organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Chloro-N-(3-chloro­phen­yl)benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 22 April 2008; accepted 25 April 2008; online 30 April 2008)

In the crystal structure of the title compound, C13H9Cl2NO, the N—H and C=O bonds are anti to each other in the two independent mol­ecules. In one mol­ecule, the N—H bond is syn to the meta-chloro group of the attached ring; it is anti in the other mol­ecule. This relationship is also observed between the C=O bond and the meta-chloro substituent of its attached ring. The amide –NHCO– group makes dihedral angles of 31.5 (4) and 34.7 (3)° with the aniline rings; it makes dihedral angles of 37.4 (3) and 37.2 (3)° with the benzoyl rings. The two rings are nearly coplanar, with dihedral angles of 9.1 (2) and 7.3 (3)° in the two independent mol­ecules. Adjacent mol­ecules are linked into infinite chains through N—H⋯O hydrogen bonds.

Related literature

For background literature, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.], 2007[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2007). Acta Cryst. E63, o3789.], 2008[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o462.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9Cl2NO

  • Mr = 266.11

  • Monoclinic, P 21

  • a = 8.577 (1) Å

  • b = 13.551 (1) Å

  • c = 10.357 (1) Å

  • β = 93.04 (1)°

  • V = 1202.1 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.70 mm−1

  • T = 296 (2) K

  • 0.60 × 0.28 × 0.23 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.265, Tmax = 0.341

  • 3088 measured reflections

  • 2249 independent reflections

  • 2165 reflections with I > 2˘I)

  • Rint = 0.022

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.131

  • S = 1.10

  • 2249 reflections

  • 308 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.49 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), no Friedel pairs

  • Flack parameter: 0.07 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O2i 0.86 2.05 2.877 (4) 162
N2—H2n⋯O1 0.86 2.06 2.884 (5) 161
Symmetry code: (i) x+1, y, z.

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the substituent effects on the structures of N-aromatic amides,in the present work, the structure of 3-Chloro-N-(3-chlorophenyl)- benzamide(N3CP3CBA) has been determined(Gowda et al., 2003; 2007, 2008). In the structure of N3CP3CBA (Fig. 1),the conformations of the N—H and C=O bonds are anti to each other. The asymmetric unit of the structure contains two molecules. In one of the molecules, the conformation of the N—H bond is syn to the meta-chloro group in the aniline ring and anti to each other in the other molecule. Similar conformations were observed between the C=O bond and meta-chloro substituent in the benzoyl ring. This is in contrast to the single molecule observed in the asymmetric unit of 2-chloro-N-(2-Chlorophenyl)-benzamide (N2CP2CBA) and syn conformation of the N—H bond to the ortho-chloro substituent in the aniline ring and the C=O bond to the ortho-chloro substituent in the benzoyl ring (Gowda et al., 2007). The bond parameters in N3CP3CBA are similar to those in N-(3-chlorophenyl)-benzamide, N2CP2CBA and other benzanilides (Gowda et al., 2003; 2008). The amide group,-NHCO– makes the dihedral angles of 31.5 (4), 37.4 (3)° (molecule 1) and 34.7 (3), 37.2 (3)° (molecule 2) with the aniline and benzoyl rings, respectively, while those between the benzoyl and aniline rings are 9.1 (2)° and 7.3 (3)° in the molecules 1 and 2, respectively. The packing diagram of N3CP3CBA molecules showing the hydrogen bonds N1—H1N···O2 and N2—H2N···O1 (Table 1) involved in the formation of molecular chains is given in Fig. 2.

Related literature top

For background literature, see: Gowda et al. (2003, 2007, 2008).

Experimental top

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å, N—H = 0.86 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines..
3-Chloro-N-(3-chlorophenyl)benzamide top
Crystal data top
C13H9Cl2NOF(000) = 544
Mr = 266.11Dx = 1.470 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54180 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 8.577 (1) Åθ = 6.5–27.0°
b = 13.551 (1) ŵ = 4.70 mm1
c = 10.357 (1) ÅT = 296 K
β = 93.04 (1)°Thick needle, colourless
V = 1202.1 (2) Å30.60 × 0.28 × 0.23 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2165 reflections with I > 2˘I)
Radiation source: medium-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 67.0°, θmin = 4.3°
ω–2θ scansh = 103
Absorption correction: ψ scan
(North et al., 1968)
k = 160
Tmin = 0.265, Tmax = 0.341l = 1212
3088 measured reflections3 standard reflections every 120 min
2249 independent reflections intensity decay: none
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0835P)2 + 0.4755P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.131(Δ/σ)max = 0.010
S = 1.10Δρmax = 0.37 e Å3
2249 reflectionsΔρmin = 0.50 e Å3
308 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0062 (9)
Primary atom site location: structure-invariant direct methodsAbsolute structure: No Flack (1983), no Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.07 (2)
Crystal data top
C13H9Cl2NOV = 1202.1 (2) Å3
Mr = 266.11Z = 4
Monoclinic, P21Cu Kα radiation
a = 8.577 (1) ŵ = 4.70 mm1
b = 13.551 (1) ÅT = 296 K
c = 10.357 (1) Å0.60 × 0.28 × 0.23 mm
β = 93.04 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2165 reflections with I > 2˘I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.022
Tmin = 0.265, Tmax = 0.3413 standard reflections every 120 min
3088 measured reflections intensity decay: none
2249 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.131Δρmax = 0.37 e Å3
S = 1.10Δρmin = 0.50 e Å3
2249 reflectionsAbsolute structure: No Flack (1983), no Friedel pairs
308 parametersAbsolute structure parameter: 0.07 (2)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.32030 (17)0.00289 (12)0.13075 (14)0.0740 (5)
Cl21.14912 (18)0.14458 (13)0.63527 (15)0.0799 (5)
O10.5608 (3)0.1667 (2)0.2587 (3)0.0503 (8)
N10.7425 (4)0.0481 (3)0.2308 (4)0.0460 (8)
H1N0.83690.03080.25200.055*
C10.6552 (5)0.0173 (3)0.1482 (4)0.0431 (10)
C20.5418 (5)0.0182 (4)0.0581 (4)0.0456 (10)
H20.52060.08530.05110.055*
C30.4622 (5)0.0494 (4)0.0200 (4)0.0445 (10)
C40.4926 (6)0.1489 (4)0.0152 (5)0.0515 (11)
H40.43850.19260.07030.062*
C50.6063 (6)0.1817 (4)0.0742 (4)0.0535 (11)
H50.62790.24890.08070.064*
C60.6879 (5)0.1163 (4)0.1537 (4)0.0488 (10)
H60.76600.13940.21170.059*
C70.6948 (4)0.1331 (3)0.2792 (4)0.0422 (9)
C80.8119 (4)0.1892 (4)0.3622 (4)0.0393 (9)
C90.9189 (5)0.1425 (4)0.4483 (4)0.0441 (9)
H90.92280.07410.45410.053*
C101.0191 (5)0.2006 (4)0.5251 (4)0.0459 (10)
C111.0193 (6)0.3013 (4)0.5145 (5)0.0485 (10)
H111.08980.33890.56490.058*
C120.9142 (5)0.3464 (4)0.4286 (5)0.0496 (11)
H120.91390.41480.42080.060*
C130.8099 (5)0.2910 (4)0.3546 (4)0.0456 (10)
H130.73710.32220.29870.055*
Cl30.1457 (2)0.46405 (11)0.18206 (16)0.0753 (4)
Cl40.39972 (18)0.34554 (10)0.31885 (16)0.0731 (4)
O20.0590 (3)0.0229 (2)0.2416 (3)0.0517 (8)
N20.2432 (4)0.0962 (3)0.2377 (4)0.0485 (9)
H2N0.33780.11080.26210.058*
C140.1548 (5)0.1709 (3)0.1702 (4)0.0428 (10)
C150.1861 (5)0.2671 (4)0.2042 (4)0.0465 (10)
H150.26070.28190.26970.056*
C160.1049 (6)0.3412 (4)0.1395 (5)0.0502 (11)
C170.0064 (6)0.3217 (4)0.0413 (5)0.0576 (12)
H170.06040.37270.00110.069*
C180.0353 (6)0.2251 (4)0.0079 (5)0.0604 (13)
H180.10890.21060.05850.072*
C190.0435 (6)0.1493 (4)0.0719 (4)0.0532 (10)
H190.02220.08410.04930.064*
C200.1947 (5)0.0069 (3)0.2667 (4)0.0433 (9)
C210.3143 (5)0.0594 (3)0.3333 (4)0.0425 (9)
C220.3057 (5)0.1578 (4)0.3017 (4)0.0425 (10)
H220.23130.18020.24000.051*
C230.4090 (5)0.2227 (3)0.3627 (4)0.0464 (10)
C240.5166 (5)0.1926 (4)0.4561 (5)0.0518 (11)
H240.58460.23780.49660.062*
C250.5229 (6)0.0953 (4)0.4891 (5)0.0560 (12)
H250.59510.07420.55350.067*
C260.4227 (5)0.0268 (4)0.4277 (4)0.0477 (10)
H260.42860.03970.44980.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0702 (8)0.0747 (9)0.0728 (8)0.0055 (7)0.0370 (6)0.0012 (7)
Cl20.0704 (8)0.0792 (10)0.0852 (10)0.0037 (8)0.0431 (7)0.0120 (8)
O10.0270 (13)0.052 (2)0.0705 (19)0.0027 (12)0.0092 (12)0.0101 (15)
N10.0294 (16)0.051 (2)0.056 (2)0.0007 (15)0.0091 (14)0.0052 (18)
C10.0343 (19)0.048 (3)0.046 (2)0.0029 (18)0.0001 (16)0.0051 (19)
C20.042 (2)0.045 (2)0.049 (2)0.0022 (18)0.0042 (17)0.0010 (19)
C30.034 (2)0.056 (3)0.042 (2)0.0049 (19)0.0059 (17)0.004 (2)
C40.047 (2)0.059 (3)0.048 (2)0.011 (2)0.0056 (19)0.009 (2)
C50.060 (3)0.046 (3)0.055 (3)0.003 (2)0.003 (2)0.006 (2)
C60.042 (2)0.061 (3)0.042 (2)0.000 (2)0.0042 (17)0.001 (2)
C70.0293 (18)0.050 (3)0.047 (2)0.0013 (18)0.0030 (15)0.0009 (19)
C80.0307 (18)0.048 (2)0.0391 (19)0.0065 (17)0.0021 (15)0.0006 (17)
C90.041 (2)0.042 (2)0.048 (2)0.0057 (19)0.0043 (17)0.0012 (19)
C100.037 (2)0.057 (3)0.043 (2)0.0004 (19)0.0072 (16)0.002 (2)
C110.047 (2)0.052 (3)0.047 (2)0.010 (2)0.0028 (18)0.011 (2)
C120.049 (3)0.041 (2)0.058 (3)0.0035 (19)0.003 (2)0.006 (2)
C130.039 (2)0.049 (3)0.049 (2)0.0023 (18)0.0013 (17)0.002 (2)
Cl30.0863 (10)0.0465 (7)0.0935 (10)0.0010 (7)0.0074 (8)0.0058 (7)
Cl40.0804 (8)0.0452 (7)0.0932 (10)0.0119 (6)0.0009 (7)0.0068 (7)
O20.0252 (13)0.0485 (18)0.080 (2)0.0024 (13)0.0067 (12)0.0044 (16)
N20.0358 (19)0.047 (2)0.062 (2)0.0023 (16)0.0041 (16)0.0028 (19)
C140.0340 (19)0.049 (3)0.046 (2)0.0101 (17)0.0044 (16)0.0074 (19)
C150.040 (2)0.049 (3)0.051 (2)0.0023 (19)0.0038 (18)0.0041 (19)
C160.049 (2)0.044 (3)0.059 (3)0.0066 (19)0.009 (2)0.005 (2)
C170.051 (3)0.062 (3)0.059 (3)0.015 (2)0.004 (2)0.015 (2)
C180.053 (3)0.066 (3)0.060 (3)0.007 (2)0.015 (2)0.008 (3)
C190.060 (3)0.049 (2)0.049 (2)0.004 (2)0.0058 (19)0.002 (2)
C200.038 (2)0.044 (2)0.048 (2)0.0064 (18)0.0026 (16)0.0033 (19)
C210.039 (2)0.045 (2)0.043 (2)0.0084 (18)0.0011 (16)0.0008 (18)
C220.0335 (19)0.052 (3)0.041 (2)0.0070 (18)0.0013 (16)0.0019 (18)
C230.046 (2)0.042 (2)0.051 (2)0.0043 (19)0.0058 (18)0.0039 (19)
C240.044 (2)0.051 (3)0.060 (3)0.012 (2)0.005 (2)0.012 (2)
C250.047 (3)0.066 (3)0.054 (2)0.004 (2)0.013 (2)0.004 (2)
C260.050 (2)0.040 (2)0.052 (2)0.002 (2)0.0029 (18)0.000 (2)
Geometric parameters (Å, º) top
Cl1—C31.745 (4)Cl3—C161.753 (5)
Cl2—C101.729 (4)Cl4—C231.726 (5)
O1—C71.244 (5)O2—C201.246 (5)
N1—C71.330 (6)N2—C201.319 (6)
N1—C11.418 (5)N2—C141.425 (5)
N1—H1N0.8600N2—H2N0.8600
C1—C61.370 (7)C14—C151.373 (7)
C1—C21.397 (6)C14—C191.390 (6)
C2—C31.379 (6)C15—C161.376 (7)
C2—H20.9300C15—H150.9300
C3—C41.373 (7)C16—C171.383 (7)
C4—C51.383 (7)C17—C181.373 (8)
C4—H40.9300C17—H170.9300
C5—C61.376 (7)C18—C191.380 (7)
C5—H50.9300C18—H180.9300
C6—H60.9300C19—H190.9300
C7—C81.493 (6)C20—C211.503 (6)
C8—C131.382 (6)C21—C221.374 (6)
C8—C91.397 (6)C21—C261.386 (6)
C9—C101.385 (6)C22—C231.378 (6)
C9—H90.9300C22—H220.9300
C10—C111.369 (7)C23—C241.363 (7)
C11—C121.375 (7)C24—C251.364 (8)
C11—H110.9300C24—H240.9300
C12—C131.372 (6)C25—C261.395 (7)
C12—H120.9300C25—H250.9300
C13—H130.9300C26—H260.9300
C7—N1—C1127.3 (4)C20—N2—C14126.6 (4)
C7—N1—H1N116.3C20—N2—H2N116.7
C1—N1—H1N116.3C14—N2—H2N116.7
C6—C1—C2119.9 (4)C15—C14—C19120.3 (4)
C6—C1—N1119.1 (4)C15—C14—N2117.2 (4)
C2—C1—N1121.0 (4)C19—C14—N2122.5 (4)
C3—C2—C1117.9 (4)C14—C15—C16118.8 (4)
C3—C2—H2121.0C14—C15—H15120.6
C1—C2—H2121.0C16—C15—H15120.6
C4—C3—C2122.9 (5)C15—C16—C17122.0 (5)
C4—C3—Cl1120.2 (4)C15—C16—Cl3118.8 (4)
C2—C3—Cl1116.9 (4)C17—C16—Cl3119.2 (4)
C3—C4—C5117.8 (4)C18—C17—C16118.4 (5)
C3—C4—H4121.1C18—C17—H17120.8
C5—C4—H4121.1C16—C17—H17120.8
C6—C5—C4120.7 (5)C17—C18—C19120.8 (5)
C6—C5—H5119.6C17—C18—H18119.6
C4—C5—H5119.6C19—C18—H18119.6
C1—C6—C5120.6 (4)C18—C19—C14119.7 (5)
C1—C6—H6119.7C18—C19—H19120.2
C5—C6—H6119.7C14—C19—H19120.2
O1—C7—N1123.5 (4)O2—C20—N2123.5 (4)
O1—C7—C8120.0 (4)O2—C20—C21120.6 (4)
N1—C7—C8116.5 (4)N2—C20—C21115.9 (4)
C13—C8—C9119.6 (4)C22—C21—C26120.2 (4)
C13—C8—C7118.0 (4)C22—C21—C20116.3 (4)
C9—C8—C7122.4 (4)C26—C21—C20123.3 (4)
C10—C9—C8118.4 (4)C21—C22—C23119.0 (4)
C10—C9—H9120.8C21—C22—H22120.5
C8—C9—H9120.8C23—C22—H22120.5
C11—C10—C9121.6 (4)C24—C23—C22121.9 (5)
C11—C10—Cl2119.2 (4)C24—C23—Cl4119.7 (4)
C9—C10—Cl2119.2 (4)C22—C23—Cl4118.4 (4)
C10—C11—C12119.4 (5)C25—C24—C23118.9 (4)
C10—C11—H11120.3C25—C24—H24120.5
C12—C11—H11120.3C23—C24—H24120.5
C13—C12—C11120.3 (5)C24—C25—C26120.9 (5)
C13—C12—H12119.9C24—C25—H25119.5
C11—C12—H12119.9C26—C25—H25119.5
C12—C13—C8120.6 (4)C21—C26—C25118.9 (5)
C12—C13—H13119.7C21—C26—H26120.5
C8—C13—H13119.7C25—C26—H26120.5
C7—N1—C1—C6150.4 (5)C20—N2—C14—C15147.2 (5)
C7—N1—C1—C232.5 (7)C20—N2—C14—C1934.2 (7)
C6—C1—C2—C32.2 (6)C19—C14—C15—C160.3 (6)
N1—C1—C2—C3179.4 (4)N2—C14—C15—C16178.9 (4)
C1—C2—C3—C41.8 (7)C14—C15—C16—C170.3 (7)
C1—C2—C3—Cl1179.6 (3)C14—C15—C16—Cl3179.6 (3)
C2—C3—C4—C51.3 (7)C15—C16—C17—C180.3 (8)
Cl1—C3—C4—C5179.9 (4)Cl3—C16—C17—C18179.1 (4)
C3—C4—C5—C61.2 (7)C16—C17—C18—C190.8 (8)
C2—C1—C6—C52.3 (7)C17—C18—C19—C140.8 (8)
N1—C1—C6—C5179.5 (4)C15—C14—C19—C180.2 (7)
C4—C5—C6—C11.7 (7)N2—C14—C19—C18178.3 (4)
C1—N1—C7—O11.2 (7)C14—N2—C20—O22.7 (7)
C1—N1—C7—C8178.8 (4)C14—N2—C20—C21177.2 (4)
O1—C7—C8—C1336.2 (6)O2—C20—C21—C2235.5 (6)
N1—C7—C8—C13143.8 (4)N2—C20—C21—C22144.4 (4)
O1—C7—C8—C9142.1 (4)O2—C20—C21—C26140.5 (4)
N1—C7—C8—C937.9 (6)N2—C20—C21—C2639.5 (6)
C13—C8—C9—C100.8 (6)C26—C21—C22—C231.7 (6)
C7—C8—C9—C10177.5 (4)C20—C21—C22—C23177.9 (4)
C8—C9—C10—C112.6 (7)C21—C22—C23—C241.9 (7)
C8—C9—C10—Cl2178.4 (3)C21—C22—C23—Cl4178.4 (3)
C9—C10—C11—C122.1 (8)C22—C23—C24—C250.6 (7)
Cl2—C10—C11—C12178.8 (4)Cl4—C23—C24—C25179.7 (4)
C10—C11—C12—C130.2 (7)C23—C24—C25—C260.8 (8)
C11—C12—C13—C82.0 (7)C22—C21—C26—C250.3 (6)
C9—C8—C13—C121.5 (7)C20—C21—C26—C25176.3 (4)
C7—C8—C13—C12179.8 (4)C24—C25—C26—C210.9 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O2i0.862.052.877 (4)162
N2—H2n···O10.862.062.884 (5)161
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC13H9Cl2NO
Mr266.11
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)8.577 (1), 13.551 (1), 10.357 (1)
β (°) 93.04 (1)
V3)1202.1 (2)
Z4
Radiation typeCu Kα
µ (mm1)4.70
Crystal size (mm)0.60 × 0.28 × 0.23
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.265, 0.341
No. of measured, independent and
observed [I > 2˘I)] reflections
3088, 2249, 2165
Rint0.022
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.131, 1.10
No. of reflections2249
No. of parameters308
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.50
Absolute structureNo Flack (1983), no Friedel pairs
Absolute structure parameter0.07 (2)

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O2i0.862.052.877 (4)161.7
N2—H2n···O10.862.062.884 (5)160.5
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2007). Acta Cryst. E63, o3789.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o462.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds