metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-(Butane-1,4-di­yl)di­imidazole-3,3′-diium tetra­chloridozincate(II) dihydrate

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: hgf1000@163.com

(Received 28 March 2008; accepted 1 April 2008; online 4 April 2008)

In the title compound, (C10H16N4)[ZnCl4]·2H2O, the cation lies abouton a center of inversion and the anion about a twofold rotation axis. The ZnII atom is four-coordinate in a tetra­hedral environment. The cations, anions and water mol­ecules are linked by N—H⋯O, N—H⋯Cl and O—H⋯Cl hydrogen bonds into a two-dimensional network.

Related literature

For background and the synthesis of 1,1′-(1,4-butanedi­yl)diimidazole, see: Ma et al. (2003[Ma, J.-F., Yang, J., Zheng, G.-L. & Liu, J.-F. (2003). Inorg. Chem. 42, 7531-7534.])

[Scheme 1]

Experimental

Crystal data
  • (C10H16N4)[ZnCl4]·2H2O

  • Mr = 435.47

  • Monoclinic, P 2/n

  • a = 7.4010 (15) Å

  • b = 10.927 (2) Å

  • c = 11.058 (2) Å

  • β = 95.23 (3)°

  • V = 890.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.99 mm−1

  • T = 291 (2) K

  • 0.18 × 0.17 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.713, Tmax = 0.751

  • 8575 measured reflections

  • 2042 independent reflections

  • 1760 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.081

  • S = 1.07

  • 2042 reflections

  • 101 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H10⋯Cl3i 0.85 2.43 3.275 (2) 177
O1—H9⋯Cl2ii 0.85 2.52 3.337 (3) 161
N2—H3⋯Cl2i 0.85 (3) 2.82 (3) 3.350 (2) 122 (3)
N2—H3⋯O1 0.85 (3) 2.15 (3) 2.890 (3) 145 (3)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y, -z+{\script{1\over 2}}]; (ii) x-1, y, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The 1,1'-(1,4-butanediyl)diimidazole can be used as a flexible ligand to construct coordination polymer materials(Ma et al.., 2003). In our attempt to synthesize the zinc complex with the 1,1'-(1,4-butanediyl)diimidazole, we unexpectedly obtained the title compound (I). Herein, we report its crystal structure.

The ZnII atom lies on an inversion center and is coordinated by four chlorine anions in an tetrahedronal environment(Figure 1). The 1,1'-(1,4-butanediyl)diimidazole molecule also lies on an inversion center and its N atom is protonated.

In the crystal structure, the cations and anions are linked by N—H···Cl hydrogen bonds. In addition, the water molecules are both as acceptor and donor of hydrogen bond link these molecule into a two-dimensional supramolecular network via N—H···O, O—H···Cl hydrogen bonds (Table 1; Figure 2).

Related literature top

For background and the synthesis of 1,1'-(1,4-butanediyl)diimidazole, see: Ma et al. (2003)

Experimental top

1,1'-(1,4-Butanediyl)diimidazole was prepared of imidazole and 1,4-dibromobutane in dimethylsulfoxide solution (Ma et al.., 2003). ZnCl2 (0.272 g, 2 mmol) and 1,1'-(1,4-butanediyl)diimidazole (0.380 g, 2 mmol) were dissolved in hot methanol solution (15 ml) and added two drops hydrochloric acid then a clear solution was obtained. The resulting solution was allowed to stand in a desiccator at room temperature for several days. Colroless crystals of (I) were obtained. Unexpectedly, the salt-type adducts of this ligands was crystallized from solution.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (Caromatic) and with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were located in a difference Fourier map and free refined, Water H atoms were initially located in a difference Fourier map but they were treated as riding on their parent atoms with O—H = 0.85 Å, H···H = 1.39 and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 30% probability level for non-H atoms. Dashed lines indicate the intramolecular hydrogen bonding interactions.
[Figure 2] Fig. 2. A partial packing view, showing the two-dimensional hydrogen-bonding network. Dashed lines indicate the hydrogen-bonding interactions. H atoms not involved in hydrogen bonds have been omitted for clarity.
1,1'-(Butane-1,4-diyl)diimidazole-3,3'-diium tetrachloridozincate(II) dihydrate top
Crystal data top
(C10H16N4)[ZnCl4]·2H2OF(000) = 444
Mr = 435.47Dx = 1.624 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yacCell parameters from 6883 reflections
a = 7.4010 (15) Åθ = 3.2–27.5°
b = 10.927 (2) ŵ = 1.99 mm1
c = 11.058 (2) ÅT = 291 K
β = 95.23 (3)°Block, colorless
V = 890.6 (3) Å30.18 × 0.17 × 0.15 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2042 independent reflections
Radiation source: fine-focus sealed tube1760 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.713, Tmax = 0.751k = 1414
8575 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0301P)2 + 0.5173P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2042 reflectionsΔρmax = 0.47 e Å3
101 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.038 (3)
Crystal data top
(C10H16N4)[ZnCl4]·2H2OV = 890.6 (3) Å3
Mr = 435.47Z = 2
Monoclinic, P2/nMo Kα radiation
a = 7.4010 (15) ŵ = 1.99 mm1
b = 10.927 (2) ÅT = 291 K
c = 11.058 (2) Å0.18 × 0.17 × 0.15 mm
β = 95.23 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2042 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1760 reflections with I > 2σ(I)
Tmin = 0.713, Tmax = 0.751Rint = 0.042
8575 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.47 e Å3
2042 reflectionsΔρmin = 0.37 e Å3
101 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.75000.75494 (3)0.25000.03710 (15)
C10.4713 (3)0.1878 (2)0.2017 (2)0.0405 (5)
H10.44990.11040.16840.049*
C20.4320 (4)0.2946 (2)0.1464 (2)0.0469 (6)
H20.37900.30560.06760.056*
C30.5555 (4)0.3335 (2)0.3300 (2)0.0448 (6)
H40.60190.37520.39930.054*
C40.6136 (3)0.1221 (2)0.4085 (2)0.0450 (6)
H50.67710.16410.47700.054*
H60.69950.06800.37420.054*
C50.4626 (3)0.0464 (2)0.4529 (2)0.0376 (5)
H70.39850.00400.38490.045*
H80.37700.09970.48850.045*
Cl20.87983 (10)0.63431 (6)0.11389 (5)0.0543 (2)
Cl30.96871 (9)0.86758 (5)0.35304 (6)0.0529 (2)
H30.475 (4)0.461 (3)0.216 (3)0.066 (9)*
N10.5489 (2)0.21294 (16)0.31649 (16)0.0347 (4)
N20.4846 (3)0.3841 (2)0.2278 (2)0.0499 (5)
O10.3280 (3)0.6019 (2)0.1132 (2)0.0775 (7)
H90.21920.60420.13190.116*
H100.38140.67080.11910.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0465 (2)0.0277 (2)0.0365 (2)0.0000.00102 (15)0.000
C10.0413 (12)0.0380 (12)0.0412 (12)0.0001 (10)0.0009 (10)0.0065 (10)
C20.0495 (14)0.0545 (14)0.0359 (12)0.0036 (12)0.0001 (10)0.0056 (11)
C30.0631 (16)0.0326 (11)0.0393 (12)0.0061 (10)0.0085 (11)0.0020 (10)
C40.0403 (13)0.0434 (13)0.0499 (13)0.0007 (10)0.0029 (10)0.0146 (11)
C50.0362 (11)0.0354 (11)0.0408 (12)0.0017 (9)0.0019 (9)0.0055 (10)
Cl20.0739 (5)0.0480 (4)0.0405 (3)0.0215 (3)0.0029 (3)0.0024 (3)
Cl30.0563 (4)0.0355 (3)0.0639 (4)0.0094 (3)0.0101 (3)0.0011 (3)
N10.0374 (10)0.0297 (8)0.0371 (9)0.0009 (7)0.0030 (8)0.0036 (7)
N20.0659 (15)0.0330 (10)0.0522 (12)0.0040 (10)0.0135 (10)0.0086 (9)
O10.0740 (15)0.0611 (13)0.0940 (17)0.0160 (11)0.0113 (12)0.0114 (12)
Geometric parameters (Å, º) top
Zn1—Cl32.2577 (8)C3—H40.9300
Zn1—Cl3i2.2577 (8)C4—N11.470 (3)
Zn1—Cl22.2782 (8)C4—C51.508 (3)
Zn1—Cl2i2.2782 (7)C4—H50.9700
C1—C21.337 (3)C4—H60.9700
C1—N11.372 (3)C5—C5ii1.521 (4)
C1—H10.9300C5—H70.9700
C2—N21.362 (3)C5—H80.9700
C2—H20.9300N2—H30.85 (3)
C3—N21.322 (3)O1—H90.8500
C3—N11.326 (3)O1—H100.8501
Cl3—Zn1—Cl3i113.93 (4)C5—C4—H5109.0
Cl3—Zn1—Cl2108.83 (3)N1—C4—H6109.0
Cl3i—Zn1—Cl2107.95 (3)C5—C4—H6109.0
Cl3—Zn1—Cl2i107.95 (3)H5—C4—H6107.8
Cl3i—Zn1—Cl2i108.83 (3)C4—C5—C5ii110.7 (2)
Cl2—Zn1—Cl2i109.29 (4)C4—C5—H7109.5
C2—C1—N1107.7 (2)C5ii—C5—H7109.5
C2—C1—H1126.2C4—C5—H8109.5
N1—C1—H1126.2C5ii—C5—H8109.5
C1—C2—N2106.7 (2)H7—C5—H8108.1
C1—C2—H2126.7C3—N1—C1108.14 (19)
N2—C2—H2126.7C3—N1—C4125.9 (2)
N2—C3—N1108.1 (2)C1—N1—C4125.95 (19)
N2—C3—H4125.9C3—N2—C2109.4 (2)
N1—C3—H4125.9C3—N2—H3125 (2)
N1—C4—C5113.02 (19)C2—N2—H3126 (2)
N1—C4—H5109.0H9—O1—H10113.5
Symmetry codes: (i) x+3/2, y, z+1/2; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H10···Cl3i0.852.433.275 (2)177
O1—H9···Cl2iii0.852.523.337 (3)161
N2—H3···Cl2i0.85 (3)2.82 (3)3.350 (2)122 (3)
N2—H3···O10.85 (3)2.15 (3)2.890 (3)145 (3)
Symmetry codes: (i) x+3/2, y, z+1/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula(C10H16N4)[ZnCl4]·2H2O
Mr435.47
Crystal system, space groupMonoclinic, P2/n
Temperature (K)291
a, b, c (Å)7.4010 (15), 10.927 (2), 11.058 (2)
β (°) 95.23 (3)
V3)890.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.99
Crystal size (mm)0.18 × 0.17 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.713, 0.751
No. of measured, independent and
observed [I > 2σ(I)] reflections
8575, 2042, 1760
Rint0.042
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.081, 1.07
No. of reflections2042
No. of parameters101
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.37

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H10···Cl3i0.852.433.275 (2)177.1
O1—H9···Cl2ii0.852.523.337 (3)160.6
N2—H3···Cl2i0.85 (3)2.82 (3)3.350 (2)122 (3)
N2—H3···O10.85 (3)2.15 (3)2.890 (3)145 (3)
Symmetry codes: (i) x+3/2, y, z+1/2; (ii) x1, y, z.
 

Acknowledgements

The authors thank Heilongjiang University for supporting this study.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMa, J.-F., Yang, J., Zheng, G.-L. & Liu, J.-F. (2003). Inorg. Chem. 42, 7531–7534.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds