metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­bis­(1H-imidazole-κN3)bis­­(4-methyl­benzoato)-κO;κO,O′-nickel(II)

aCollege of Science, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China, and bCollege of Food Science and Technology, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: songwd60@126.com

(Received 4 April 2008; accepted 7 April 2008; online 10 April 2008)

In the mononuclear title compound, [Ni(C8H7O2)2(C3H4N2)2(H2O)], the NiII atom is coordinated by three carboxylate O atoms (from a bidentate 4-methyl­benzoate ligand and a monodentate 4-methyl­benzoate ligand), two N atoms (from two imidazole ligands) and a water mol­ecule in an octa­hedral geometry. Inter­molecular O—H⋯O hydrogen-bonding inter­actions lead to infinite chains, which are further self-assembled into a supra­molecular network through inter­molecular N—H⋯O hydrogen-bonding inter­actions and ππ stacking [centroid–centroid distance = 3.717 (2) Å].

Related literature

For related literature, see: Song et al. (2007[Song, W.-D., Gu, C.-S., Hao, X.-M. & Liu, J.-W. (2007). Acta Cryst. E63, m1023-m1024.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H7O2)2(C3H4N2)2(H2O)]

  • Mr = 483.16

  • Monoclinic, P 21 /n

  • a = 18.9456 (12) Å

  • b = 5.8755 (4) Å

  • c = 20.3209 (14) Å

  • β = 101.813 (4)°

  • V = 2214.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 296 (2) K

  • 0.30 × 0.26 × 0.25 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.770, Tmax = 0.803

  • 20580 measured reflections

  • 3776 independent reflections

  • 2815 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.171

  • S = 1.07

  • 3776 reflections

  • 297 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O3i 0.826 (10) 2.31 (4) 2.782 (4) 116 (4)
O1W—H1W⋯O2i 0.826 (10) 2.21 (3) 2.772 (4) 126 (3)
N2—H2⋯O2ii 0.86 1.96 2.816 (5) 175
N4—H22⋯O4iii 0.86 2.02 2.865 (4) 167
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y, -z+2; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the structural investigation of 4-methylbenzate complexes, it has been found that the 4-methylbenzoic acid functions as a multidentate ligand [Song et al. (2007)], with versatile binding and coordination modes. In this paper, we report the crystal structure of the title compound, (I), a new Ni complex obtained by the reaction of 4-methylbenzoic acid, imidazole and nickel chloride in alkaline aqueous solution.

As illustrated in Figure 1, the NiII atom exists in a disordered octahedral environment, defined by three carboxyl O atoms from one bisdentate 4-methylbenzate ligand and one monodentate 4-methylbenzate ligand, two N atoms from two imidazole ligands and one water molecule. Intermolecular O—H···O hydrogen bonding interactions (Table 1) form infinite chains involving the coordinating water molecule as donors and O atoms of 4-methylbenzate ligands as acceptors, which are further self-assembled into a supramolecular network through intermolecular N—H···O hydrogen bonding interactions and π-π stacking interactions of neighboring complexes, with a centroid-centroid distance of 3.717 (2) Å. (Fig. 2).

Related literature top

For related literature, see: Song et al. (2007).

Experimental top

A mixture of nickel chloride(1 mmol), 4-methylbenzoic acid (1 mmol), imidazole(1 mmol), NaOH (1.5 mmol) and H2O (12 ml) was placed in a 23 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dryed in air.

Refinement top

H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 - 0.97 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atomic numbering scheme. Non-H atoms are shown as 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing of structure (I).
Aquabis(1H-imidazole-κN3)bis(4-methylbenzoato)-κO;κO,O'-nickel(II) top
Crystal data top
[Ni(C8H7O2)2(C3H4N2)2(H2O)]F(000) = 1008
Mr = 483.16Dx = 1.449 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3600 reflections
a = 18.9456 (12) Åθ = 1.4–28°
b = 5.8755 (4) ŵ = 0.92 mm1
c = 20.3209 (14) ÅT = 296 K
β = 101.813 (4)°Block, blue
V = 2214.1 (3) Å30.30 × 0.26 × 0.25 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
3776 independent reflections
Radiation source: fine-focus sealed tube2815 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
ϕ and ω scansθmax = 25.2°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2222
Tmin = 0.770, Tmax = 0.803k = 77
20580 measured reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.1064P)2 + 0.0659P]
where P = (Fo2 + 2Fc2)/3
3776 reflections(Δ/σ)max = 0.001
297 parametersΔρmax = 1.02 e Å3
3 restraintsΔρmin = 0.71 e Å3
Crystal data top
[Ni(C8H7O2)2(C3H4N2)2(H2O)]V = 2214.1 (3) Å3
Mr = 483.16Z = 4
Monoclinic, P21/nMo Kα radiation
a = 18.9456 (12) ŵ = 0.92 mm1
b = 5.8755 (4) ÅT = 296 K
c = 20.3209 (14) Å0.30 × 0.26 × 0.25 mm
β = 101.813 (4)°
Data collection top
Bruker APEXII area-detector
diffractometer
3776 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2815 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 0.803Rint = 0.077
20580 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0603 restraints
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 1.02 e Å3
3776 reflectionsΔρmin = 0.71 e Å3
297 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.68032 (18)0.0732 (7)0.9997 (2)0.0328 (10)
C20.72717 (19)0.1141 (7)1.0678 (2)0.0318 (10)
C30.7618 (2)0.3198 (8)1.0827 (2)0.0434 (12)
H30.75520.43521.05070.052*
C40.8066 (2)0.3558 (9)1.1451 (3)0.0515 (13)
H40.83020.49491.15380.062*
C50.8171 (2)0.1911 (9)1.1943 (3)0.0450 (12)
C60.7816 (2)0.0143 (9)1.1796 (3)0.0532 (13)
H60.78750.12861.21190.064*
C70.7377 (2)0.0515 (8)1.1177 (3)0.0473 (12)
H70.71440.19101.10900.057*
C80.8676 (3)0.2326 (11)1.2602 (3)0.0676 (17)
H8A0.91360.16551.25930.101*
H8B0.84820.16551.29570.101*
H8C0.87330.39351.26770.101*
C90.56235 (18)0.1063 (7)0.7571 (2)0.0291 (9)
C100.51866 (17)0.0039 (6)0.6958 (2)0.0282 (9)
C110.5069 (2)0.1198 (8)0.6345 (2)0.0402 (11)
H110.52710.26330.63250.048*
C120.4665 (2)0.0269 (8)0.5775 (2)0.0463 (12)
H120.45930.10880.53750.056*
C130.4360 (2)0.1874 (8)0.5782 (3)0.0442 (12)
C140.4474 (2)0.3059 (8)0.6384 (3)0.0406 (12)
H140.42710.44960.63980.049*
C150.4884 (2)0.2135 (7)0.6964 (2)0.0351 (11)
H150.49600.29640.73620.042*
C160.3904 (3)0.2924 (10)0.5148 (3)0.0693 (17)
H16A0.41870.30310.48070.104*
H16B0.34900.19850.49890.104*
H16C0.37500.44170.52490.104*
C170.49535 (19)0.5721 (7)0.8861 (2)0.0373 (11)
H170.50790.70420.86600.045*
C180.4381 (2)0.5510 (8)0.9164 (2)0.0433 (12)
H180.40470.66270.92100.052*
C190.4959 (2)0.2304 (8)0.9211 (3)0.0411 (12)
H190.50830.07870.93010.049*
C200.7912 (2)0.2900 (8)0.8792 (3)0.0495 (14)
H200.79470.39480.91400.059*
C210.7474 (2)0.0663 (7)0.7991 (2)0.0420 (11)
H210.71520.01600.76710.050*
N40.81940 (17)0.0528 (6)0.8074 (2)0.0467 (10)
H220.84300.03060.78460.056*
N10.53185 (15)0.3705 (6)0.88955 (18)0.0333 (8)
N20.43972 (17)0.3329 (7)0.93841 (19)0.0413 (10)
H20.40980.27160.95980.050*
N30.72811 (16)0.2084 (5)0.84118 (19)0.0322 (9)
C220.8477 (2)0.1935 (9)0.8579 (3)0.0499 (14)
H4A0.89640.21990.87490.060*
Ni10.62851 (2)0.29313 (8)0.86285 (3)0.0263 (2)
O10.67349 (15)0.2409 (5)0.95998 (16)0.0380 (8)
O20.65064 (15)0.1153 (5)0.98695 (15)0.0437 (8)
O30.57902 (13)0.0107 (4)0.80995 (15)0.0338 (7)
O40.58228 (13)0.3134 (4)0.75769 (15)0.0300 (7)
O1W0.66137 (13)0.6312 (5)0.87438 (15)0.0344 (7)
H1W0.6334 (14)0.721 (6)0.887 (2)0.052*
H2W0.7005 (9)0.663 (7)0.896 (2)0.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0320 (19)0.036 (2)0.034 (3)0.0060 (16)0.0155 (18)0.002 (2)
C20.0314 (18)0.038 (2)0.027 (3)0.0003 (17)0.0100 (17)0.001 (2)
C30.049 (2)0.042 (3)0.036 (3)0.0022 (19)0.002 (2)0.009 (2)
C40.047 (2)0.053 (3)0.050 (4)0.008 (2)0.001 (2)0.005 (3)
C50.035 (2)0.069 (3)0.029 (3)0.005 (2)0.0035 (19)0.002 (3)
C60.054 (3)0.068 (3)0.035 (3)0.002 (2)0.001 (2)0.021 (3)
C70.048 (2)0.047 (3)0.046 (3)0.007 (2)0.006 (2)0.004 (2)
C80.050 (3)0.107 (5)0.043 (4)0.002 (3)0.001 (3)0.001 (3)
C90.0326 (18)0.026 (2)0.031 (3)0.0049 (16)0.0122 (17)0.001 (2)
C100.0306 (18)0.030 (2)0.026 (3)0.0001 (15)0.0104 (16)0.0001 (19)
C110.046 (2)0.034 (2)0.041 (3)0.0007 (19)0.011 (2)0.002 (2)
C120.057 (3)0.048 (3)0.032 (3)0.003 (2)0.005 (2)0.004 (2)
C130.036 (2)0.055 (3)0.042 (3)0.0048 (19)0.008 (2)0.012 (3)
C140.038 (2)0.040 (3)0.044 (4)0.0082 (17)0.008 (2)0.008 (2)
C150.039 (2)0.030 (2)0.038 (3)0.0015 (16)0.0107 (19)0.001 (2)
C160.070 (3)0.079 (4)0.057 (5)0.020 (3)0.008 (3)0.025 (3)
C170.036 (2)0.034 (2)0.044 (3)0.0018 (16)0.0125 (18)0.007 (2)
C180.036 (2)0.052 (3)0.045 (3)0.0025 (19)0.014 (2)0.013 (2)
C190.040 (2)0.042 (3)0.043 (3)0.0010 (18)0.010 (2)0.000 (2)
C200.034 (2)0.060 (3)0.056 (4)0.0034 (19)0.013 (2)0.016 (3)
C210.043 (2)0.036 (2)0.049 (3)0.0004 (18)0.015 (2)0.008 (2)
N40.0425 (19)0.045 (2)0.059 (3)0.0097 (16)0.0251 (18)0.005 (2)
N10.0318 (16)0.0358 (19)0.035 (2)0.0025 (14)0.0123 (14)0.0007 (17)
N20.0344 (17)0.058 (3)0.037 (3)0.0090 (16)0.0194 (16)0.006 (2)
N30.0329 (16)0.0297 (18)0.036 (3)0.0001 (13)0.0130 (15)0.0062 (17)
C220.034 (2)0.064 (3)0.055 (4)0.000 (2)0.016 (2)0.001 (3)
Ni10.0288 (3)0.0243 (3)0.0276 (4)0.00023 (17)0.0098 (2)0.0002 (2)
O10.0404 (15)0.0427 (18)0.030 (2)0.0005 (12)0.0042 (13)0.0050 (14)
O20.0580 (17)0.0408 (18)0.035 (2)0.0158 (15)0.0168 (14)0.0062 (16)
O30.0400 (14)0.0276 (15)0.032 (2)0.0014 (11)0.0030 (12)0.0030 (14)
O40.0374 (14)0.0249 (15)0.0286 (19)0.0026 (11)0.0090 (12)0.0007 (13)
O1W0.0316 (13)0.0292 (15)0.044 (2)0.0014 (12)0.0124 (13)0.0067 (14)
Geometric parameters (Å, º) top
C1—O21.245 (5)C15—H150.9300
C1—O11.264 (5)C16—H16A0.9600
C1—C21.503 (6)C16—H16B0.9600
C2—C31.379 (6)C16—H16C0.9600
C2—C71.389 (6)C17—C181.359 (6)
C3—C41.391 (6)C17—N11.366 (5)
C3—H30.9300C17—H170.9300
C4—C51.376 (7)C18—N21.356 (6)
C4—H40.9300C18—H180.9300
C5—C61.384 (7)C19—N11.315 (5)
C5—C81.497 (7)C19—N21.333 (5)
C6—C71.376 (6)C19—H190.9300
C6—H60.9300C20—C221.359 (6)
C7—H70.9300C20—N31.370 (5)
C8—H8A0.9600C20—H200.9300
C8—H8B0.9600C21—N31.300 (5)
C8—H8C0.9600C21—N41.342 (5)
C9—O31.260 (5)C21—H210.9300
C9—O41.274 (5)N4—C221.341 (6)
C9—C101.475 (6)N4—H220.8600
C10—C111.396 (6)N1—Ni12.065 (3)
C10—C151.401 (5)N2—H20.8600
C11—C121.365 (6)N3—Ni12.084 (3)
C11—H110.9300C22—H4A0.9300
C12—C131.387 (6)Ni1—O12.007 (3)
C12—H120.9300Ni1—O1W2.081 (3)
C13—C141.385 (7)Ni1—O42.140 (3)
C13—C161.526 (7)Ni1—O32.193 (3)
C14—C151.383 (6)O1W—H1W0.826 (10)
C14—H140.9300O1W—H2W0.805 (10)
O2—C1—O1125.3 (4)H16B—C16—H16C109.5
O2—C1—C2119.4 (4)C18—C17—N1109.9 (4)
O1—C1—C2115.3 (4)C18—C17—H17125.1
C3—C2—C7117.6 (4)N1—C17—H17125.1
C3—C2—C1120.4 (4)N2—C18—C17105.6 (4)
C7—C2—C1121.9 (4)N2—C18—H18127.2
C2—C3—C4120.5 (4)C17—C18—H18127.2
C2—C3—H3119.8N1—C19—N2111.5 (4)
C4—C3—H3119.8N1—C19—H19124.2
C5—C4—C3121.7 (5)N2—C19—H19124.2
C5—C4—H4119.1C22—C20—N3109.1 (4)
C3—C4—H4119.1C22—C20—H20125.4
C4—C5—C6117.7 (4)N3—C20—H20125.4
C4—C5—C8120.3 (5)N3—C21—N4111.7 (4)
C6—C5—C8121.9 (5)N3—C21—H21124.1
C7—C6—C5120.8 (5)N4—C21—H21124.1
C7—C6—H6119.6C22—N4—C21107.3 (4)
C5—C6—H6119.6C22—N4—H22126.4
C6—C7—C2121.7 (4)C21—N4—H22126.4
C6—C7—H7119.2C19—N1—C17105.1 (3)
C2—C7—H7119.2C19—N1—Ni1124.4 (3)
C5—C8—H8A109.5C17—N1—Ni1130.1 (3)
C5—C8—H8B109.5C19—N2—C18107.8 (4)
H8A—C8—H8B109.5C19—N2—H2126.1
C5—C8—H8C109.5C18—N2—H2126.1
H8A—C8—H8C109.5C21—N3—C20105.4 (3)
H8B—C8—H8C109.5C21—N3—Ni1132.9 (3)
O3—C9—O4119.4 (4)C20—N3—Ni1121.3 (3)
O3—C9—C10119.8 (4)N4—C22—C20106.5 (4)
O4—C9—C10120.8 (4)N4—C22—H4A126.8
C11—C10—C15117.5 (4)C20—C22—H4A126.8
C11—C10—C9120.9 (4)O1—Ni1—N189.78 (13)
C15—C10—C9121.6 (4)O1—Ni1—O1W88.76 (12)
C12—C11—C10121.4 (4)N1—Ni1—O1W91.21 (12)
C12—C11—H11119.3O1—Ni1—N387.18 (13)
C10—C11—H11119.3N1—Ni1—N3176.89 (14)
C11—C12—C13121.1 (5)O1W—Ni1—N389.37 (11)
C11—C12—H12119.4O1—Ni1—O4174.26 (11)
C13—C12—H12119.4N1—Ni1—O492.66 (12)
C14—C13—C12118.4 (4)O1W—Ni1—O496.38 (11)
C14—C13—C16120.1 (5)N3—Ni1—O490.32 (12)
C12—C13—C16121.5 (5)O1—Ni1—O3114.23 (12)
C15—C14—C13120.9 (4)N1—Ni1—O389.70 (12)
C15—C14—H14119.5O1W—Ni1—O3157.00 (12)
C13—C14—H14119.5N3—Ni1—O390.96 (11)
C14—C15—C10120.6 (4)O4—Ni1—O360.62 (10)
C14—C15—H15119.7C1—O1—Ni1135.7 (3)
C10—C15—H15119.7C9—O3—Ni188.9 (2)
C13—C16—H16A109.5C9—O4—Ni190.9 (2)
C13—C16—H16B109.5Ni1—O1W—H1W116 (3)
H16A—C16—H16B109.5Ni1—O1W—H2W120 (3)
C13—C16—H16C109.5H1W—O1W—H2W104.8 (17)
H16A—C16—H16C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O3i0.83 (1)2.31 (4)2.782 (4)116 (4)
O1W—H1W···O2i0.83 (1)2.21 (3)2.772 (4)126 (3)
N2—H2···O2ii0.861.962.816 (5)175
N4—H22···O4iii0.862.022.865 (4)167
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+2; (iii) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Ni(C8H7O2)2(C3H4N2)2(H2O)]
Mr483.16
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)18.9456 (12), 5.8755 (4), 20.3209 (14)
β (°) 101.813 (4)
V3)2214.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.30 × 0.26 × 0.25
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.770, 0.803
No. of measured, independent and
observed [I > 2σ(I)] reflections
20580, 3776, 2815
Rint0.077
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.171, 1.07
No. of reflections3776
No. of parameters297
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.02, 0.71

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O3i0.826 (10)2.31 (4)2.782 (4)116 (4)
O1W—H1W···O2i0.826 (10)2.21 (3)2.772 (4)126 (3)
N2—H2···O2ii0.861.962.816 (5)174.6
N4—H22···O4iii0.862.022.865 (4)167.1
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+2; (iii) x+3/2, y1/2, z+3/2.
 

Acknowledgements

The authors acknowledge Guang Dong Ocean University for supporting this work.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, W.-D., Gu, C.-S., Hao, X.-M. & Liu, J.-W. (2007). Acta Cryst. E63, m1023–m1024.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds