organic compounds
1-Methyl-3-phenylsulfonyl-2-piperidone
aDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bChemistry Institute, University of São Paulo, 05508-000 São Paulo, SP, Brazil, and cDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA
*Correspondence e-mail: julio@power.ufscar.br
The piperidone ring in the title compound, C12H15NO3S, has a slightly distorted half-chair conformation with the methyl, carbonyl and phenylsulfonyl ring substituents occupying equatorial, equatorial and axial positions, respectively. Molecules are connected into centrosymmetric dimers via C—H⋯O interactions and these associate into layers via C—H⋯O—S contacts. Further C—H⋯O interactions involving both the carbonyl and sulfonyl O atoms consolidate the crystal packing by providing connections between the layers.
Related literature
For related structures, see: Zukerman-Schpector et al. (1999, 2006). For related literature, see: Distefano et al. (1991); Olivato et al. (1992, 1997, 2003, 2004); Dal Colle et al. (1995). For ring see: Cremer & Pople (1975). For the synthesis, see: Drabowicz et al. (1983); Zoretic & Soja (1976).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808009288/ng2443sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808009288/ng2443Isup2.hkl
Initially, the 3-phenylsulfanyl-1-methyl-2-piperidone was obtained from the reaction of 1-methyl-2-piperidinone and diphenyl disulfide with LDA in THF as described in the literature (Zoretic and Soja, 1976). The product was oxidized with H2O2 and SeO2 (as catalyst) in methanol (Drabowicz et al. 1983) to give compound (I). After extraction with chloroform and subsequent evaporation, a crude solid was obtained. This product was subjected to flash ν(C=O) 1652, ν(SO2)(as) 1307, ν(SO2)(s) 1148. NMR (CDCl3, p.p.m.): δ 1.79–2.74 (4H, m), 2.95 (3H, s), 3.30–3.48 (2H, m), 3.97 (1H, triplet, J = 6.1 Hz), 7.53–7.57 (2H, m, aryl-H), 7.62–7.67 (1H, m, aryl-H), 7.92–7.94 (2H, m, aryl-H). Analysis found: C 56.86, H 6.04, N 5.58; C12H15O3NS requires: C 56.89, H 5.97, N 5.53%.
with a solution of ethyl acetate and acetone in a 7:3 ratio. Suitable crystals were obtained by vapor diffusion from chloroform/n-hexane at 283 K.; m.p. 414–415 K. IR (cm-1):All H atoms were included in the riding-model approximation with C—H = 0.95 - 1.00 Å, and with Uiso(H) = 1.5Ueq(methyl-C) or 1.2Ueq(remaining-C).
Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C12H15NO3S | F(000) = 536 |
Mr = 253.32 | Dx = 1.389 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71070 Å |
Hall symbol: -P 2yn | Cell parameters from 4417 reflections |
a = 9.0191 (16) Å | θ = 2.4–40.6° |
b = 10.4920 (18) Å | µ = 0.26 mm−1 |
c = 13.446 (3) Å | T = 98 K |
β = 107.861 (3)° | Block, colourless |
V = 1211.1 (4) Å3 | 0.25 × 0.18 × 0.10 mm |
Z = 4 |
Rigaku AFC12κ/SATURN724 diffractometer | 2729 independent reflections |
Radiation source: fine-focus sealed tube | 2549 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ω scans | θmax = 27.5°, θmin = 2.5° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −10→11 |
Tmin = 0.945, Tmax = 0.974 | k = −13→11 |
5193 measured reflections | l = −17→7 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0539P)2 + 0.7818P] where P = (Fo2 + 2Fc2)/3 |
2729 reflections | (Δ/σ)max < 0.001 |
154 parameters | Δρmax = 0.39 e Å−3 |
0 restraints | Δρmin = −0.45 e Å−3 |
C12H15NO3S | V = 1211.1 (4) Å3 |
Mr = 253.32 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.0191 (16) Å | µ = 0.26 mm−1 |
b = 10.4920 (18) Å | T = 98 K |
c = 13.446 (3) Å | 0.25 × 0.18 × 0.10 mm |
β = 107.861 (3)° |
Rigaku AFC12κ/SATURN724 diffractometer | 2729 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2549 reflections with I > 2σ(I) |
Tmin = 0.945, Tmax = 0.974 | Rint = 0.025 |
5193 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 0 restraints |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.12 | Δρmax = 0.39 e Å−3 |
2729 reflections | Δρmin = −0.45 e Å−3 |
154 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.76305 (5) | 0.20597 (4) | 0.49677 (3) | 0.01768 (15) | |
O1 | 1.13033 (15) | 0.14856 (13) | 0.56636 (9) | 0.0186 (3) | |
O2 | 0.79732 (18) | 0.33520 (13) | 0.53443 (11) | 0.0265 (3) | |
O3 | 0.60745 (15) | 0.17739 (15) | 0.43018 (11) | 0.0275 (3) | |
N1 | 1.11807 (17) | 0.30781 (15) | 0.45077 (11) | 0.0170 (3) | |
C1 | 1.0585 (2) | 0.20646 (17) | 0.48622 (13) | 0.0147 (3) | |
C2 | 0.8952 (2) | 0.16205 (17) | 0.42479 (13) | 0.0153 (3) | |
H2 | 0.8969 | 0.0669 | 0.4210 | 0.018* | |
C3 | 0.8348 (2) | 0.21313 (18) | 0.31267 (14) | 0.0196 (4) | |
H3A | 0.8843 | 0.1657 | 0.2676 | 0.024* | |
H3B | 0.7208 | 0.1998 | 0.2850 | 0.024* | |
C4 | 0.8711 (2) | 0.35463 (19) | 0.30992 (14) | 0.0214 (4) | |
H4A | 0.8313 | 0.3865 | 0.2372 | 0.026* | |
H4B | 0.8188 | 0.4027 | 0.3530 | 0.026* | |
C5 | 1.0457 (2) | 0.37553 (19) | 0.35160 (14) | 0.0208 (4) | |
H5A | 1.0942 | 0.3460 | 0.2989 | 0.025* | |
H5B | 1.0668 | 0.4679 | 0.3625 | 0.025* | |
C6 | 1.2777 (2) | 0.3460 (2) | 0.50751 (14) | 0.0213 (4) | |
H6A | 1.3156 | 0.2956 | 0.5717 | 0.032* | |
H6B | 1.2794 | 0.4367 | 0.5254 | 0.032* | |
H6C | 1.3448 | 0.3314 | 0.4635 | 0.032* | |
C7 | 0.8027 (2) | 0.10460 (17) | 0.60682 (13) | 0.0166 (3) | |
C8 | 0.9117 (2) | 0.14160 (19) | 0.70016 (14) | 0.0199 (4) | |
H8 | 0.9681 | 0.2189 | 0.7041 | 0.024* | |
C9 | 0.9368 (2) | 0.0641 (2) | 0.78751 (14) | 0.0211 (4) | |
H9 | 1.0114 | 0.0879 | 0.8516 | 0.025* | |
C10 | 0.8528 (2) | −0.04843 (19) | 0.78116 (14) | 0.0215 (4) | |
H10 | 0.8704 | −0.1013 | 0.8411 | 0.026* | |
C11 | 0.7431 (2) | −0.08410 (19) | 0.68753 (15) | 0.0209 (4) | |
H11 | 0.6856 | −0.1607 | 0.6839 | 0.025* | |
C12 | 0.7177 (2) | −0.00801 (18) | 0.59943 (14) | 0.0185 (4) | |
H12 | 0.6437 | −0.0322 | 0.5352 | 0.022* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0168 (2) | 0.0151 (3) | 0.0225 (2) | 0.00200 (16) | 0.00796 (18) | 0.00263 (16) |
O1 | 0.0179 (6) | 0.0205 (7) | 0.0155 (6) | 0.0007 (5) | 0.0026 (5) | 0.0026 (5) |
O2 | 0.0382 (8) | 0.0134 (7) | 0.0353 (8) | 0.0021 (6) | 0.0223 (7) | 0.0004 (6) |
O3 | 0.0144 (6) | 0.0339 (8) | 0.0324 (7) | 0.0022 (6) | 0.0044 (6) | 0.0120 (6) |
N1 | 0.0153 (7) | 0.0180 (8) | 0.0159 (7) | −0.0018 (6) | 0.0023 (6) | 0.0013 (6) |
C1 | 0.0153 (8) | 0.0149 (9) | 0.0147 (7) | −0.0002 (6) | 0.0056 (6) | −0.0023 (6) |
C2 | 0.0153 (8) | 0.0141 (8) | 0.0163 (8) | 0.0000 (6) | 0.0046 (6) | −0.0010 (6) |
C3 | 0.0181 (9) | 0.0224 (10) | 0.0154 (8) | 0.0001 (7) | 0.0008 (7) | −0.0005 (7) |
C4 | 0.0218 (9) | 0.0215 (9) | 0.0178 (8) | 0.0016 (7) | 0.0015 (7) | 0.0027 (7) |
C5 | 0.0242 (9) | 0.0193 (9) | 0.0174 (8) | −0.0015 (7) | 0.0043 (7) | 0.0044 (7) |
C6 | 0.0187 (9) | 0.0233 (10) | 0.0205 (8) | −0.0054 (7) | 0.0039 (7) | 0.0003 (7) |
C7 | 0.0180 (8) | 0.0145 (8) | 0.0194 (8) | 0.0015 (7) | 0.0090 (7) | 0.0004 (7) |
C8 | 0.0192 (9) | 0.0192 (9) | 0.0232 (9) | −0.0026 (7) | 0.0096 (7) | −0.0035 (7) |
C9 | 0.0197 (9) | 0.0254 (10) | 0.0191 (8) | −0.0010 (7) | 0.0072 (7) | −0.0037 (7) |
C10 | 0.0230 (9) | 0.0243 (10) | 0.0205 (8) | 0.0027 (8) | 0.0113 (7) | 0.0037 (7) |
C11 | 0.0204 (9) | 0.0180 (9) | 0.0274 (9) | −0.0019 (7) | 0.0120 (7) | 0.0002 (7) |
C12 | 0.0173 (8) | 0.0170 (9) | 0.0214 (8) | −0.0014 (7) | 0.0061 (7) | −0.0018 (7) |
S1—O3 | 1.4457 (15) | C5—H5A | 0.9900 |
S1—O2 | 1.4472 (15) | C5—H5B | 0.9900 |
S1—C7 | 1.7674 (18) | C6—H6A | 0.9800 |
S1—C2 | 1.8101 (18) | C6—H6B | 0.9800 |
O1—C1 | 1.233 (2) | C6—H6C | 0.9800 |
N1—C1 | 1.343 (2) | C7—C8 | 1.391 (3) |
N1—C6 | 1.463 (2) | C7—C12 | 1.395 (3) |
N1—C5 | 1.475 (2) | C8—C9 | 1.389 (3) |
C1—C2 | 1.524 (2) | C8—H8 | 0.9500 |
C2—C3 | 1.534 (2) | C9—C10 | 1.391 (3) |
C2—H2 | 1.0000 | C9—H9 | 0.9500 |
C3—C4 | 1.523 (3) | C10—C11 | 1.393 (3) |
C3—H3A | 0.9900 | C10—H10 | 0.9500 |
C3—H3B | 0.9900 | C11—C12 | 1.388 (3) |
C4—C5 | 1.517 (3) | C11—H11 | 0.9500 |
C4—H4A | 0.9900 | C12—H12 | 0.9500 |
C4—H4B | 0.9900 | ||
O3—S1—O2 | 118.26 (9) | N1—C5—C4 | 112.68 (15) |
O3—S1—C7 | 107.61 (9) | N1—C5—H5A | 109.1 |
O2—S1—C7 | 107.71 (9) | C4—C5—H5A | 109.1 |
O3—S1—C2 | 106.81 (9) | N1—C5—H5B | 109.1 |
O2—S1—C2 | 108.70 (8) | C4—C5—H5B | 109.1 |
C7—S1—C2 | 107.28 (8) | H5A—C5—H5B | 107.8 |
C1—N1—C6 | 117.93 (15) | N1—C6—H6A | 109.5 |
C1—N1—C5 | 126.04 (15) | N1—C6—H6B | 109.5 |
C6—N1—C5 | 115.53 (15) | H6A—C6—H6B | 109.5 |
O1—C1—N1 | 122.70 (16) | N1—C6—H6C | 109.5 |
O1—C1—C2 | 118.95 (16) | H6A—C6—H6C | 109.5 |
N1—C1—C2 | 118.35 (15) | H6B—C6—H6C | 109.5 |
C1—C2—C3 | 114.75 (15) | C8—C7—C12 | 121.42 (17) |
C1—C2—S1 | 108.53 (11) | C8—C7—S1 | 119.54 (14) |
C3—C2—S1 | 110.06 (12) | C12—C7—S1 | 118.96 (14) |
C1—C2—H2 | 107.8 | C9—C8—C7 | 119.10 (18) |
C3—C2—H2 | 107.8 | C9—C8—H8 | 120.4 |
S1—C2—H2 | 107.8 | C7—C8—H8 | 120.4 |
C4—C3—C2 | 110.50 (15) | C8—C9—C10 | 120.03 (17) |
C4—C3—H3A | 109.6 | C8—C9—H9 | 120.0 |
C2—C3—H3A | 109.6 | C10—C9—H9 | 120.0 |
C4—C3—H3B | 109.6 | C9—C10—C11 | 120.40 (17) |
C2—C3—H3B | 109.6 | C9—C10—H10 | 119.8 |
H3A—C3—H3B | 108.1 | C11—C10—H10 | 119.8 |
C5—C4—C3 | 109.79 (16) | C12—C11—C10 | 120.17 (18) |
C5—C4—H4A | 109.7 | C12—C11—H11 | 119.9 |
C3—C4—H4A | 109.7 | C10—C11—H11 | 119.9 |
C5—C4—H4B | 109.7 | C11—C12—C7 | 118.87 (17) |
C3—C4—H4B | 109.7 | C11—C12—H12 | 120.6 |
H4A—C4—H4B | 108.2 | C7—C12—H12 | 120.6 |
C6—N1—C1—O1 | 3.1 (3) | C1—N1—C5—C4 | 21.7 (3) |
C5—N1—C1—O1 | 174.61 (17) | C6—N1—C5—C4 | −166.58 (16) |
C6—N1—C1—C2 | −177.19 (15) | C3—C4—C5—N1 | −47.8 (2) |
C5—N1—C1—C2 | −5.7 (3) | O3—S1—C7—C8 | −154.80 (15) |
O1—C1—C2—C3 | −163.27 (15) | O2—S1—C7—C8 | −26.27 (17) |
N1—C1—C2—C3 | 17.0 (2) | C2—S1—C7—C8 | 90.58 (15) |
O1—C1—C2—S1 | 73.16 (18) | O3—S1—C7—C12 | 21.86 (17) |
N1—C1—C2—S1 | −106.55 (15) | O2—S1—C7—C12 | 150.39 (14) |
O3—S1—C2—C1 | 172.73 (12) | C2—S1—C7—C12 | −92.76 (15) |
O2—S1—C2—C1 | 44.09 (14) | C12—C7—C8—C9 | 0.5 (3) |
C7—S1—C2—C1 | −72.12 (14) | S1—C7—C8—C9 | 177.05 (14) |
O3—S1—C2—C3 | 46.40 (15) | C7—C8—C9—C10 | −0.5 (3) |
O2—S1—C2—C3 | −82.24 (14) | C8—C9—C10—C11 | 0.0 (3) |
C7—S1—C2—C3 | 161.55 (12) | C9—C10—C11—C12 | 0.5 (3) |
C1—C2—C3—C4 | −44.1 (2) | C10—C11—C12—C7 | −0.5 (3) |
S1—C2—C3—C4 | 78.63 (17) | C8—C7—C12—C11 | 0.0 (3) |
C2—C3—C4—C5 | 59.6 (2) | S1—C7—C12—C11 | −176.58 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1i | 1.00 | 2.29 | 3.272 (2) | 168 |
C6—H6B···O2ii | 0.98 | 2.55 | 3.424 (3) | 148 |
C11—H11···O3iii | 0.95 | 2.62 | 3.224 (3) | 122 |
C4—H4A···O1iv | 0.99 | 2.48 | 3.328 (2) | 144 |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y, −z+1; (iv) x−1/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C12H15NO3S |
Mr | 253.32 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 98 |
a, b, c (Å) | 9.0191 (16), 10.4920 (18), 13.446 (3) |
β (°) | 107.861 (3) |
V (Å3) | 1211.1 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.26 |
Crystal size (mm) | 0.25 × 0.18 × 0.10 |
Data collection | |
Diffractometer | Rigaku AFC12κ/SATURN724 diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.945, 0.974 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5193, 2729, 2549 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.118, 1.12 |
No. of reflections | 2729 |
No. of parameters | 154 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.39, −0.45 |
Computer programs: CrystalClear (Rigaku, 2005), SIR92 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1i | 1.00 | 2.29 | 3.272 (2) | 168 |
C6—H6B···O2ii | 0.98 | 2.55 | 3.424 (3) | 148 |
C11—H11···O3iii | 0.95 | 2.62 | 3.224 (3) | 122 |
C4—H4A···O1iv | 0.99 | 2.48 | 3.328 (2) | 144 |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y, −z+1; (iv) x−1/2, −y+1/2, z−1/2. |
Acknowledgements
We thank FAPESP and CNPq for financial support. CRC and EV thank CNPq for doctoral fellowships; PRO and JZ-S thank CNPq for fellowships (Brazil). Support from UTSA, CNPq and FAPESP to allow JZ-S to spend a sabbatical at UTSA is gratefully acknowledged.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dal Colle, M., Bertolasi, V., De Palo, M., Distefano, G., Jones, D., Modelli, A. & Olivato, P. R. (1995). J. Chem. Phys. 99, 15011–15017. CrossRef CAS Google Scholar
Distefano, G., Dal Colle, M., Bertolasi, V., Olivato, P. R., Bonfada, E. & Mondino, M. G. (1991). J. Chem. Soc. Perkin Trans. 2, pp. 1195–1199. CSD CrossRef Google Scholar
Drabowicz, J., Lyzwa, P. & Mikolajczyk, M. (1983). Phosphorus Sulfur Silicon, 17, 169–172. CrossRef CAS Web of Science Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Olivato, P. R., Bonfada, E. & Rittner, R. (1992). Magn. Reson. Chem. 30, 81–84. CrossRef CAS Web of Science Google Scholar
Olivato, P. R., Guerrero, S. A. & Rittner, R. (1997). Phosphorus Sulfur Silicon, 130, 155–174. Web of Science CrossRef CAS Google Scholar
Olivato, P. R., Hui, M. L. T., Rodrigues, A., Ruiz Filho, R., Rittner, R., Zukerman-Schpector, J., Distefano, G. & Dal Colle, M. (2003). J. Mol. Struct. 645, 259–271. Web of Science CSD CrossRef CAS Google Scholar
Olivato, P. R., Reis, A. K. C. A., Ruiz Filho, R., Zukerman-Schpector, J. & Rittner, R. (2004). J. Mol. Struct. THEOCHEM, 677, 199–210. Web of Science CSD CrossRef CAS Google Scholar
Rigaku (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zoretic, P. A. & Soja, P. (1976). J. Org. Chem. 41, 3587–3589. CrossRef CAS Web of Science Google Scholar
Zukerman-Schpector, J., Maganhi, S., Olivato, P. R., Vinhato, E. & Cerqueira, C. R. (2006). Z. Kristallogr. New Cryst. Struct. 221, 165–166. CAS Google Scholar
Zukerman-Schpector, J., Olivato, P. R., Bueno, E. & Guerrero, S. A. (1999). Z. Kristallogr. New Cryst. Struct. 214, 563–564. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound (I), Fig. 1, was studied as a part of an on-going investigation of conformational and electronic aspects of different classes of β-keto-sulfones, i.e. α-phenylsulfonyl -acetones, -acetophenones and -cyclohexanones, utilizing spectroscopic, theoretical and X-ray diffraction methods (Dal Colle et al., 1995; Zukerman-Schpector et al., 1999; 2006).
The piperidone ring has a slightly distorted half-chair conformation with a tendency towards a half-boat conformation: the ring-puckering parameters are q2 = 0.340 (2) Å, q3 = 0.332 (2) Å, QT = 0.476 (2) °, ϕ2 = -145.0 (3)° (Cremer & Pople, 1975). The ring substituents, i.e. N-methyl, C-carbonyl and C-phenylsulfonyl, occupy equatorial, equatorial and axial positions, respectively.
The crystal packing is dominated by C—H···O interactions, Table 1. Centrosymmetrically related molecules of (I) are connected into dimeric aggregates via C2—H···O1 contacts and these are linked into layers stacked along (1 0 1) via C6—H···O2 contacts. Connections betweem layers are also of the type C—H···O and serve to consolidate the crystal packing.