organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages o835-o836

1-Methyl-3-phenyl­sulfonyl-2-piperidone

aDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bChemistry Institute, University of São Paulo, 05508-000 São Paulo, SP, Brazil, and cDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA
*Correspondence e-mail: julio@power.ufscar.br

(Received 4 April 2008; accepted 5 April 2008; online 16 April 2008)

The piperidone ring in the title compound, C12H15NO3S, has a slightly distorted half-chair conformation with the methyl, carbonyl and phenyl­sulfonyl ring substituents occupying equatorial, equatorial and axial positions, respectively. Mol­ecules are connected into centrosymmetric dimers via C—H⋯O inter­actions and these associate into layers via C—H⋯O—S contacts. Further C—H⋯O inter­actions involving both the carbonyl and sulfonyl O atoms consolidate the crystal packing by providing connections between the layers.

Related literature

For related structures, see: Zukerman-Schpector et al. (1999[Zukerman-Schpector, J., Olivato, P. R., Bueno, E. & Guerrero, S. A. (1999). Z. Kristallogr. New Cryst. Struct. 214, 563-564.], 2006[Zukerman-Schpector, J., Maganhi, S., Olivato, P. R., Vinhato, E. & Cerqueira, C. R. (2006). Z. Kristallogr. New Cryst. Struct. 221, 165-166.]). For related literature, see: Distefano et al. (1991[Distefano, G., Dal Colle, M., Bertolasi, V., Olivato, P. R., Bonfada, E. & Mondino, M. G. (1991). J. Chem. Soc. Perkin Trans. 2, pp. 1195-1199.]); Olivato et al. (1992[Olivato, P. R., Bonfada, E. & Rittner, R. (1992). Magn. Reson. Chem. 30, 81-84.], 1997[Olivato, P. R., Guerrero, S. A. & Rittner, R. (1997). Phosphorus Sulfur Silicon, 130, 155-174.], 2003[Olivato, P. R., Hui, M. L. T., Rodrigues, A., Ruiz Filho, R., Rittner, R., Zukerman-Schpector, J., Distefano, G. & Dal Colle, M. (2003). J. Mol. Struct. 645, 259-271.], 2004[Olivato, P. R., Reis, A. K. C. A., Ruiz Filho, R., Zukerman-Schpector, J. & Rittner, R. (2004). J. Mol. Struct. THEOCHEM, 677, 199-210.]); Dal Colle et al. (1995[Dal Colle, M., Bertolasi, V., De Palo, M., Distefano, G., Jones, D., Modelli, A. & Olivato, P. R. (1995). J. Chem. Phys. 99, 15011-15017.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the synthesis, see: Drabowicz et al. (1983[Drabowicz, J., Lyzwa, P. & Mikolajczyk, M. (1983). Phosphorus Sulfur Silicon, 17, 169-172.]); Zoretic & Soja (1976[Zoretic, P. A. & Soja, P. (1976). J. Org. Chem. 41, 3587-3589.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15NO3S

  • Mr = 253.32

  • Monoclinic, P 21 /n

  • a = 9.0191 (16) Å

  • b = 10.4920 (18) Å

  • c = 13.446 (3) Å

  • β = 107.861 (3)°

  • V = 1211.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 98 (2) K

  • 0.25 × 0.18 × 0.10 mm

Data collection
  • Rigaku AFC12κ/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.945, Tmax = 0.974

  • 5193 measured reflections

  • 2729 independent reflections

  • 2549 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.118

  • S = 1.12

  • 2729 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 1.00 2.29 3.272 (2) 168
C6—H6B⋯O2ii 0.98 2.55 3.424 (3) 148
C11—H11⋯O3iii 0.95 2.62 3.224 (3) 122
C4—H4A⋯O1iv 0.99 2.48 3.328 (2) 144
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y, -z+1; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR92 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound (I), Fig. 1, was studied as a part of an on-going investigation of conformational and electronic aspects of different classes of β-keto-sulfones, i.e. α-phenylsulfonyl -acetones, -acetophenones and -cyclohexanones, utilizing spectroscopic, theoretical and X-ray diffraction methods (Dal Colle et al., 1995; Zukerman-Schpector et al., 1999; 2006).

The piperidone ring has a slightly distorted half-chair conformation with a tendency towards a half-boat conformation: the ring-puckering parameters are q2 = 0.340 (2) Å, q3 = 0.332 (2) Å, QT = 0.476 (2) °, ϕ2 = -145.0 (3)° (Cremer & Pople, 1975). The ring substituents, i.e. N-methyl, C-carbonyl and C-phenylsulfonyl, occupy equatorial, equatorial and axial positions, respectively.

The crystal packing is dominated by C—H···O interactions, Table 1. Centrosymmetrically related molecules of (I) are connected into dimeric aggregates via C2—H···O1 contacts and these are linked into layers stacked along (1 0 1) via C6—H···O2 contacts. Connections betweem layers are also of the type C—H···O and serve to consolidate the crystal packing.

Related literature top

For related structures, see: Zukerman-Schpector et al. (1999, 2006). For related literature, see: Distefano et al. (1991); Olivato et al. (1992, 1997, 2003, 2004); Dal Colle et al. (1995). For ring conformational analysis, see: Cremer & Pople (1975). For the synthesis, see: Drabowicz et al. (1983); Zoretic & Soja (1976).

Experimental top

Initially, the 3-phenylsulfanyl-1-methyl-2-piperidone was obtained from the reaction of 1-methyl-2-piperidinone and diphenyl disulfide with LDA in THF as described in the literature (Zoretic and Soja, 1976). The product was oxidized with H2O2 and SeO2 (as catalyst) in methanol (Drabowicz et al. 1983) to give compound (I). After extraction with chloroform and subsequent evaporation, a crude solid was obtained. This product was subjected to flash chromatography with a solution of ethyl acetate and acetone in a 7:3 ratio. Suitable crystals were obtained by vapor diffusion from chloroform/n-hexane at 283 K.; m.p. 414–415 K. IR (cm-1): ν(C=O) 1652, ν(SO2)(as) 1307, ν(SO2)(s) 1148. NMR (CDCl3, p.p.m.): δ 1.79–2.74 (4H, m), 2.95 (3H, s), 3.30–3.48 (2H, m), 3.97 (1H, triplet, J = 6.1 Hz), 7.53–7.57 (2H, m, aryl-H), 7.62–7.67 (1H, m, aryl-H), 7.92–7.94 (2H, m, aryl-H). Analysis found: C 56.86, H 6.04, N 5.58; C12H15O3NS requires: C 56.89, H 5.97, N 5.53%.

Refinement top

All H atoms were included in the riding-model approximation with C—H = 0.95 - 1.00 Å, and with Uiso(H) = 1.5Ueq(methyl-C) or 1.2Ueq(remaining-C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom labelling and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing in (I) highlighting the C—H···O hydrogen bonding contacts (orange dashed lines) leading to the formation of dimeric aggregates and the overall layer arrangement.
1-Methyl-3-phenylsulfonyl-2-piperidone top
Crystal data top
C12H15NO3SF(000) = 536
Mr = 253.32Dx = 1.389 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ynCell parameters from 4417 reflections
a = 9.0191 (16) Åθ = 2.4–40.6°
b = 10.4920 (18) ŵ = 0.26 mm1
c = 13.446 (3) ÅT = 98 K
β = 107.861 (3)°Block, colourless
V = 1211.1 (4) Å30.25 × 0.18 × 0.10 mm
Z = 4
Data collection top
Rigaku AFC12κ/SATURN724
diffractometer
2729 independent reflections
Radiation source: fine-focus sealed tube2549 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1011
Tmin = 0.945, Tmax = 0.974k = 1311
5193 measured reflectionsl = 177
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.7818P]
where P = (Fo2 + 2Fc2)/3
2729 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C12H15NO3SV = 1211.1 (4) Å3
Mr = 253.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.0191 (16) ŵ = 0.26 mm1
b = 10.4920 (18) ÅT = 98 K
c = 13.446 (3) Å0.25 × 0.18 × 0.10 mm
β = 107.861 (3)°
Data collection top
Rigaku AFC12κ/SATURN724
diffractometer
2729 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2549 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.974Rint = 0.025
5193 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.12Δρmax = 0.39 e Å3
2729 reflectionsΔρmin = 0.45 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.76305 (5)0.20597 (4)0.49677 (3)0.01768 (15)
O11.13033 (15)0.14856 (13)0.56636 (9)0.0186 (3)
O20.79732 (18)0.33520 (13)0.53443 (11)0.0265 (3)
O30.60745 (15)0.17739 (15)0.43018 (11)0.0275 (3)
N11.11807 (17)0.30781 (15)0.45077 (11)0.0170 (3)
C11.0585 (2)0.20646 (17)0.48622 (13)0.0147 (3)
C20.8952 (2)0.16205 (17)0.42479 (13)0.0153 (3)
H20.89690.06690.42100.018*
C30.8348 (2)0.21313 (18)0.31267 (14)0.0196 (4)
H3A0.88430.16570.26760.024*
H3B0.72080.19980.28500.024*
C40.8711 (2)0.35463 (19)0.30992 (14)0.0214 (4)
H4A0.83130.38650.23720.026*
H4B0.81880.40270.35300.026*
C51.0457 (2)0.37553 (19)0.35160 (14)0.0208 (4)
H5A1.09420.34600.29890.025*
H5B1.06680.46790.36250.025*
C61.2777 (2)0.3460 (2)0.50751 (14)0.0213 (4)
H6A1.31560.29560.57170.032*
H6B1.27940.43670.52540.032*
H6C1.34480.33140.46350.032*
C70.8027 (2)0.10460 (17)0.60682 (13)0.0166 (3)
C80.9117 (2)0.14160 (19)0.70016 (14)0.0199 (4)
H80.96810.21890.70410.024*
C90.9368 (2)0.0641 (2)0.78751 (14)0.0211 (4)
H91.01140.08790.85160.025*
C100.8528 (2)0.04843 (19)0.78116 (14)0.0215 (4)
H100.87040.10130.84110.026*
C110.7431 (2)0.08410 (19)0.68753 (15)0.0209 (4)
H110.68560.16070.68390.025*
C120.7177 (2)0.00801 (18)0.59943 (14)0.0185 (4)
H120.64370.03220.53520.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0168 (2)0.0151 (3)0.0225 (2)0.00200 (16)0.00796 (18)0.00263 (16)
O10.0179 (6)0.0205 (7)0.0155 (6)0.0007 (5)0.0026 (5)0.0026 (5)
O20.0382 (8)0.0134 (7)0.0353 (8)0.0021 (6)0.0223 (7)0.0004 (6)
O30.0144 (6)0.0339 (8)0.0324 (7)0.0022 (6)0.0044 (6)0.0120 (6)
N10.0153 (7)0.0180 (8)0.0159 (7)0.0018 (6)0.0023 (6)0.0013 (6)
C10.0153 (8)0.0149 (9)0.0147 (7)0.0002 (6)0.0056 (6)0.0023 (6)
C20.0153 (8)0.0141 (8)0.0163 (8)0.0000 (6)0.0046 (6)0.0010 (6)
C30.0181 (9)0.0224 (10)0.0154 (8)0.0001 (7)0.0008 (7)0.0005 (7)
C40.0218 (9)0.0215 (9)0.0178 (8)0.0016 (7)0.0015 (7)0.0027 (7)
C50.0242 (9)0.0193 (9)0.0174 (8)0.0015 (7)0.0043 (7)0.0044 (7)
C60.0187 (9)0.0233 (10)0.0205 (8)0.0054 (7)0.0039 (7)0.0003 (7)
C70.0180 (8)0.0145 (8)0.0194 (8)0.0015 (7)0.0090 (7)0.0004 (7)
C80.0192 (9)0.0192 (9)0.0232 (9)0.0026 (7)0.0096 (7)0.0035 (7)
C90.0197 (9)0.0254 (10)0.0191 (8)0.0010 (7)0.0072 (7)0.0037 (7)
C100.0230 (9)0.0243 (10)0.0205 (8)0.0027 (8)0.0113 (7)0.0037 (7)
C110.0204 (9)0.0180 (9)0.0274 (9)0.0019 (7)0.0120 (7)0.0002 (7)
C120.0173 (8)0.0170 (9)0.0214 (8)0.0014 (7)0.0061 (7)0.0018 (7)
Geometric parameters (Å, º) top
S1—O31.4457 (15)C5—H5A0.9900
S1—O21.4472 (15)C5—H5B0.9900
S1—C71.7674 (18)C6—H6A0.9800
S1—C21.8101 (18)C6—H6B0.9800
O1—C11.233 (2)C6—H6C0.9800
N1—C11.343 (2)C7—C81.391 (3)
N1—C61.463 (2)C7—C121.395 (3)
N1—C51.475 (2)C8—C91.389 (3)
C1—C21.524 (2)C8—H80.9500
C2—C31.534 (2)C9—C101.391 (3)
C2—H21.0000C9—H90.9500
C3—C41.523 (3)C10—C111.393 (3)
C3—H3A0.9900C10—H100.9500
C3—H3B0.9900C11—C121.388 (3)
C4—C51.517 (3)C11—H110.9500
C4—H4A0.9900C12—H120.9500
C4—H4B0.9900
O3—S1—O2118.26 (9)N1—C5—C4112.68 (15)
O3—S1—C7107.61 (9)N1—C5—H5A109.1
O2—S1—C7107.71 (9)C4—C5—H5A109.1
O3—S1—C2106.81 (9)N1—C5—H5B109.1
O2—S1—C2108.70 (8)C4—C5—H5B109.1
C7—S1—C2107.28 (8)H5A—C5—H5B107.8
C1—N1—C6117.93 (15)N1—C6—H6A109.5
C1—N1—C5126.04 (15)N1—C6—H6B109.5
C6—N1—C5115.53 (15)H6A—C6—H6B109.5
O1—C1—N1122.70 (16)N1—C6—H6C109.5
O1—C1—C2118.95 (16)H6A—C6—H6C109.5
N1—C1—C2118.35 (15)H6B—C6—H6C109.5
C1—C2—C3114.75 (15)C8—C7—C12121.42 (17)
C1—C2—S1108.53 (11)C8—C7—S1119.54 (14)
C3—C2—S1110.06 (12)C12—C7—S1118.96 (14)
C1—C2—H2107.8C9—C8—C7119.10 (18)
C3—C2—H2107.8C9—C8—H8120.4
S1—C2—H2107.8C7—C8—H8120.4
C4—C3—C2110.50 (15)C8—C9—C10120.03 (17)
C4—C3—H3A109.6C8—C9—H9120.0
C2—C3—H3A109.6C10—C9—H9120.0
C4—C3—H3B109.6C9—C10—C11120.40 (17)
C2—C3—H3B109.6C9—C10—H10119.8
H3A—C3—H3B108.1C11—C10—H10119.8
C5—C4—C3109.79 (16)C12—C11—C10120.17 (18)
C5—C4—H4A109.7C12—C11—H11119.9
C3—C4—H4A109.7C10—C11—H11119.9
C5—C4—H4B109.7C11—C12—C7118.87 (17)
C3—C4—H4B109.7C11—C12—H12120.6
H4A—C4—H4B108.2C7—C12—H12120.6
C6—N1—C1—O13.1 (3)C1—N1—C5—C421.7 (3)
C5—N1—C1—O1174.61 (17)C6—N1—C5—C4166.58 (16)
C6—N1—C1—C2177.19 (15)C3—C4—C5—N147.8 (2)
C5—N1—C1—C25.7 (3)O3—S1—C7—C8154.80 (15)
O1—C1—C2—C3163.27 (15)O2—S1—C7—C826.27 (17)
N1—C1—C2—C317.0 (2)C2—S1—C7—C890.58 (15)
O1—C1—C2—S173.16 (18)O3—S1—C7—C1221.86 (17)
N1—C1—C2—S1106.55 (15)O2—S1—C7—C12150.39 (14)
O3—S1—C2—C1172.73 (12)C2—S1—C7—C1292.76 (15)
O2—S1—C2—C144.09 (14)C12—C7—C8—C90.5 (3)
C7—S1—C2—C172.12 (14)S1—C7—C8—C9177.05 (14)
O3—S1—C2—C346.40 (15)C7—C8—C9—C100.5 (3)
O2—S1—C2—C382.24 (14)C8—C9—C10—C110.0 (3)
C7—S1—C2—C3161.55 (12)C9—C10—C11—C120.5 (3)
C1—C2—C3—C444.1 (2)C10—C11—C12—C70.5 (3)
S1—C2—C3—C478.63 (17)C8—C7—C12—C110.0 (3)
C2—C3—C4—C559.6 (2)S1—C7—C12—C11176.58 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i1.002.293.272 (2)168
C6—H6B···O2ii0.982.553.424 (3)148
C11—H11···O3iii0.952.623.224 (3)122
C4—H4A···O1iv0.992.483.328 (2)144
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y, z+1; (iv) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC12H15NO3S
Mr253.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)98
a, b, c (Å)9.0191 (16), 10.4920 (18), 13.446 (3)
β (°) 107.861 (3)
V3)1211.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.25 × 0.18 × 0.10
Data collection
DiffractometerRigaku AFC12κ/SATURN724
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.945, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
5193, 2729, 2549
Rint0.025
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.118, 1.12
No. of reflections2729
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.45

Computer programs: CrystalClear (Rigaku, 2005), SIR92 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i1.002.293.272 (2)168
C6—H6B···O2ii0.982.553.424 (3)148
C11—H11···O3iii0.952.623.224 (3)122
C4—H4A···O1iv0.992.483.328 (2)144
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y, z+1; (iv) x1/2, y+1/2, z1/2.
 

Acknowledgements

We thank FAPESP and CNPq for financial support. CRC and EV thank CNPq for doctoral fellowships; PRO and JZ-S thank CNPq for fellowships (Brazil). Support from UTSA, CNPq and FAPESP to allow JZ-S to spend a sabbatical at UTSA is gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDal Colle, M., Bertolasi, V., De Palo, M., Distefano, G., Jones, D., Modelli, A. & Olivato, P. R. (1995). J. Chem. Phys. 99, 15011–15017.  CrossRef CAS Google Scholar
First citationDistefano, G., Dal Colle, M., Bertolasi, V., Olivato, P. R., Bonfada, E. & Mondino, M. G. (1991). J. Chem. Soc. Perkin Trans. 2, pp. 1195–1199.  CSD CrossRef Google Scholar
First citationDrabowicz, J., Lyzwa, P. & Mikolajczyk, M. (1983). Phosphorus Sulfur Silicon, 17, 169–172.  CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationOlivato, P. R., Bonfada, E. & Rittner, R. (1992). Magn. Reson. Chem. 30, 81–84.  CrossRef CAS Web of Science Google Scholar
First citationOlivato, P. R., Guerrero, S. A. & Rittner, R. (1997). Phosphorus Sulfur Silicon, 130, 155–174.  Web of Science CrossRef CAS Google Scholar
First citationOlivato, P. R., Hui, M. L. T., Rodrigues, A., Ruiz Filho, R., Rittner, R., Zukerman-Schpector, J., Distefano, G. & Dal Colle, M. (2003). J. Mol. Struct. 645, 259–271.  Web of Science CSD CrossRef CAS Google Scholar
First citationOlivato, P. R., Reis, A. K. C. A., Ruiz Filho, R., Zukerman-Schpector, J. & Rittner, R. (2004). J. Mol. Struct. THEOCHEM, 677, 199–210.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZoretic, P. A. & Soja, P. (1976). J. Org. Chem. 41, 3587–3589.  CrossRef CAS Web of Science Google Scholar
First citationZukerman-Schpector, J., Maganhi, S., Olivato, P. R., Vinhato, E. & Cerqueira, C. R. (2006). Z. Kristallogr. New Cryst. Struct. 221, 165–166.  CAS Google Scholar
First citationZukerman-Schpector, J., Olivato, P. R., Bueno, E. & Guerrero, S. A. (1999). Z. Kristallogr. New Cryst. Struct. 214, 563–564.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages o835-o836
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds