organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-2-Methylpiperazinediium dichloride 0.42-hydrate

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 27 February 2008; accepted 16 April 2008; online 23 April 2008)

The cations and anions of the chiral title compound, C5H14N22+·2Cl·0.42H2O, are linked by N—H⋯Cl hydrogen bonds into chains propagating in [100], which contain R42(14) loops.

Related literature

For crystal structures containing the same chiral cation, see: Muller et al. (2005[Muller, E. A., Cannon, R. J., Sarjeant, A. N., Ok, K. M., Halasyamani, P. S. & Norquist, A. J. (2005). Cryst. Growth Des. 5, 1913-1917..]); Tuel et al. (2002[Tuel, A., Gramlich, V. & Ch. Baerlocher, Ch. (2002). Micropor. Mesopor. Mater. 56, 119-130.]). For background on graph theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C5H14N22+·2Cl·0.42H2O

  • Mr = 180.65

  • Monoclinic, P 21

  • a = 5.7548 (2) Å

  • b = 11.6176 (4) Å

  • c = 6.9248 (2) Å

  • β = 105.7599 (16)°

  • V = 445.57 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 120 (2) K

  • 0.10 × 0.08 × 0.02 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 5193 measured reflections

  • 1999 independent reflections

  • 1952 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.110

  • S = 1.05

  • 1999 reflections

  • 93 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.93 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 929 Friedel pairs

  • Flack parameter: 0.04 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2⋯Cl2 0.92 2.25 3.096 (2) 153
N1—H1⋯Cl2i 0.92 2.24 3.136 (2) 166
N2—H3⋯Cl1 0.92 2.26 3.149 (2) 163
N2—H4⋯Cl1i 0.92 2.30 3.137 (2) 152
Symmetry code: (i) x-1, y, z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT . Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter, Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter, Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SCALEPACK and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), is a chiral molecular salt, in which the organic species has accepted two protons from the hydrochloric acid. The geometrical parameters of the C5H14N22+ dication (Fig. 1) are similar to those of the same speies in other structures (Muller et al., 2005; Tuel et al., 2002) and its six-membered ring is a typical chair. The C4 stereogenic centre has S configuration and the pendant C5 methyl group occupies an equatorial position with respect to the ring.

In the crystal of (I), the cations and anions are linked by N—H···Cl hydrogen bonds (Table 1) into chains propagating in [100], with two chloride ions bridging each dication, as shown in Fig 2. In terms of graph theory (Bernstein et al., 1995), R42(14) loops arise from this connectivity.

The O1 water molecule is partially occupied in the crystal of (I), although there is no obvious crystallographic reason (e.g. symmetry generated close contacts) as to why this should be the case. Based on short O···Cl contacts of less than 3.5 Å, the water molecule probably participates in O—H···Cl hydrogen bonds thereby helping to crosslink the [100] chains, but the water H atoms could not be found or placed unambiguously in the present study.

Related literature top

For crystal structures containing the same chiral cation, see: Muller et al. (2005); Tuel et al. (2002). For background on graph theory, see Bernstein et al. (1995).

Experimental top

Equimolar quantities of 0.1 M aqueous (S)-2-methylpiperazine and 0.1 M aqueous hydrochloric acid were mixed, leading to a clear solution. Colourless plates of (I) grew as the water slowly evaporated.

Refinement top

When refined with full occpancy, atom O1 showed an excessively large Uiso value of 0.15 Å2. Its fractional site occupancy was refined and rapidly converged to 0.420 (11) with a more reasonable Uiso value and improvement in fit. Its Uij values were subsequently refined and converged without difficulty. Its presumed attached H atoms could not be located from difference maps in the present study. Attempts at geometrical placement were ambiguous, as there are several possible O···Cl contacts that might correspond to O—H···Cl hydrogen bonds.

The other hydrogen atoms were geometrically placed (C—H = 0.95–0.99 Å, N—H = 0.92 Å) and refined as riding with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(methyl C). The methyl group was allowed to rotate, but not tip, to best fit the electron density.

The highest difference peak is 0.73Å from H1.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997) and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I) showing 50% displacement ellipsoids (arbitrary spheres for the H atoms). Hydrogen bonds are indicated by double-dashed lines.
[Figure 2] Fig. 2. Fragement of a [100] hydrogen bonded chain of cations and anions in the crystal of (I). The carbon-bound H atoms are omitted for clarity. Symmetry code suffixes: (*) x - 1, y, z; (#) x + 1, y, z.
(S)-2-Methylpiperazinediium dichloride 0.42-hydrate top
Crystal data top
C5H14N22+·2Cl·0.42H2OF(000) = 192
Mr = 180.65Dx = 1.346 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2691 reflections
a = 5.7548 (2) Åθ = 2.9–27.5°
b = 11.6176 (4) ŵ = 0.66 mm1
c = 6.9248 (2) ÅT = 120 K
β = 105.7599 (16)°Plate, colourless
V = 445.57 (3) Å30.10 × 0.08 × 0.02 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
1952 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.071
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
ω and ϕ scansh = 77
5193 measured reflectionsk = 1415
1999 independent reflectionsl = 89
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0558P)2 + 0.1729P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1999 reflectionsΔρmax = 0.93 e Å3
93 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack (1983), 929 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (9)
Crystal data top
C5H14N22+·2Cl·0.42H2OV = 445.57 (3) Å3
Mr = 180.65Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.7548 (2) ŵ = 0.66 mm1
b = 11.6176 (4) ÅT = 120 K
c = 6.9248 (2) Å0.10 × 0.08 × 0.02 mm
β = 105.7599 (16)°
Data collection top
Nonius KappaCCD
diffractometer
1952 reflections with I > 2σ(I)
5193 measured reflectionsRint = 0.071
1999 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.110Δρmax = 0.93 e Å3
S = 1.06Δρmin = 0.23 e Å3
1999 reflectionsAbsolute structure: Flack (1983), 929 Friedel pairs
93 parametersAbsolute structure parameter: 0.04 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.7382 (4)0.00043 (19)0.4593 (3)0.0150 (4)
H10.62410.01300.52780.018*
H20.88800.01250.54680.018*
N20.4376 (4)0.06003 (19)0.0680 (3)0.0171 (5)
H30.55040.07290.00160.020*
H40.28690.07230.01810.020*
C10.7209 (4)0.1215 (3)0.3871 (4)0.0181 (5)
H50.85090.13720.32200.022*
H60.74180.17450.50250.022*
C20.4781 (5)0.1420 (2)0.2391 (4)0.0190 (5)
H70.34900.13240.30760.023*
H80.47030.22190.18810.023*
C30.4563 (5)0.0617 (2)0.1406 (4)0.0176 (5)
H90.43450.11460.02490.021*
H100.32630.07740.20580.021*
C40.7000 (5)0.0841 (2)0.2891 (4)0.0164 (5)
H110.82970.07290.21970.020*
C50.7142 (6)0.2064 (3)0.3697 (5)0.0228 (6)
H120.85770.21430.48390.034*
H130.72480.26050.26390.034*
H140.56940.22320.41330.034*
Cl10.88946 (10)0.12630 (6)0.08251 (9)0.02299 (18)
Cl21.28588 (11)0.04977 (5)0.61677 (10)0.02002 (17)
O10.1426 (11)0.3549 (5)0.1162 (10)0.039 (2)0.420 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0128 (10)0.0182 (10)0.0123 (11)0.0011 (7)0.0003 (8)0.0017 (8)
N20.0175 (10)0.0190 (11)0.0128 (11)0.0002 (8)0.0010 (9)0.0012 (8)
C10.0173 (12)0.0148 (12)0.0210 (13)0.0016 (11)0.0033 (10)0.0015 (13)
C20.0188 (11)0.0174 (12)0.0204 (12)0.0027 (9)0.0048 (9)0.0000 (10)
C30.0206 (12)0.0166 (12)0.0139 (12)0.0009 (10)0.0017 (10)0.0010 (10)
C40.0180 (11)0.0165 (11)0.0146 (12)0.0031 (9)0.0042 (9)0.0003 (9)
C50.0228 (15)0.0182 (14)0.0241 (17)0.0033 (10)0.0008 (13)0.0022 (11)
Cl10.0175 (3)0.0339 (4)0.0176 (3)0.0027 (3)0.0048 (2)0.0015 (3)
Cl20.0129 (3)0.0300 (3)0.0166 (3)0.0009 (2)0.0031 (2)0.0016 (3)
O10.042 (4)0.027 (4)0.050 (4)0.004 (2)0.017 (3)0.003 (3)
Geometric parameters (Å, º) top
N1—C11.497 (4)C2—H70.9900
N1—C41.497 (3)C2—H80.9900
N1—H10.9200C3—C41.519 (4)
N1—H20.9200C3—H90.9900
N2—C21.488 (3)C3—H100.9900
N2—C31.495 (3)C4—C51.521 (4)
N2—H30.9200C4—H111.0000
N2—H40.9200C5—H120.9800
C1—C21.510 (3)C5—H130.9800
C1—H50.9900C5—H140.9800
C1—H60.9900
C1—N1—C4111.7 (2)N2—C2—H8109.5
C1—N1—H1109.3C1—C2—H8109.5
C4—N1—H1109.3H7—C2—H8108.1
C1—N1—H2109.3N2—C3—C4111.0 (2)
C4—N1—H2109.3N2—C3—H9109.4
H1—N1—H2107.9C4—C3—H9109.4
C2—N2—C3110.9 (2)N2—C3—H10109.4
C2—N2—H3109.5C4—C3—H10109.4
C3—N2—H3109.5H9—C3—H10108.0
C2—N2—H4109.5N1—C4—C3109.5 (2)
C3—N2—H4109.5N1—C4—C5109.6 (2)
H3—N2—H4108.1C3—C4—C5110.8 (2)
N1—C1—C2110.0 (2)N1—C4—H11109.0
N1—C1—H5109.7C3—C4—H11109.0
C2—C1—H5109.7C5—C4—H11109.0
N1—C1—H6109.7C4—C5—H12109.5
C2—C1—H6109.7C4—C5—H13109.5
H5—C1—H6108.2H12—C5—H13109.5
N2—C2—C1110.8 (2)C4—C5—H14109.5
N2—C2—H7109.5H12—C5—H14109.5
C1—C2—H7109.5H13—C5—H14109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···Cl20.922.253.096 (2)153
N1—H1···Cl2i0.922.243.136 (2)166
N2—H3···Cl10.922.263.149 (2)163
N2—H4···Cl1i0.922.303.137 (2)152
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC5H14N22+·2Cl·0.42H2O
Mr180.65
Crystal system, space groupMonoclinic, P21
Temperature (K)120
a, b, c (Å)5.7548 (2), 11.6176 (4), 6.9248 (2)
β (°) 105.7599 (16)
V3)445.57 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.10 × 0.08 × 0.02
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5193, 1999, 1952
Rint0.071
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.110, 1.06
No. of reflections1999
No. of parameters93
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.93, 0.23
Absolute structureFlack (1983), 929 Friedel pairs
Absolute structure parameter0.04 (9)

Computer programs: COLLECT (Nonius, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997) and SORTAV (Blessing, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···Cl20.922.253.096 (2)153
N1—H1···Cl2i0.922.243.136 (2)166
N2—H3···Cl10.922.263.149 (2)163
N2—H4···Cl1i0.922.303.137 (2)152
Symmetry code: (i) x1, y, z.
 

Acknowledgements

I thank the EPSRC National Crystallography Service (University of Southampton) for the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMuller, E. A., Cannon, R. J., Sarjeant, A. N., Ok, K. M., Halasyamani, P. S. & Norquist, A. J. (2005). Cryst. Growth Des. 5, 1913–1917..  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT . Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter, Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTuel, A., Gramlich, V. & Ch. Baerlocher, Ch. (2002). Micropor. Mesopor. Mater. 56, 119–130.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds