organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2,2-Tri­chloro-N-(2,5-di­methyl­phen­yl)acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 3 April 2008; accepted 5 April 2008; online 10 April 2008)

The N—H bond in the title compound, C10H10Cl3NO, is syn to the 2-methyl and anti to the 5-methyl substituent of the aromatic ring. Adjacent mol­ecules are linked into chains through N—H⋯O hydrogen bonding. Two Cl atoms are each disordered equally over two sites.

Related literature

For related literature, see: Gowda, Foro & Fuess (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2343-o2344.]); Gowda, Kožíšek et al. (2007[Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2571-o2572.]); Shilpa & Gowda (2007[Shilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84-90.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10Cl3NO

  • Mr = 266.54

  • Orthorhombic, P 21 21 21

  • a = 4.9173 (9) Å

  • b = 11.290 (1) Å

  • c = 21.070 (2) Å

  • V = 1169.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 299 (2) K

  • 0.16 × 0.12 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd. Köln, Germany.]) Tmin = 0.889, Tmax = 0.956

  • 6121 measured reflections

  • 2314 independent reflections

  • 703 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.088

  • wR(F2) = 0.308

  • S = 0.86

  • 2314 reflections

  • 154 parameters

  • 37 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.76 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 887 Friedel pairs

  • Flack parameter: −0.4 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7N⋯O6i 0.86 2.12 2.984 (11) 178
Symmetry code: (i) x+1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2004[Oxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd. Köln, Germany.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd. Köln, Germany.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, the structure of 2,2,2-trichloro-N- (2,5-dimethylphenyl)acetamide (25DMPTCA) has been determined to study the effect of substituents on the structures of N-aromatic amides (Gowda, Foro et al., 2007; Gowda, Kožíšek et al., 2007). The conformation of the N—H bond in 25DMPTCA is syn to the 2-methyl and anti to the 5-methyl substituents in the aromatic ring (Fig. 1), similar to the syn conformation observed with respect to the 2-methyl substituent in 2,2,2-trichloro-N-(2-methylphenyl)acetamide (2MPTCA) (Gowda, Kožíšek et al., 2007). The bond parameters in 25DMPTCA are similar to those in 2MPTCA, 2,2,2-trichloro-N-(2,6-dimethylphenyl)- acetamide and other acetanilides (Gowda, Foro et al., 2007; Gowda, Kožíšek et al., 2007). The intermolecular N—H···O hydrogen bonds link the molecules into chains (Table 1 and Fig.2). The Cl atoms of CCl3 group are disordered and Cl1 and Cl3 were refined using a split model with site-occupation factors 0.5:0.5. No reliable disorder model could be produced for Cl2.

Related literature top

For related literature, see: Gowda, Foro & Fuess (2007); Gowda, Kožíšek et al. (2007); Shilpa & Gowda (2007).

Experimental top

The title compound was prepared according to the literature method (Shilpa and Gowda, 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Shilpa and Gowda, 2007). Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å, N—H = 0.86 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

The Cl atoms of CCl3 group are disordered and Cl1 and Cl3 were refined using a split model with site-occupation factors 0.5:0.5. No reliable disorder model could be produced for Cl2. The C—Cl distances were restrained to 1.77 (2) Å and the distances in the disordered groups were restrained to be equal.

The compound is a weak anamalous scatterer with minor intensity at high θ value. The low fraction of unique data is above the 2σ level (30°).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
2,2,2-Trichloro-N-(2,5-dimethylphenyl)acetamide top
Crystal data top
C10H10Cl3NOF(000) = 544
Mr = 266.54Dx = 1.514 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1061 reflections
a = 4.9173 (9) Åθ = 2.6–28.1°
b = 11.290 (1) ŵ = 0.76 mm1
c = 21.070 (2) ÅT = 299 K
V = 1169.7 (3) Å3Prism, colourless
Z = 40.16 × 0.12 × 0.06 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
2314 independent reflections
Radiation source: Enhance (Mo) X-ray Source703 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
Rotation method data acquisition using ω and phi scans.θmax = 26.4°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 66
Tmin = 0.889, Tmax = 0.956k = 1413
6121 measured reflectionsl = 2623
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.088H-atom parameters constrained
wR(F2) = 0.309 w = 1/[σ2(Fo2) + (0.1675P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.86(Δ/σ)max = 0.003
2314 reflectionsΔρmax = 0.27 e Å3
154 parametersΔρmin = 0.76 e Å3
37 restraintsAbsolute structure: Flack (1983), 887 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.4 (4)
Crystal data top
C10H10Cl3NOV = 1169.7 (3) Å3
Mr = 266.54Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.9173 (9) ŵ = 0.76 mm1
b = 11.290 (1) ÅT = 299 K
c = 21.070 (2) Å0.16 × 0.12 × 0.06 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
2314 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
703 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.956Rint = 0.071
6121 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.088H-atom parameters constrained
wR(F2) = 0.309Δρmax = 0.27 e Å3
S = 0.86Δρmin = 0.76 e Å3
2314 reflectionsAbsolute structure: Flack (1983), 887 Friedel pairs
154 parametersAbsolute structure parameter: 0.4 (4)
37 restraints
Special details top

Experimental. empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl1A0.4909 (19)0.3895 (7)0.5055 (3)0.096 (2)0.50
Cl1B0.301 (3)0.3888 (10)0.5125 (4)0.139 (4)0.50
Cl20.0276 (14)0.5253 (7)0.5201 (3)0.218 (3)
Cl3A0.459 (2)0.6280 (6)0.4526 (3)0.102 (2)0.50
Cl3B0.226 (2)0.6324 (7)0.4737 (5)0.141 (3)0.50
O60.0518 (17)0.4448 (7)0.3920 (4)0.092 (3)
N70.3670 (16)0.4054 (7)0.3571 (4)0.069 (2)
H7N0.53560.41630.36620.083*
C40.311 (2)0.4931 (7)0.4592 (4)0.082 (3)
C50.180 (3)0.4444 (9)0.4003 (6)0.075 (3)
C80.308 (2)0.3488 (8)0.2991 (4)0.055 (3)
C90.4334 (19)0.2416 (9)0.2866 (5)0.062 (3)
C100.358 (2)0.1877 (10)0.2267 (5)0.079 (3)
H100.43360.11510.21540.095*
C110.178 (2)0.2420 (10)0.1863 (4)0.067 (3)
H110.13710.20540.14800.080*
C120.055 (2)0.3486 (10)0.2002 (5)0.069 (3)
C130.125 (2)0.4011 (9)0.2572 (4)0.062 (3)
H130.04660.47350.26790.074*
C140.624 (2)0.1827 (8)0.3309 (5)0.075 (3)
H14A0.53120.16550.37000.090*
H14B0.77500.23410.33920.090*
H14C0.68780.11030.31230.090*
C150.138 (2)0.4037 (11)0.1548 (5)0.091 (3)
H15A0.28380.34970.14620.109*
H15B0.04410.42180.11600.109*
H15C0.20940.47530.17270.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.116 (6)0.109 (5)0.063 (3)0.023 (5)0.000 (4)0.003 (3)
Cl1B0.172 (8)0.151 (7)0.093 (5)0.036 (7)0.005 (6)0.037 (5)
Cl20.213 (6)0.278 (7)0.163 (4)0.011 (6)0.007 (4)0.053 (4)
Cl3A0.135 (6)0.086 (4)0.086 (4)0.038 (4)0.016 (4)0.025 (3)
Cl3B0.151 (7)0.117 (6)0.154 (6)0.018 (6)0.027 (6)0.049 (5)
O60.052 (4)0.127 (7)0.099 (5)0.011 (5)0.007 (4)0.040 (5)
N70.049 (5)0.068 (5)0.092 (6)0.004 (5)0.014 (5)0.016 (5)
C40.091 (8)0.070 (7)0.084 (7)0.002 (7)0.025 (7)0.019 (6)
C50.056 (7)0.081 (8)0.088 (7)0.011 (7)0.018 (7)0.019 (6)
C80.055 (6)0.061 (6)0.048 (5)0.009 (6)0.004 (6)0.005 (5)
C90.045 (5)0.056 (6)0.086 (7)0.011 (6)0.004 (6)0.018 (6)
C100.079 (8)0.064 (7)0.095 (8)0.004 (7)0.000 (7)0.012 (6)
C110.077 (8)0.064 (7)0.061 (6)0.004 (7)0.005 (6)0.005 (5)
C120.063 (7)0.078 (8)0.066 (6)0.016 (7)0.003 (6)0.022 (6)
C130.062 (6)0.062 (5)0.062 (6)0.006 (6)0.005 (6)0.010 (5)
C140.073 (7)0.050 (6)0.102 (7)0.001 (7)0.004 (7)0.000 (6)
C150.080 (8)0.119 (9)0.074 (6)0.001 (9)0.017 (7)0.019 (7)
Geometric parameters (Å, º) top
Cl1A—C41.761 (11)C10—C111.373 (14)
Cl1B—C41.628 (11)C10—H100.9300
Cl2—C41.931 (10)C11—C121.378 (13)
Cl3A—C41.693 (10)C11—H110.9300
Cl3B—C41.656 (10)C12—C131.382 (14)
O6—C51.151 (11)C12—C151.484 (14)
N7—C51.367 (13)C13—H130.9300
N7—C81.411 (11)C14—H14A0.9600
N7—H7N0.8600C14—H14B0.9600
C4—C51.503 (13)C14—H14C0.9600
C8—C91.383 (12)C15—H15A0.9600
C8—C131.393 (13)C15—H15B0.9600
C9—C101.449 (14)C15—H15C0.9600
C9—C141.480 (12)
C5—N7—C8125.7 (8)C10—C9—C14121.5 (9)
C5—N7—H7N117.1C11—C10—C9121.1 (10)
C8—N7—H7N117.1C11—C10—H10119.5
C5—C4—Cl1B106.9 (8)C9—C10—H10119.5
C5—C4—Cl3B113.0 (8)C10—C11—C12122.8 (10)
Cl1B—C4—Cl3B123.5 (8)C10—C11—H11118.6
C5—C4—Cl3A116.5 (7)C12—C11—H11118.6
Cl1B—C4—Cl3A136.1 (7)C11—C12—C13116.8 (9)
Cl3B—C4—Cl3A43.0 (5)C11—C12—C15120.6 (10)
C5—C4—Cl1A115.4 (7)C13—C12—C15122.6 (11)
Cl1B—C4—Cl1A32.1 (4)C12—C13—C8121.9 (9)
Cl3B—C4—Cl1A131.0 (7)C12—C13—H13119.1
Cl3A—C4—Cl1A115.4 (7)C8—C13—H13119.1
C5—C4—Cl2107.8 (8)C9—C14—H14A109.5
Cl1B—C4—Cl269.8 (7)C9—C14—H14B109.5
Cl3B—C4—Cl261.1 (6)H14A—C14—H14B109.5
Cl3A—C4—Cl2101.2 (5)C9—C14—H14C109.5
Cl1A—C4—Cl296.8 (6)H14A—C14—H14C109.5
O6—C5—N7124.5 (10)H14B—C14—H14C109.5
O6—C5—C4123.3 (12)C12—C15—H15A109.5
N7—C5—C4112.1 (10)C12—C15—H15B109.5
C9—C8—C13122.6 (9)H15A—C15—H15B109.5
C9—C8—N7118.0 (9)C12—C15—H15C109.5
C13—C8—N7119.4 (9)H15A—C15—H15C109.5
C8—C9—C10114.8 (9)H15B—C15—H15C109.5
C8—C9—C14123.7 (9)
C8—N7—C5—O67.0 (17)C13—C8—C9—C100.2 (13)
C8—N7—C5—C4176.0 (8)N7—C8—C9—C10178.7 (9)
Cl1B—C4—C5—O684.0 (14)C13—C8—C9—C14178.4 (9)
Cl3B—C4—C5—O655.0 (16)N7—C8—C9—C140.6 (13)
Cl3A—C4—C5—O6102.5 (14)C8—C9—C10—C110.6 (14)
Cl1A—C4—C5—O6117.4 (13)C14—C9—C10—C11178.8 (9)
Cl2—C4—C5—O610.4 (14)C9—C10—C11—C121.1 (17)
Cl1B—C4—C5—N799.0 (10)C10—C11—C12—C131.0 (15)
Cl3B—C4—C5—N7121.9 (10)C10—C11—C12—C15179.7 (10)
Cl3A—C4—C5—N774.5 (11)C11—C12—C13—C80.6 (14)
Cl1A—C4—C5—N765.6 (11)C15—C12—C13—C8179.3 (9)
Cl2—C4—C5—N7172.6 (7)C9—C8—C13—C120.3 (14)
C5—N7—C8—C9127.3 (10)N7—C8—C13—C12178.7 (9)
C5—N7—C8—C1351.7 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7N···O6i0.862.122.984 (11)178
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC10H10Cl3NO
Mr266.54
Crystal system, space groupOrthorhombic, P212121
Temperature (K)299
a, b, c (Å)4.9173 (9), 11.290 (1), 21.070 (2)
V3)1169.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.76
Crystal size (mm)0.16 × 0.12 × 0.06
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.889, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
6121, 2314, 703
Rint0.071
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.088, 0.309, 0.86
No. of reflections2314
No. of parameters154
No. of restraints37
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.76
Absolute structureFlack (1983), 887 Friedel pairs
Absolute structure parameter0.4 (4)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7N···O6i0.862.122.984 (11)177.9
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2343–o2344.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2571–o2572.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd. Köln, Germany.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd. Köln, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84–90.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds