0.006 (6)
C140.036 (5)0.039 (5)0.047 (5)0.009 (4)0.002 (4)0.006 (4)
C90.059 (7)0.075 (6)0.064 (7)0.018 (5)0.020 (6)0.020 (5)
C120.060 (6)0.042 (4)0.041 (5)0.009 (4)0.004 (4)0.007 (4)
C110.064 (7)0.037 (4)0.062 (6)0.009 (4)0.017 (5)0.003 (4)
C80.053 (7)0.056 (6)0.084 (7)0.012 (5)0.007 (6)0.008 (5)
C60.058 (7)0.073 (6)0.064 (6)0.000 (5)0.010 (5)0.006 (5)
C50.079 (7)0.060 (5)0.071 (6)0.005 (5)0.032 (6)0.004 (5)
C180.051 (6)0.041 (5)0.052 (6)0.004 (4)0.002 (5)0.010 (4)
C150.053 (6)0.062 (6)0.054 (6)0.008 (4)0.007 (5)0.005 (5)
C160.065 (7)0.080 (7)0.045 (6)0.000 (5)0.006 (5)0.018 (5)
C170.049 (6)0.062 (6)0.078 (7)0.002 (5)0.000 (5)0.037 (5)
Geometric parameters (Å, º) top
I2—I12.8754 (13)C2—H2B0.9700
I2—I32.9210 (13)C3—H3A0.9700
Sr1—O132.679 (5)C3—H3B0.9700
Sr1—O13i2.679 (5)C14—C151.365 (10)
Sr1—O42.682 (5)C9—C81.434 (11)
Sr1—O4i2.682 (5)C9—H9A0.9700
Sr1—O12.691 (5)C9—H9B0.9700
Sr1—O1i2.691 (5)C12—C111.483 (10)
Sr1—O7i2.706 (5)C12—H12A0.9700
Sr1—O72.706 (5)C12—H12B0.9700
Sr1—O10i2.778 (5)C11—H11A0.9700
Sr1—O102.778 (5)C11—H11B0.9700
O10—C111.424 (9)C8—H8A0.9700
O10—C91.463 (10)C8—H8B0.9700
O4—C31.350 (10)C6—C51.475 (11)
O4—C51.418 (9)C6—H6A0.9700
O7—C61.431 (9)C6—H6B0.9700
O7—C81.431 (9)C5—H5A0.9700
O13—C141.369 (8)C5—H5B0.9700
O13—C121.443 (8)C18—C171.377 (11)
O1—C191.371 (8)C18—H180.9300
O1—C21.411 (8)C15—C161.374 (10)
C19—C141.365 (9)C15—H150.9300
C19—C181.405 (9)C16—C171.364 (11)
C2—C31.399 (11)C16—H160.9300
C2—H2A0.9700C17—H170.9300
I1—I2—I3177.54 (4)C3—C2—O1111.1 (7)
O13—Sr1—O13i180.0C3—C2—H2A109.4
O13—Sr1—O4106.92 (17)O1—C2—H2A109.4
O13i—Sr1—O473.08 (17)C3—C2—H2B109.4
O13—Sr1—O4i73.08 (17)O1—C2—H2B109.4
O13i—Sr1—O4i106.92 (17)H2A—C2—H2B108.0
O4—Sr1—O4i180.000 (1)O4—C3—C2119.7 (8)
O13—Sr1—O156.56 (14)O4—C3—H3A107.4
O13i—Sr1—O1123.44 (15)C2—C3—H3A107.4
O4—Sr1—O159.66 (16)O4—C3—H3B107.4
O4i—Sr1—O1120.34 (16)C2—C3—H3B107.4
O13—Sr1—O1i123.44 (15)H3A—C3—H3B106.9
O13i—Sr1—O1i56.56 (14)C15—C14—C19120.6 (7)
O4—Sr1—O1i120.34 (16)C15—C14—O13124.8 (7)
O4i—Sr1—O1i59.66 (16)C19—C14—O13114.5 (7)
O1—Sr1—O1i180.000 (1)C8—C9—O10109.0 (7)
O13—Sr1—O7i68.65 (16)C8—C9—H9A109.9
O13i—Sr1—O7i111.35 (16)O10—C9—H9A109.9
O4—Sr1—O7i118.78 (16)C8—C9—H9B109.9
O4i—Sr1—O7i61.22 (16)O10—C9—H9B109.9
O1—Sr1—O7i71.51 (16)H9A—C9—H9B108.3
O1i—Sr1—O7i108.49 (16)O13—C12—C11107.3 (6)
O13—Sr1—O7111.35 (16)O13—C12—H12A110.3
O13i—Sr1—O768.65 (16)C11—C12—H12A110.3
O4—Sr1—O761.22 (16)O13—C12—H12B110.3
O4i—Sr1—O7118.78 (16)C11—C12—H12B110.3
O1—Sr1—O7108.49 (16)H12A—C12—H12B108.5
O1i—Sr1—O771.51 (16)O10—C11—C12110.0 (7)
O7i—Sr1—O7180.0O10—C11—H11A109.7
O13—Sr1—O10i121.28 (15)C12—C11—H11A109.7
O13i—Sr1—O10i58.72 (15)O10—C11—H11B109.7
O4—Sr1—O10i77.00 (18)C12—C11—H11B109.7
O4i—Sr1—O10i103.00 (18)H11A—C11—H11B108.2
O1—Sr1—O10i80.80 (16)O7—C8—C9111.6 (7)
O1i—Sr1—O10i99.20 (16)O7—C8—H8A109.3
O7i—Sr1—O10i60.03 (17)C9—C8—H8A109.3
O7—Sr1—O10i119.97 (17)O7—C8—H8B109.3
O13—Sr1—O1058.72 (15)C9—C8—H8B109.3
O13i—Sr1—O10121.28 (15)H8A—C8—H8B108.0
O4—Sr1—O10103.00 (18)O7—C6—C5108.0 (7)
O4i—Sr1—O1077.00 (18)O7—C6—H6A110.1
O1—Sr1—O1099.20 (16)C5—C6—H6A110.1
O1i—Sr1—O1080.80 (16)O7—C6—H6B110.1
O7i—Sr1—O10119.97 (17)C5—C6—H6B110.1
O7—Sr1—O1060.03 (17)H6A—C6—H6B108.4
O10i—Sr1—O10180.00 (17)O4—C5—C6111.3 (7)
C11—O10—C9110.9 (6)O4—C5—H5A109.4
C11—O10—Sr1120.1 (4)C6—C5—H5A109.4
C9—O10—Sr1118.3 (4)O4—C5—H5B109.4
C3—O4—C5116.6 (7)C6—C5—H5B109.4
C3—O4—Sr1120.4 (5)H5A—C5—H5B108.0
C5—O4—Sr1116.9 (4)C17—C18—C19118.9 (8)
C6—O7—C8114.5 (6)C17—C18—H18120.6
C6—O7—Sr1117.5 (4)C19—C18—H18120.6
C8—O7—Sr1114.6 (4)C14—C15—C16120.6 (8)
C14—O13—C12120.4 (5)C14—C15—H15119.7
C14—O13—Sr1119.8 (4)C16—C15—H15119.7
C12—O13—Sr1119.4 (4)C17—C16—C15119.4 (8)
C19—O1—C2120.4 (6)C17—C16—H16120.3
C19—O1—Sr1118.5 (4)C15—C16—H16120.3
C2—O1—Sr1120.5 (5)C16—C17—C18121.1 (8)
C14—C19—O1116.5 (6)C16—C17—H17119.5
C14—C19—C18119.4 (7)C18—C17—H17119.5
O1—C19—C18124.1 (7)
Symmetry code: (i) x+2, y, z+2.

Experimental details

Crystal data
Chemical formula[Sr(C14H20O5)2](I3)2
Mr1385.62
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.0127 (17), 12.8666 (12), 13.085 (2)
β (°) 90.245 (18)
V3)2022.5 (5)
Z2
Radiation typeMo Kα
µ (mm1)5.96
Crystal size (mm)0.2 × 0.2 × 0.15
Data collection
DiffractometerStoe IPDS-I
diffractometer
Absorption correctionNumerical
[X-RED (Stoe & Cie, 2001); after optimizing the crystal shape using X-SHAPE (Stoe & Cie, 1999)]
Tmin, Tmax0.393, 0.465
No. of measured, independent and
observed [I > 2σ(I)] reflections
18994, 4869, 1779
Rint0.124
(sin θ/λ)max1)0.664
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.069, 0.71
No. of reflections4869
No. of parameters207
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.72

Computer programs: IPDS (Stoe & Cie, 1996), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2004), CIF-Editor (Wieczorrek, 2004).

Selected geometric parameters (Å, º) top
I2—I12.8754 (13)Sr1—O12.691 (5)
I2—I32.9210 (13)Sr1—O1i2.691 (5)
Sr1—O132.679 (5)Sr1—O7i2.706 (5)
Sr1—O13i2.679 (5)Sr1—O72.706 (5)
Sr1—O42.682 (5)Sr1—O10i2.778 (5)
Sr1—O4i2.682 (5)Sr1—O102.778 (5)
I1—I2—I3177.54 (4)
Symmetry code: (i) x+2, y, z+2.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L. Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2004). DIAMOND. Bonn, Germany.  Google Scholar
First citationPantenburg, I., Hohn, F. & Tebbe, K.-F. (2002). Z. Anorg. Allg. Chem. 628, 383–388.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1996). IPDS. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2001). X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWalbaum, C., Pantenburg, I. & Meyer, G. (2007). Z. Anorg. Allg. Chem. 633, 1609–1617.  Web of Science CSD CrossRef CAS Google Scholar
First citationWieczorrek, C. (2004). CIF-Editor. Universität zu Köln, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds