metal-organic compounds
Bis(benzo-15-crown-5-κ5O)strontium bis(triiodide)
aInstitut für Anorganische Chemie, Universität zu Köln, Greinstrasse 6, D-50939 Köln, Germany
*Correspondence e-mail: ac118@uni-koeln.de
The title compound, [Sr(C14H20O5)2](I3)2, obtained by slow evaporation of an ethanol/dichloromethane solution (1:1) of SrCl2, benzo-15-crown-5 and I2, is built of sandwich-like [Sr(benzo-15-crown-5)2]2+ cations and isolated linear I3− anions which are arranged in alternating layers parallel to (010). The triiodide anions are located in general positions, whereas the cations are located on centres of inversion.
Related literature
For related literature, see: Pantenburg et al. (2002); Walbaum et al. (2007) and references cited therein. For bond-length data, see: Allen et al. (1987). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: IPDS (Stoe & Cie, 1996); cell IPDS; data reduction: IPDS; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: CIF-Editor (Wieczorrek, 2004).
Supporting information
10.1107/S1600536808012373/nc2102sup1.cif
contains datablocks global_, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808012373/nc2102Isup2.hkl
[Sr(benzo-15-crown-5)2](I3)2 was prepared by dissolving SrCl2 (0.05 g, 0.3 mmol), C14H20O5 (0.08 g, 0.3 mmol), and I2 (0.08 g, 0.3 mmol) in ethanol/dichloromethane (1:1) (40 ml). Red crystals were obtained after a few days by slow evaporation of the solvent under ambient conditions.
The H atom were placed in idealized positions and constrained to ride on their parent atom, with C(ar)—H distances of 0.930 Å and Uiso(H) values of 0.081 Å2 and C(al)—H distances of 0.970 Å and Uiso(H) values of 0.092 Å2.
Data collection: IPDS (Stoe & Cie, 1996); cell
IPDS (Stoe & Cie, 1996); data reduction: IPDS (Stoe & Cie, 1996); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: CIF-Editor (Wieczorrek, 2004).[Sr(C14H20O5)2](I3)2 | F(000) = 1288 |
Mr = 1385.62 | Dx = 2.275 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1765 reflections |
a = 12.0127 (17) Å | θ = 2.8–28.1° |
b = 12.8666 (12) Å | µ = 5.96 mm−1 |
c = 13.085 (2) Å | T = 293 K |
β = 90.245 (18)° | Polyhedron, red |
V = 2022.5 (5) Å3 | 0.2 × 0.2 × 0.15 mm |
Z = 2 |
Stoe IPDS-I diffractometer | 4869 independent reflections |
Radiation source: fine-focus sealed tube | 1779 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.124 |
Detector resolution: not measured pixels mm-1 | θmax = 28.1°, θmin = 2.8° |
ϕ scans | h = −15→15 |
Absorption correction: numerical [X-RED (Stoe & Cie, 2001); after optimizing the crystal shape using X-SHAPE (Stoe & Cie, 1999)] | k = −16→17 |
Tmin = 0.393, Tmax = 0.465 | l = −17→17 |
18994 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.069 | H-atom parameters constrained |
S = 0.71 | w = 1/[σ2(Fo2) + (0.0175P)2] where P = (Fo2 + 2Fc2)/3 |
4869 reflections | (Δ/σ)max = 0.001 |
207 parameters | Δρmax = 0.54 e Å−3 |
0 restraints | Δρmin = −0.72 e Å−3 |
[Sr(C14H20O5)2](I3)2 | V = 2022.5 (5) Å3 |
Mr = 1385.62 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 12.0127 (17) Å | µ = 5.96 mm−1 |
b = 12.8666 (12) Å | T = 293 K |
c = 13.085 (2) Å | 0.2 × 0.2 × 0.15 mm |
β = 90.245 (18)° |
Stoe IPDS-I diffractometer | 4869 independent reflections |
Absorption correction: numerical [X-RED (Stoe & Cie, 2001); after optimizing the crystal shape using X-SHAPE (Stoe & Cie, 1999)] | 1779 reflections with I > 2σ(I) |
Tmin = 0.393, Tmax = 0.465 | Rint = 0.124 |
18994 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.069 | H-atom parameters constrained |
S = 0.71 | Δρmax = 0.54 e Å−3 |
4869 reflections | Δρmin = −0.72 e Å−3 |
207 parameters |
Experimental. A suitable single-crystal was carefully selected under a polarizing microscope and mounted in a glass capillary. The scattering intensities were collected on an imaging plate diffractometer (IPDS I, Stoe & Cie) equipped with a fine focus sealed tube X-ray source (Mo Kα, λ = 0.71073 Å) operating at 50 kV and 40 mA. Intensity data for the title compound were collected at room temperature by ϕ-scans in 100 frames (0 < ϕ < 200°, Δϕ = 2°, exposure time of 7 min) in the 2 Θ range 3.8 to 56.3°. Structure solution and refinement were carried out using the programs SIR92 (Altomare et al., 1993) and SHELXL97 (Sheldrick, 1997). A numerical absorption correction (X-RED (Stoe & Cie, 2001) was applied after optimization of the crystal shape (X-SHAPE (Stoe & Cie, 1999)). The last cycles of refinement included atomic positions for all atoms, anisotropic parameters for all non-hydrogen atoms and isotropic thermal parameters for all hydrogen atoms. The final difference maps were free of any chemically significant features. The refinement was based on F2 for ALL reflections. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I2 | 1.13518 (5) | 0.42408 (4) | 1.15064 (4) | 0.05056 (16) | |
I3 | 1.05971 (6) | 0.38042 (5) | 1.35816 (5) | 0.0757 (2) | |
I1 | 1.21912 (7) | 0.46748 (4) | 0.94966 (5) | 0.0820 (2) | |
Sr1 | 1.0000 | 0.0000 | 1.0000 | 0.0349 (3) | |
O10 | 1.1629 (5) | 0.1317 (4) | 1.0776 (4) | 0.0519 (15) | |
O4 | 1.1188 (5) | −0.1460 (4) | 0.9031 (4) | 0.0641 (17) | |
O7 | 1.1714 (4) | 0.0601 (4) | 0.8803 (4) | 0.0541 (15) | |
O13 | 1.0602 (4) | −0.0068 (4) | 1.1973 (3) | 0.0508 (14) | |
O1 | 1.0583 (5) | −0.1762 (3) | 1.0971 (4) | 0.0479 (14) | |
C19 | 1.0374 (6) | −0.1842 (5) | 1.1998 (6) | 0.040 (2) | |
C2 | 1.0947 (9) | −0.2637 (6) | 1.0413 (7) | 0.074 (3) | |
H2A | 1.1444 | −0.3049 | 1.0836 | 0.092 (8)* | |
H2B | 1.0311 | −0.3065 | 1.0234 | 0.092 (8)* | |
C3 | 1.1501 (10) | −0.2336 (7) | 0.9523 (8) | 0.092 (4) | |
H3A | 1.2284 | −0.2265 | 0.9693 | 0.092 (8)* | |
H3B | 1.1439 | −0.2905 | 0.9040 | 0.092 (8)* | |
C14 | 1.0380 (6) | −0.0936 (5) | 1.2541 (6) | 0.0406 (19) | |
C9 | 1.2562 (8) | 0.1596 (7) | 1.0116 (7) | 0.066 (3) | |
H9A | 1.2834 | 0.2283 | 1.0293 | 0.092 (8)* | |
H9B | 1.3166 | 0.1104 | 1.0210 | 0.092 (8)* | |
C12 | 1.1048 (7) | 0.0853 (5) | 1.2453 (6) | 0.048 (2) | |
H12A | 1.1309 | 0.0693 | 1.3138 | 0.092 (8)* | |
H12B | 1.0478 | 0.1385 | 1.2500 | 0.092 (8)* | |
C11 | 1.1984 (7) | 0.1221 (6) | 1.1812 (6) | 0.054 (2) | |
H11A | 1.2244 | 0.1889 | 1.2061 | 0.092 (8)* | |
H11B | 1.2597 | 0.0732 | 1.1856 | 0.092 (8)* | |
C8 | 1.2194 (8) | 0.1583 (6) | 0.9073 (7) | 0.064 (3) | |
H8A | 1.1646 | 0.2127 | 0.8969 | 0.092 (8)* | |
H8B | 1.2820 | 0.1724 | 0.8629 | 0.092 (8)* | |
C6 | 1.2505 (7) | −0.0175 (7) | 0.8513 (7) | 0.065 (3) | |
H6A | 1.3005 | −0.0323 | 0.9079 | 0.092 (8)* | |
H6B | 1.2944 | 0.0068 | 0.7940 | 0.092 (8)* | |
C5 | 1.1885 (8) | −0.1121 (6) | 0.8224 (7) | 0.070 (3) | |
H5A | 1.1434 | −0.0980 | 0.7623 | 0.092 (8)* | |
H5B | 1.2407 | −0.1669 | 0.8054 | 0.092 (8)* | |
C18 | 1.0111 (7) | −0.2778 (6) | 1.2495 (6) | 0.048 (2) | |
H18 | 1.0087 | −0.3400 | 1.2134 | 0.081 (15)* | |
C15 | 1.0124 (7) | −0.0933 (6) | 1.3557 (6) | 0.056 (2) | |
H15 | 1.0119 | −0.0309 | 1.3915 | 0.081 (15)* | |
C16 | 0.9875 (8) | −0.1844 (7) | 1.4055 (7) | 0.064 (3) | |
H16 | 0.9698 | −0.1837 | 1.4746 | 0.081 (15)* | |
C17 | 0.9890 (7) | −0.2757 (7) | 1.3526 (8) | 0.063 (3) | |
H17 | 0.9748 | −0.3377 | 1.3868 | 0.081 (15)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I2 | 0.0578 (4) | 0.0404 (3) | 0.0535 (3) | −0.0024 (3) | −0.0036 (3) | −0.0060 (2) |
I3 | 0.0831 (5) | 0.0782 (4) | 0.0659 (4) | −0.0055 (4) | 0.0195 (4) | 0.0070 (3) |
I1 | 0.1280 (7) | 0.0605 (4) | 0.0576 (4) | 0.0092 (4) | 0.0162 (4) | 0.0063 (3) |
Sr1 | 0.0393 (7) | 0.0292 (5) | 0.0362 (6) | 0.0017 (5) | −0.0024 (5) | 0.0010 (4) |
O10 | 0.058 (4) | 0.048 (3) | 0.049 (4) | −0.011 (3) | −0.013 (3) | 0.003 (3) |
O4 | 0.074 (5) | 0.047 (3) | 0.072 (4) | 0.022 (3) | 0.026 (4) | 0.015 (3) |
O7 | 0.045 (4) | 0.046 (3) | 0.072 (4) | −0.006 (3) | 0.014 (3) | −0.007 (3) |
O13 | 0.074 (4) | 0.042 (3) | 0.037 (3) | −0.012 (3) | −0.004 (3) | 0.003 (2) |
O1 | 0.070 (4) | 0.037 (3) | 0.037 (3) | 0.009 (3) | 0.001 (3) | −0.003 (2) |
C19 | 0.035 (5) | 0.038 (4) | 0.048 (5) | 0.005 (4) | −0.008 (4) | 0.000 (4) |
C2 | 0.108 (9) | 0.035 (5) | 0.078 (7) | 0.023 (5) | 0.022 (6) | −0.005 (5) |
C3 | 0.138 (11) | 0.064 (6) | 0.074 (7) | 0.023 (6) | 0.043 (7) | 0.006 (6) |
C14 | 0.036 (5) | 0.039 (5) | 0.047 (5) | −0.009 (4) | −0.002 (4) | 0.006 (4) |
C9 | 0.059 (7) | 0.075 (6) | 0.064 (7) | −0.018 (5) | −0.020 (6) | 0.020 (5) |
C12 | 0.060 (6) | 0.042 (4) | 0.041 (5) | −0.009 (4) | −0.004 (4) | −0.007 (4) |
C11 | 0.064 (7) | 0.037 (4) | 0.062 (6) | −0.009 (4) | −0.017 (5) | 0.003 (4) |
C8 | 0.053 (7) | 0.056 (6) | 0.084 (7) | −0.012 (5) | 0.007 (6) | 0.008 (5) |
C6 | 0.058 (7) | 0.073 (6) | 0.064 (6) | 0.000 (5) | 0.010 (5) | −0.006 (5) |
C5 | 0.079 (7) | 0.060 (5) | 0.071 (6) | 0.005 (5) | 0.032 (6) | −0.004 (5) |
C18 | 0.051 (6) | 0.041 (5) | 0.052 (6) | −0.004 (4) | −0.002 (5) | 0.010 (4) |
C15 | 0.053 (6) | 0.062 (6) | 0.054 (6) | −0.008 (4) | 0.007 (5) | 0.005 (5) |
C16 | 0.065 (7) | 0.080 (7) | 0.045 (6) | 0.000 (5) | 0.006 (5) | 0.018 (5) |
C17 | 0.049 (6) | 0.062 (6) | 0.078 (7) | 0.002 (5) | 0.000 (5) | 0.037 (5) |
I2—I1 | 2.8754 (13) | C2—H2B | 0.9700 |
I2—I3 | 2.9210 (13) | C3—H3A | 0.9700 |
Sr1—O13 | 2.679 (5) | C3—H3B | 0.9700 |
Sr1—O13i | 2.679 (5) | C14—C15 | 1.365 (10) |
Sr1—O4 | 2.682 (5) | C9—C8 | 1.434 (11) |
Sr1—O4i | 2.682 (5) | C9—H9A | 0.9700 |
Sr1—O1 | 2.691 (5) | C9—H9B | 0.9700 |
Sr1—O1i | 2.691 (5) | C12—C11 | 1.483 (10) |
Sr1—O7i | 2.706 (5) | C12—H12A | 0.9700 |
Sr1—O7 | 2.706 (5) | C12—H12B | 0.9700 |
Sr1—O10i | 2.778 (5) | C11—H11A | 0.9700 |
Sr1—O10 | 2.778 (5) | C11—H11B | 0.9700 |
O10—C11 | 1.424 (9) | C8—H8A | 0.9700 |
O10—C9 | 1.463 (10) | C8—H8B | 0.9700 |
O4—C3 | 1.350 (10) | C6—C5 | 1.475 (11) |
O4—C5 | 1.418 (9) | C6—H6A | 0.9700 |
O7—C6 | 1.431 (9) | C6—H6B | 0.9700 |
O7—C8 | 1.431 (9) | C5—H5A | 0.9700 |
O13—C14 | 1.369 (8) | C5—H5B | 0.9700 |
O13—C12 | 1.443 (8) | C18—C17 | 1.377 (11) |
O1—C19 | 1.371 (8) | C18—H18 | 0.9300 |
O1—C2 | 1.411 (8) | C15—C16 | 1.374 (10) |
C19—C14 | 1.365 (9) | C15—H15 | 0.9300 |
C19—C18 | 1.405 (9) | C16—C17 | 1.364 (11) |
C2—C3 | 1.399 (11) | C16—H16 | 0.9300 |
C2—H2A | 0.9700 | C17—H17 | 0.9300 |
I1—I2—I3 | 177.54 (4) | C3—C2—O1 | 111.1 (7) |
O13—Sr1—O13i | 180.0 | C3—C2—H2A | 109.4 |
O13—Sr1—O4 | 106.92 (17) | O1—C2—H2A | 109.4 |
O13i—Sr1—O4 | 73.08 (17) | C3—C2—H2B | 109.4 |
O13—Sr1—O4i | 73.08 (17) | O1—C2—H2B | 109.4 |
O13i—Sr1—O4i | 106.92 (17) | H2A—C2—H2B | 108.0 |
O4—Sr1—O4i | 180.000 (1) | O4—C3—C2 | 119.7 (8) |
O13—Sr1—O1 | 56.56 (14) | O4—C3—H3A | 107.4 |
O13i—Sr1—O1 | 123.44 (15) | C2—C3—H3A | 107.4 |
O4—Sr1—O1 | 59.66 (16) | O4—C3—H3B | 107.4 |
O4i—Sr1—O1 | 120.34 (16) | C2—C3—H3B | 107.4 |
O13—Sr1—O1i | 123.44 (15) | H3A—C3—H3B | 106.9 |
O13i—Sr1—O1i | 56.56 (14) | C15—C14—C19 | 120.6 (7) |
O4—Sr1—O1i | 120.34 (16) | C15—C14—O13 | 124.8 (7) |
O4i—Sr1—O1i | 59.66 (16) | C19—C14—O13 | 114.5 (7) |
O1—Sr1—O1i | 180.000 (1) | C8—C9—O10 | 109.0 (7) |
O13—Sr1—O7i | 68.65 (16) | C8—C9—H9A | 109.9 |
O13i—Sr1—O7i | 111.35 (16) | O10—C9—H9A | 109.9 |
O4—Sr1—O7i | 118.78 (16) | C8—C9—H9B | 109.9 |
O4i—Sr1—O7i | 61.22 (16) | O10—C9—H9B | 109.9 |
O1—Sr1—O7i | 71.51 (16) | H9A—C9—H9B | 108.3 |
O1i—Sr1—O7i | 108.49 (16) | O13—C12—C11 | 107.3 (6) |
O13—Sr1—O7 | 111.35 (16) | O13—C12—H12A | 110.3 |
O13i—Sr1—O7 | 68.65 (16) | C11—C12—H12A | 110.3 |
O4—Sr1—O7 | 61.22 (16) | O13—C12—H12B | 110.3 |
O4i—Sr1—O7 | 118.78 (16) | C11—C12—H12B | 110.3 |
O1—Sr1—O7 | 108.49 (16) | H12A—C12—H12B | 108.5 |
O1i—Sr1—O7 | 71.51 (16) | O10—C11—C12 | 110.0 (7) |
O7i—Sr1—O7 | 180.0 | O10—C11—H11A | 109.7 |
O13—Sr1—O10i | 121.28 (15) | C12—C11—H11A | 109.7 |
O13i—Sr1—O10i | 58.72 (15) | O10—C11—H11B | 109.7 |
O4—Sr1—O10i | 77.00 (18) | C12—C11—H11B | 109.7 |
O4i—Sr1—O10i | 103.00 (18) | H11A—C11—H11B | 108.2 |
O1—Sr1—O10i | 80.80 (16) | O7—C8—C9 | 111.6 (7) |
O1i—Sr1—O10i | 99.20 (16) | O7—C8—H8A | 109.3 |
O7i—Sr1—O10i | 60.03 (17) | C9—C8—H8A | 109.3 |
O7—Sr1—O10i | 119.97 (17) | O7—C8—H8B | 109.3 |
O13—Sr1—O10 | 58.72 (15) | C9—C8—H8B | 109.3 |
O13i—Sr1—O10 | 121.28 (15) | H8A—C8—H8B | 108.0 |
O4—Sr1—O10 | 103.00 (18) | O7—C6—C5 | 108.0 (7) |
O4i—Sr1—O10 | 77.00 (18) | O7—C6—H6A | 110.1 |
O1—Sr1—O10 | 99.20 (16) | C5—C6—H6A | 110.1 |
O1i—Sr1—O10 | 80.80 (16) | O7—C6—H6B | 110.1 |
O7i—Sr1—O10 | 119.97 (17) | C5—C6—H6B | 110.1 |
O7—Sr1—O10 | 60.03 (17) | H6A—C6—H6B | 108.4 |
O10i—Sr1—O10 | 180.00 (17) | O4—C5—C6 | 111.3 (7) |
C11—O10—C9 | 110.9 (6) | O4—C5—H5A | 109.4 |
C11—O10—Sr1 | 120.1 (4) | C6—C5—H5A | 109.4 |
C9—O10—Sr1 | 118.3 (4) | O4—C5—H5B | 109.4 |
C3—O4—C5 | 116.6 (7) | C6—C5—H5B | 109.4 |
C3—O4—Sr1 | 120.4 (5) | H5A—C5—H5B | 108.0 |
C5—O4—Sr1 | 116.9 (4) | C17—C18—C19 | 118.9 (8) |
C6—O7—C8 | 114.5 (6) | C17—C18—H18 | 120.6 |
C6—O7—Sr1 | 117.5 (4) | C19—C18—H18 | 120.6 |
C8—O7—Sr1 | 114.6 (4) | C14—C15—C16 | 120.6 (8) |
C14—O13—C12 | 120.4 (5) | C14—C15—H15 | 119.7 |
C14—O13—Sr1 | 119.8 (4) | C16—C15—H15 | 119.7 |
C12—O13—Sr1 | 119.4 (4) | C17—C16—C15 | 119.4 (8) |
C19—O1—C2 | 120.4 (6) | C17—C16—H16 | 120.3 |
C19—O1—Sr1 | 118.5 (4) | C15—C16—H16 | 120.3 |
C2—O1—Sr1 | 120.5 (5) | C16—C17—C18 | 121.1 (8) |
C14—C19—O1 | 116.5 (6) | C16—C17—H17 | 119.5 |
C14—C19—C18 | 119.4 (7) | C18—C17—H17 | 119.5 |
O1—C19—C18 | 124.1 (7) |
Symmetry code: (i) −x+2, −y, −z+2. |
Experimental details
Crystal data | |
Chemical formula | [Sr(C14H20O5)2](I3)2 |
Mr | 1385.62 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 12.0127 (17), 12.8666 (12), 13.085 (2) |
β (°) | 90.245 (18) |
V (Å3) | 2022.5 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 5.96 |
Crystal size (mm) | 0.2 × 0.2 × 0.15 |
Data collection | |
Diffractometer | Stoe IPDS-I diffractometer |
Absorption correction | Numerical [X-RED (Stoe & Cie, 2001); after optimizing the crystal shape using X-SHAPE (Stoe & Cie, 1999)] |
Tmin, Tmax | 0.393, 0.465 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18994, 4869, 1779 |
Rint | 0.124 |
(sin θ/λ)max (Å−1) | 0.664 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.069, 0.71 |
No. of reflections | 4869 |
No. of parameters | 207 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.54, −0.72 |
Computer programs: IPDS (Stoe & Cie, 1996), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2004), CIF-Editor (Wieczorrek, 2004).
I2—I1 | 2.8754 (13) | Sr1—O1 | 2.691 (5) |
I2—I3 | 2.9210 (13) | Sr1—O1i | 2.691 (5) |
Sr1—O13 | 2.679 (5) | Sr1—O7i | 2.706 (5) |
Sr1—O13i | 2.679 (5) | Sr1—O7 | 2.706 (5) |
Sr1—O4 | 2.682 (5) | Sr1—O10i | 2.778 (5) |
Sr1—O4i | 2.682 (5) | Sr1—O10 | 2.778 (5) |
I1—I2—I3 | 177.54 (4) |
Symmetry code: (i) −x+2, −y, −z+2. |
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Brandenburg, K. (2004). DIAMOND. Bonn, Germany. Google Scholar
Pantenburg, I., Hohn, F. & Tebbe, K.-F. (2002). Z. Anorg. Allg. Chem. 628, 383–388. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (1996). IPDS. Stoe & Cie, Darmstadt, Germany. Google Scholar
Stoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany. Google Scholar
Stoe & Cie (2001). X-RED. Stoe & Cie, Darmstadt, Germany. Google Scholar
Walbaum, C., Pantenburg, I. & Meyer, G. (2007). Z. Anorg. Allg. Chem. 633, 1609–1617. Web of Science CSD CrossRef CAS Google Scholar
Wieczorrek, C. (2004). CIF-Editor. Universität zu Köln, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Polyiodide anions are synthesized by the addition of elemental iodine to iodide ions and can be incorporated into crystalline solids in the presence of suitable cations. They show considerable diversity in I - I bond lengths, covering the whole range between a strongly covalent bond and the sum of the van der Waals radii of two iodine atoms. However, the bond lengths are never uniform. As a consequence, the structural diversity of polyiodide ions is remarkably high. To date, no systematic procedure for the synthesis and crystallization of iodine-rich polyiodides is known, and this remains the ultimate goal of our work. We try to control the structures and composition of polyiodide matrices by variation of the shape, charge and size of the corresponding cations. In previous work, we have shown that bulky low-charged cations of the general formula [M(crown-ether)]x+ (where M is an element of group 1 or 2, or a rare earth-metal, crown-ether is benzo-18-crown-6, benzo-15-crown-5 or dibenzo-18-crown-6 and x = 1, 2 or 3) positively influence the stabilitity of polyiodides in the solid state (Walbaum et al., 2007).
[Sr(benzo-15-crown-5)2](I3)2 is isotypic with the respective Ba compound (Pantenburg et al., 2002). The Sr2+ ion (2a; 1,0,1) is located slightly above the centre of two benzo-15-crown ligands and coordinated in a sandwich-like manner by ten O atoms. The Sr—O distances vary between 2.679 (5) Å and 2.778 (5) Å (Table 1). Distances and angles within the crown-ether moiety are in good agreement with published data [mean values from the Cambridge Structural Database (Allen, 2002): CH2—O = 1.43 (3) Å, CH2—CH2 = 1.51 (2) Å, O—CH2—CH2 = 108.9 (13)°, CH2—O—CH2 = 111.4 (10)°]. The triiodide anion is almost symmetrical (I1—I2 = 2.8754 (13) Å, I2—I3 = 2.9210 (13) Å) and only slightly angular (I1—I2—I3 = 177.54 (4)°).
Although polyiodide ions tend to form even larger arrays through weak attractions between the anions, the shortest distance between the triiodide anions in [Sr(benzo-15-crown-5)2](I3)2 is 4.6623 (19) Å (I2—I1i; (i) = -x + 2, -y + 1, -z + 2) (Fig. 2). Thus, the anions may be considered as isolated. Distances between the [Sr(benzo-15-crown-5)2]2+ cations and the anions are also rather large, beginning with (I—H) = 3.138 (1) Å, (I—C) = 3.872 (9) Å, and (I—O) = 3.896 (5) Å.