organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Eplerenone ethanol solvate

aDepartment of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China, and bXinchang Pharmaceutical Factory, Xinchang 312500, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 1 April 2008; accepted 5 April 2008; online 10 April 2008)

Eplerenone [systematic name: 7α-(methoxy­carbon­yl)-3-oxo-9α,11-ep­oxy-17α-pregn-4-ene-21,17-carbolactone], an aldo­sterone receptor antagonist, crystallizes from ethanol as a monosolvate, C24H30O6·C2H6O. The eplerenone mol­ecule has two five-membered rings, three six-membered rings and one three-membered ring. Both five-membered rings display envelope conformations, while the three six-membered rings assume envelope (cyclohexene), half-chair (cyclohexane sharing one edge with epoxy) and chair (other cyclohexane) conformations. The solvent mol­ecule is disordered equally over two sites. It is linked to the eplerenone mol­ecule by hydrogen bonds.

Related literature

For background literature, see: Grob et al. (1985[Grob, J. & Kalvoda, J. (1985). US Patent 4559332.]). For related structures, see: Grob et al. (1997[Grob, J., Boillaz, M., Schmidlin, J., Wehrli, H., Wieland, P., Fuhrer, H., Rihs, G., Joss, U., de Gasparo, M., Haenni, H., Ramjoue, H. P., Whitebread, S. E. & Kalvoda, J. (1997). Helv. Chim. Acta, 80, 566-585.]); Yang et al. (2007[Yang, Q., Ye, W.-D., Yuan, J.-Y. & Nie, J.-J. (2007). Acta Cryst. E63, o2068-o2070.]); Xu et al. (2007[Xu, L.-Z., Yang, Q. & Nie, J.-J. (2007). Acta Cryst. E63, o4898.]). For ring analysis, see: Spek (2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

[Scheme 1]

Experimental

Crystal data
  • C24H30O6·C2H6O

  • Mr = 460.55

  • Orthorhombic, P 21 21 21

  • a = 8.3236 (5) Å

  • b = 12.8306 (9) Å

  • c = 23.3173 (13) Å

  • V = 2490.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 (2) K

  • 0.20 × 0.16 × 0.14 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: none

  • 19548 measured reflections

  • 2559 independent reflections

  • 1955 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.151

  • S = 1.05

  • 2559 reflections

  • 293 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8A⋯O1i 0.96 2.19 3.15 (4) 178
O9—H9A⋯O1i 0.98 2.34 3.32 (4) 177
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The eplerenone is known as an aldosterone receptor antagonist and can be administered in a therapeutically effective amount where use of an aldosterone receptor antagonist (Grob et al., 1985). The crystal structure of the eplerenone ethanol solvate is reported here.

The crystal of the title compound consists of eplerenone molecules and lattice ethanol molecules (Fig. 1). The molecule of eplerenone contains three six-membered rings, two five-membered rings and one three-membered ring. A ring analysis (Spek, 2003) indicates that three six-membered rings assume different conformations: chair, half-chair and envelope; both five-membered rings display the similar envelope configuration. This agrees with those found in the structure of eplerenone THF solvate (Yang et al. 2007) and in the structure of eplerenone dioxane solvate (Xu et al., 2007). The C2—C3 bond distance of 1.343 (6) Å indicates the typical C?C double bond. The C23-ester group forms an intra-molecular C—H···O hydrogen bond with the adjacent C14-methine group (Table 1). This structural feature is also found in the crystal structure of eplerenone dichloromethane solvate (Grob et al., 1997).

In the crystal structure, lattice solvent molecules are disorderly located in the cavities formed by eplerenone molecules and link with eplerenone molecules via O—H···O and C—H···O hydrogen bonding (Table 1).

Related literature top

For background literature, see: Grob et al. (1985). For related structures, see: Grob et al. (1997); Yang et al. (2007); Xu et al. (2007). For ring analysis, see: Spek (2003).

Experimental top

A microcrystalline powder sample of eplerenone was prepared in the manner reported by Grob et al. (1997). Single crystals of the title compound were obtained from an ethanol solution of eplerenone.

Refinement top

The lattice ethanol molecule is disordered in the crystal structure; a two-site model with each 0.5 site occupancies was adopted in the refinement. The C—C and C—O distances for the disordered solvent molecule were constrained to 1.50±0.01 and 1.40±0.01 Å, respectively; atomic displacement parameters for non-H atoms of the disordered solvent molecule were constrained to be the same. Hydroxyl H atoms were placed in chemical sensible positions and refined in riding mode with Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.93 to 0.98 Å, and refined in riding mode with Uiso(H) = 1.5Ueq(C) for methyl or 1.2Ueq(C) for others. In the absence of significant anomalous scattering effects, Friedel pairs were merged; the absolute configuration was not determined.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement (arbitrary spheres for H atoms). One of disordered solvent components has been omitted for clarity.
7α-(methoxycarbonyl)-3-oxo-9α,11-epoxy-17α-pregn-4-ene-21,17-carbolactone ethanol solvate top
Crystal data top
C24H30O6·C2H6OF(000) = 992
Mr = 460.55Dx = 1.228 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4788 reflections
a = 8.3236 (5) Åθ = 3.2–25.2°
b = 12.8306 (9) ŵ = 0.09 mm1
c = 23.3173 (13) ÅT = 295 K
V = 2490.2 (3) Å3Prism, colorless
Z = 40.20 × 0.16 × 0.14 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1955 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
Graphite monochromatorθmax = 25.2°, θmin = 3.0°
ω scansh = 98
19548 measured reflectionsk = 1515
2559 independent reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0933P)2 + 0.2684P]
where P = (Fo2 + 2Fc2)/3
2559 reflections(Δ/σ)max = 0.002
293 parametersΔρmax = 0.30 e Å3
6 restraintsΔρmin = 0.19 e Å3
Crystal data top
C24H30O6·C2H6OV = 2490.2 (3) Å3
Mr = 460.55Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.3236 (5) ŵ = 0.09 mm1
b = 12.8306 (9) ÅT = 295 K
c = 23.3173 (13) Å0.20 × 0.16 × 0.14 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1955 reflections with I > 2σ(I)
19548 measured reflectionsRint = 0.054
2559 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0566 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.05Δρmax = 0.30 e Å3
2559 reflectionsΔρmin = 0.19 e Å3
293 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.0903 (5)0.5823 (4)0.10016 (17)0.1137 (15)
O20.1457 (3)0.82438 (19)0.29175 (10)0.0474 (6)
O30.4884 (4)0.8328 (2)0.49749 (10)0.0644 (8)
O40.3946 (5)0.8951 (3)0.57892 (12)0.0842 (10)
O50.4856 (5)0.9197 (3)0.22555 (13)0.0866 (11)
O60.3136 (4)0.8354 (2)0.17081 (12)0.0691 (8)
C10.0244 (6)0.5948 (4)0.1464 (2)0.0742 (13)
C20.1457 (6)0.6130 (3)0.15092 (19)0.0642 (11)
H20.20620.61220.11740.077*
C30.2222 (5)0.6310 (3)0.20064 (16)0.0476 (9)
C40.1357 (4)0.6367 (3)0.25779 (16)0.0481 (9)
C50.0438 (4)0.6600 (4)0.2471 (2)0.0653 (11)
H5A0.10240.64990.28260.078*
H5B0.05520.73260.23610.078*
C60.1187 (6)0.5921 (4)0.2008 (2)0.0759 (13)
H6A0.12490.52080.21450.091*
H6B0.22720.61600.19330.091*
C70.4024 (4)0.6423 (3)0.20023 (16)0.0515 (9)
H7A0.43850.65120.16100.062*
H7B0.45020.57870.21490.062*
C80.4618 (4)0.7341 (3)0.23596 (14)0.0465 (9)
H80.57900.72850.23830.056*
C90.3961 (4)0.7217 (3)0.29729 (14)0.0432 (8)
H90.42990.65260.31050.052*
C100.2131 (4)0.7204 (3)0.29597 (15)0.0438 (8)
C110.1258 (4)0.7665 (3)0.34520 (16)0.0467 (9)
H110.01780.73840.35160.056*
C120.2055 (4)0.8119 (3)0.39783 (15)0.0508 (9)
H12A0.15250.78520.43180.061*
H12B0.19250.88710.39750.061*
C130.3852 (5)0.7856 (3)0.40082 (14)0.0474 (9)
C140.4600 (4)0.7996 (3)0.34071 (14)0.0451 (9)
H140.43090.86940.32710.054*
C150.6431 (5)0.7989 (4)0.35129 (17)0.0646 (12)
H15A0.68650.72930.34630.078*
H15B0.69720.84580.32500.078*
C160.6647 (5)0.8359 (5)0.41383 (17)0.0721 (13)
H16A0.71530.78200.43680.086*
H16B0.73070.89810.41530.086*
C170.4943 (5)0.8590 (3)0.43599 (14)0.0534 (10)
C180.4499 (5)0.9740 (3)0.43479 (17)0.0578 (10)
H18A0.38430.99000.40150.069*
H18B0.54551.01730.43390.069*
C190.3553 (7)0.9913 (4)0.49035 (16)0.0727 (13)
H19A0.37891.05900.50690.087*
H19B0.24060.98580.48370.087*
C200.4135 (6)0.9058 (3)0.52799 (16)0.0629 (11)
C210.1522 (6)0.5303 (3)0.28953 (19)0.0659 (11)
H21A0.26390.51440.29490.099*
H21B0.10270.47650.26710.099*
H21C0.10020.53460.32620.099*
C220.4032 (6)0.6722 (3)0.42265 (17)0.0648 (11)
H22A0.36980.66840.46200.097*
H22B0.51350.65110.41960.097*
H22C0.33740.62680.39990.097*
C230.4237 (5)0.8399 (3)0.21110 (15)0.0503 (9)
C240.2627 (8)0.9320 (4)0.1450 (2)0.0944 (18)
H24A0.26700.98670.17310.142*
H24B0.15460.92490.13120.142*
H24C0.33260.94890.11360.142*
O80.547 (6)0.823 (3)0.0144 (17)0.431 (13)*0.50
H8A0.50240.85270.02010.646*0.50
C810.715 (6)0.815 (6)0.021 (2)0.431 (13)*0.50
H81A0.76820.84680.01140.517*0.50
H81B0.74550.74230.02270.517*0.50
C820.769 (7)0.868 (5)0.075 (2)0.431 (13)*0.50
H82A0.81880.81810.10000.646*0.50
H82B0.67780.89830.09400.646*0.50
H82C0.84470.92190.06570.646*0.50
O90.632 (5)0.917 (4)0.0182 (15)0.431 (13)*0.50
H9A0.56500.91950.01630.646*0.50
C910.625 (7)0.824 (4)0.050 (3)0.431 (13)*0.50
H91A0.65190.76600.02490.517*0.50
H91B0.51550.81360.06320.517*0.50
C920.735 (7)0.825 (5)0.100 (2)0.431 (13)*0.50
H92A0.76140.75410.11000.646*0.50
H92B0.68390.85840.13150.646*0.50
H92C0.83160.86140.08980.646*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.100 (3)0.143 (4)0.098 (3)0.039 (3)0.033 (2)0.015 (3)
O20.0473 (14)0.0399 (13)0.0551 (13)0.0060 (11)0.0018 (12)0.0004 (11)
O30.091 (2)0.0635 (17)0.0388 (13)0.0233 (17)0.0092 (14)0.0007 (13)
O40.127 (3)0.079 (2)0.0468 (16)0.021 (2)0.0019 (18)0.0003 (15)
O50.114 (3)0.072 (2)0.0730 (19)0.039 (2)0.005 (2)0.0047 (17)
O60.087 (2)0.0521 (17)0.0681 (16)0.0022 (17)0.0233 (16)0.0092 (14)
C10.070 (3)0.068 (3)0.084 (3)0.016 (2)0.015 (3)0.018 (3)
C20.070 (3)0.062 (3)0.061 (2)0.006 (2)0.003 (2)0.011 (2)
C30.053 (2)0.0314 (18)0.058 (2)0.0005 (16)0.0028 (19)0.0040 (16)
C40.0421 (18)0.041 (2)0.062 (2)0.0008 (16)0.0030 (18)0.0031 (16)
C50.045 (2)0.060 (3)0.091 (3)0.001 (2)0.001 (2)0.023 (2)
C60.053 (2)0.063 (3)0.112 (4)0.009 (2)0.008 (3)0.023 (3)
C70.052 (2)0.054 (2)0.0484 (19)0.0091 (18)0.0050 (18)0.0047 (18)
C80.0345 (18)0.061 (2)0.0443 (19)0.0012 (17)0.0017 (16)0.0036 (17)
C90.0380 (17)0.047 (2)0.0443 (17)0.0067 (15)0.0050 (16)0.0000 (16)
C100.0453 (18)0.0397 (19)0.0464 (18)0.0024 (16)0.0052 (17)0.0026 (16)
C110.0408 (19)0.042 (2)0.057 (2)0.0010 (16)0.0100 (17)0.0014 (17)
C120.054 (2)0.052 (2)0.0461 (18)0.0068 (19)0.0109 (18)0.0004 (17)
C130.052 (2)0.052 (2)0.0380 (17)0.0077 (17)0.0021 (17)0.0009 (16)
C140.0380 (18)0.058 (2)0.0397 (17)0.0012 (17)0.0022 (15)0.0004 (16)
C150.045 (2)0.095 (4)0.054 (2)0.007 (2)0.0038 (19)0.012 (2)
C160.053 (2)0.103 (4)0.060 (2)0.017 (3)0.010 (2)0.016 (3)
C170.063 (2)0.060 (2)0.0365 (17)0.008 (2)0.0021 (17)0.0003 (17)
C180.066 (3)0.056 (2)0.051 (2)0.001 (2)0.0043 (19)0.0061 (19)
C190.105 (4)0.061 (3)0.052 (2)0.016 (3)0.004 (2)0.000 (2)
C200.086 (3)0.059 (3)0.043 (2)0.010 (2)0.005 (2)0.0002 (19)
C210.071 (3)0.048 (2)0.079 (3)0.001 (2)0.014 (2)0.005 (2)
C220.088 (3)0.056 (2)0.051 (2)0.017 (2)0.004 (2)0.0080 (19)
C230.053 (2)0.055 (2)0.0424 (18)0.0129 (19)0.0082 (17)0.0015 (17)
C240.122 (5)0.071 (3)0.090 (3)0.020 (3)0.018 (3)0.018 (3)
Geometric parameters (Å, º) top
O1—C11.221 (6)C14—C151.545 (5)
O2—C101.451 (4)C14—H140.9800
O2—C111.460 (4)C15—C161.544 (6)
O3—C201.331 (5)C15—H15A0.9700
O3—C171.474 (4)C15—H15B0.9700
O4—C201.206 (5)C16—C171.538 (6)
O5—C231.195 (5)C16—H16A0.9700
O6—C231.314 (5)C16—H16B0.9700
O6—C241.441 (5)C17—C181.522 (6)
C1—C21.438 (7)C18—C191.532 (6)
C1—C61.492 (7)C18—H18A0.9700
C2—C31.343 (6)C18—H18B0.9700
C2—H20.9300C19—C201.486 (6)
C3—C71.508 (5)C19—H19A0.9700
C3—C41.516 (5)C19—H19B0.9700
C4—C101.536 (5)C21—H21A0.9600
C4—C51.544 (5)C21—H21B0.9600
C4—C211.559 (5)C21—H21C0.9600
C5—C61.520 (6)C22—H22A0.9600
C5—H5A0.9700C22—H22B0.9600
C5—H5B0.9700C22—H22C0.9600
C6—H6A0.9700C24—H24A0.9600
C6—H6B0.9700C24—H24B0.9600
C7—C81.525 (5)C24—H24C0.9600
C7—H7A0.9700O8—C811.409 (11)
C7—H7B0.9700O8—H8A0.9668
C8—C231.510 (5)C81—C821.494 (11)
C8—C91.539 (5)C81—H81A0.9700
C8—H80.9800C81—H81B0.9700
C9—C141.519 (5)C82—H82A0.9600
C9—C101.523 (5)C82—H82B0.9600
C9—H90.9800C82—H82C0.9600
C10—C111.482 (5)O9—C911.403 (11)
C11—C121.512 (5)O9—H9A0.9804
C11—H110.9800C91—C921.483 (11)
C12—C131.535 (5)C91—H91A0.9700
C12—H12A0.9700C91—H91B0.9700
C12—H12B0.9700C92—H92A0.9600
C13—C141.544 (5)C92—H92B0.9600
C13—C171.545 (6)C92—H92C0.9600
C13—C221.548 (6)
C10—O2—C1161.2 (2)C14—C15—H15A110.7
C20—O3—C17112.0 (3)C16—C15—H15B110.7
C23—O6—C24117.8 (4)C14—C15—H15B110.7
O1—C1—C2121.9 (5)H15A—C15—H15B108.8
O1—C1—C6120.8 (4)C17—C16—C15105.6 (3)
C2—C1—C6117.3 (4)C17—C16—H16A110.6
C3—C2—C1123.9 (4)C15—C16—H16A110.6
C3—C2—H2118.1C17—C16—H16B110.6
C1—C2—H2118.1C15—C16—H16B110.6
C2—C3—C7118.9 (4)H16A—C16—H16B108.7
C2—C3—C4122.8 (3)O3—C17—C18103.4 (3)
C7—C3—C4118.3 (3)O3—C17—C16108.3 (3)
C3—C4—C10110.1 (3)C18—C17—C16113.9 (4)
C3—C4—C5109.1 (3)O3—C17—C13111.0 (3)
C10—C4—C5111.4 (3)C18—C17—C13116.0 (3)
C3—C4—C21109.4 (3)C16—C17—C13104.3 (3)
C10—C4—C21107.4 (3)C17—C18—C19104.4 (3)
C5—C4—C21109.4 (3)C17—C18—H18A110.9
C6—C5—C4113.6 (3)C19—C18—H18A110.9
C6—C5—H5A108.8C17—C18—H18B110.9
C4—C5—H5A108.8C19—C18—H18B110.9
C6—C5—H5B108.8H18A—C18—H18B108.9
C4—C5—H5B108.8C20—C19—C18103.0 (4)
H5A—C5—H5B107.7C20—C19—H19A111.2
C1—C6—C5112.0 (4)C18—C19—H19A111.2
C1—C6—H6A109.2C20—C19—H19B111.2
C5—C6—H6A109.2C18—C19—H19B111.2
C1—C6—H6B109.2H19A—C19—H19B109.1
C5—C6—H6B109.2O4—C20—O3120.5 (4)
H6A—C6—H6B107.9O4—C20—C19128.5 (4)
C3—C7—C8113.1 (3)O3—C20—C19110.9 (3)
C3—C7—H7A109.0C4—C21—H21A109.5
C8—C7—H7A109.0C4—C21—H21B109.5
C3—C7—H7B109.0H21A—C21—H21B109.5
C8—C7—H7B109.0C4—C21—H21C109.5
H7A—C7—H7B107.8H21A—C21—H21C109.5
C23—C8—C7114.6 (3)H21B—C21—H21C109.5
C23—C8—C9112.0 (3)C13—C22—H22A109.5
C7—C8—C9108.2 (3)C13—C22—H22B109.5
C23—C8—H8107.2H22A—C22—H22B109.5
C7—C8—H8107.2C13—C22—H22C109.5
C9—C8—H8107.2H22A—C22—H22C109.5
C14—C9—C10111.8 (3)H22B—C22—H22C109.5
C14—C9—C8115.3 (3)O5—C23—O6122.7 (4)
C10—C9—C8109.7 (3)O5—C23—C8124.9 (4)
C14—C9—H9106.5O6—C23—C8112.4 (3)
C10—C9—H9106.5O6—C24—H24A109.5
C8—C9—H9106.5O6—C24—H24B109.5
O2—C10—C1159.7 (2)H24A—C24—H24B109.5
O2—C10—C9112.2 (3)O6—C24—H24C109.5
C11—C10—C9118.1 (3)H24A—C24—H24C109.5
O2—C10—C4116.2 (3)H24B—C24—H24C109.5
C11—C10—C4121.5 (3)C81—O8—H8A120.4
C9—C10—C4116.0 (3)C81—O8—H9A91.0
O2—C11—C1059.1 (2)O8—C81—C82111.1 (11)
O2—C11—C12116.5 (3)O8—C81—H81A109.4
C10—C11—C12124.6 (3)C82—C81—H81A109.4
O2—C11—H11114.9O8—C81—H81B109.4
C10—C11—H11114.9C82—C81—H81B109.4
C12—C11—H11114.9H81A—C81—H81B108.0
C11—C12—C13112.3 (3)C81—C82—H82A109.5
C11—C12—H12A109.1C81—C82—H82B109.5
C13—C12—H12A109.1H82A—C82—H82B109.5
C11—C12—H12B109.1C81—C82—H82C109.5
C13—C12—H12B109.1H82A—C82—H82C109.5
H12A—C12—H12B107.9H82B—C82—H82C109.5
C12—C13—C14109.0 (3)C91—O9—H9A115.6
C12—C13—C17117.6 (3)O9—C91—C92112.3 (12)
C14—C13—C17100.0 (3)O9—C91—H91A109.1
C12—C13—C22108.5 (3)C92—C91—H91A109.1
C14—C13—C22111.7 (3)O9—C91—H91B109.1
C17—C13—C22110.0 (3)C92—C91—H91B109.1
C9—C14—C13112.8 (3)H91A—C91—H91B107.9
C9—C14—C15116.6 (3)C91—C92—H92A109.5
C13—C14—C15104.6 (3)C91—C92—H92B109.5
C9—C14—H14107.5H92A—C92—H92B109.5
C13—C14—H14107.5C91—C92—H92C109.5
C15—C14—H14107.5H92A—C92—H92C109.5
C16—C15—C14105.3 (3)H92B—C92—H92C109.5
C16—C15—H15A110.7
O1—C1—C2—C3177.4 (5)O2—C11—C12—C1381.0 (4)
C6—C1—C2—C32.3 (7)C10—C11—C12—C1311.7 (5)
C1—C2—C3—C7176.2 (4)C11—C12—C13—C1443.1 (4)
C1—C2—C3—C41.5 (7)C11—C12—C13—C17155.9 (3)
C2—C3—C4—C10143.4 (4)C11—C12—C13—C2278.6 (4)
C7—C3—C4—C1038.9 (4)C10—C9—C14—C1351.8 (4)
C2—C3—C4—C520.9 (5)C8—C9—C14—C13178.0 (3)
C7—C3—C4—C5161.4 (3)C10—C9—C14—C15172.9 (3)
C2—C3—C4—C2198.7 (4)C8—C9—C14—C1560.9 (5)
C7—C3—C4—C2179.0 (4)C12—C13—C14—C966.2 (4)
C3—C4—C5—C647.3 (5)C17—C13—C14—C9169.9 (3)
C10—C4—C5—C6169.0 (4)C22—C13—C14—C953.7 (4)
C21—C4—C5—C672.4 (5)C12—C13—C14—C15166.1 (3)
O1—C1—C6—C5150.7 (5)C17—C13—C14—C1542.2 (4)
C2—C1—C6—C529.0 (7)C22—C13—C14—C1574.1 (4)
C4—C5—C6—C152.5 (6)C9—C14—C15—C16151.0 (4)
C2—C3—C7—C8134.9 (4)C13—C14—C15—C1625.7 (5)
C4—C3—C7—C847.3 (5)C14—C15—C16—C171.4 (5)
C3—C7—C8—C2370.2 (4)C20—O3—C17—C1814.6 (5)
C3—C7—C8—C955.7 (4)C20—O3—C17—C16135.7 (4)
C23—C8—C9—C1459.7 (4)C20—O3—C17—C13110.5 (4)
C7—C8—C9—C14172.9 (3)C15—C16—C17—O3146.3 (4)
C23—C8—C9—C1067.5 (4)C15—C16—C17—C1899.4 (4)
C7—C8—C9—C1059.9 (4)C15—C16—C17—C1328.0 (5)
C11—O2—C10—C9110.5 (3)C12—C13—C17—O382.8 (4)
C11—O2—C10—C4112.7 (4)C14—C13—C17—O3159.5 (3)
C14—C9—C10—O248.9 (4)C22—C13—C17—O341.9 (4)
C8—C9—C10—O280.2 (4)C12—C13—C17—C1834.7 (5)
C14—C9—C10—C1117.5 (5)C14—C13—C17—C1883.0 (4)
C8—C9—C10—C11146.7 (3)C22—C13—C17—C18159.5 (3)
C14—C9—C10—C4174.2 (3)C12—C13—C17—C16160.8 (3)
C8—C9—C10—C456.6 (4)C14—C13—C17—C1643.1 (4)
C3—C4—C10—O291.2 (4)C22—C13—C17—C1674.5 (4)
C5—C4—C10—O230.0 (5)O3—C17—C18—C1923.4 (4)
C21—C4—C10—O2149.7 (3)C16—C17—C18—C19140.6 (4)
C3—C4—C10—C11160.2 (3)C13—C17—C18—C1998.3 (4)
C5—C4—C10—C1139.1 (5)C17—C18—C19—C2023.9 (5)
C21—C4—C10—C1180.7 (4)C17—O3—C20—O4178.1 (4)
C3—C4—C10—C944.0 (4)C17—O3—C20—C191.0 (5)
C5—C4—C10—C9165.1 (3)C18—C19—C20—O4167.2 (5)
C21—C4—C10—C975.1 (4)C18—C19—C20—O316.1 (5)
C10—O2—C11—C12116.1 (3)C24—O6—C23—O52.4 (6)
C9—C10—C11—O2100.7 (3)C24—O6—C23—C8177.9 (4)
C4—C10—C11—O2104.0 (3)C7—C8—C23—O5164.2 (4)
O2—C10—C11—C12102.7 (4)C9—C8—C23—O572.0 (5)
C9—C10—C11—C122.0 (5)C7—C8—C23—O615.5 (4)
C4—C10—C11—C12153.4 (3)C9—C8—C23—O6108.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···O1i0.962.193.15 (4)178
O9—H9A···O1i0.982.343.32 (4)177
C6—H6A···O2ii0.972.533.447 (6)157
C7—H7B···O5iii0.972.523.467 (5)164
C11—H11···O4iv0.982.573.337 (5)135
C14—H14···O50.982.503.103 (5)120
C21—H21A···O5iii0.962.463.351 (6)154
C92—H92A···O1v0.962.543.44 (6)155
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x, y1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x1/2, y+3/2, z+1; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC24H30O6·C2H6O
Mr460.55
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)8.3236 (5), 12.8306 (9), 23.3173 (13)
V3)2490.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.16 × 0.14
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19548, 2559, 1955
Rint0.054
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.151, 1.05
No. of reflections2559
No. of parameters293
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.19

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···O1i0.962.193.15 (4)178
O9—H9A···O1i0.982.343.32 (4)177
Symmetry code: (i) x+1/2, y+3/2, z.
 

Acknowledgements

The work was supported by the ZIJIN project of Zhejiang University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGrob, J., Boillaz, M., Schmidlin, J., Wehrli, H., Wieland, P., Fuhrer, H., Rihs, G., Joss, U., de Gasparo, M., Haenni, H., Ramjoue, H. P., Whitebread, S. E. & Kalvoda, J. (1997). Helv. Chim. Acta, 80, 566–585.  CSD CrossRef CAS Web of Science Google Scholar
First citationGrob, J. & Kalvoda, J. (1985). US Patent 4559332.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, L.-Z., Yang, Q. & Nie, J.-J. (2007). Acta Cryst. E63, o4898.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, Q., Ye, W.-D., Yuan, J.-Y. & Nie, J.-J. (2007). Acta Cryst. E63, o2068–o2070.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds