metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m633-m634

(3,5-Di­chloro­salicylaldehyde thio­semi­carbazonato-κ3S,N1,O)(N,N′-di­methyl­formamide-κO)copper(II) di­methyl­formamide solvate

aKey Laboratory of Non-ferrous Metal Materials and New Processing Technology, Department of Materials and Chemical Engineering, Guilin University of Technology, Ministry of Education, Guilin 541004, People's Republic of China
*Correspondence e-mail: lisa4.6@163.com

(Received 14 March 2008; accepted 3 April 2008; online 10 April 2008)

In the title compound, [Cu(C8H5Cl2N3OS)(C3H7NO)]·C3H7NO, the CuII atom is coordinated in a slightly distorted square-planar geometry by an O, an S and an N atom from the tridentate ligand 3,5-dichloro­salicylaldehyde thio­semi­carb­azonate ligand and one O atom from dimethyl­formamide. At the same time, the Cu atom is in contact with S and Cl atoms from another two complexes [Cu⋯S and Cu⋯Cl = 2.9791 (2) and 3.3800 (3) Å, respectively], thereby forming a [4 + 2] coordination geometry. The crystal structure exhibits N—H⋯O and N—H⋯N hydrogen bonds.

Related literature

For studies of thio­semicarbazone complexes containing amino acids, see: Garcia-Orozco et al. (2002[Garcia-Orozco, I., Tapia-Benavides, A. R., Alvarez-Toledano, C., Toscano, R. A., Ramirez-Rosales, D. & Zamorano-Ulloa, R. (2002). J. Mol. Struct. 604, 57-64.]); Seena et al. (2007[Seena, E. B., Maliyeckal, R. & Kurup, P. (2007). Polyhedron, 26, 829-, 36.]); Valdes-Martinez et al. (1995[Valdes-Martinez, J., Toscano, R. A. & Ramirez-Ortiz, J. (1995). Polyhedron, 14, 579-583.]); Singh et al. (1997[Singh, K., Long, J. R. & Stavropoulos, P. (1997). J. Am. Chem. Soc. 119, 2942-2943.]); Shen et al. (1997[Shen, X., Wu, D., Huang, X., Liu, Q., Huang, Z. & Kang, B. (1997). Polyhedron, 16, 1477-1482.]); Zimmer et al. (1991[Zimmer, M., Schulte, G., Luo, X.-L. & Crabtree, R. H. (1991). Angew. Chem. Int. Ed. Engl. 30, 193-194.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8H5Cl2N3OS)(C3H7NO)]·C3H7NO

  • Mr = 471.84

  • Monoclinic, P 21 /n

  • a = 9.4979 (10) Å

  • b = 9.8057 (12) Å

  • c = 21.744 (2) Å

  • β = 94.263 (2)°

  • V = 2019.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.47 mm−1

  • T = 298 (2) K

  • 0.49 × 0.47 × 0.24 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.532, Tmax = 0.719

  • 9869 measured reflections

  • 3558 independent reflections

  • 2587 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.098

  • S = 1.06

  • 3558 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.909 (2)
Cu1—N1 1.954 (3)
Cu1—O2 1.985 (2)
Cu1—S1 2.2567 (10)
O1—Cu1—N1 93.55 (11)
O1—Cu1—O2 90.55 (11)
N1—Cu1—O2 172.04 (11)
O1—Cu1—S1 176.26 (8)
N1—Cu1—S1 86.04 (8)
O2—Cu1—S1 89.43 (8)
C4—O1—Cu1 127.5 (2)
C9—O2—Cu1 123.8 (3)
C1—S1—Cu1 94.29 (11)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N2i 0.86 2.14 2.992 (4) 170
N3—H3B⋯O3ii 0.86 2.08 2.886 (4) 157
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a special kind of Schiff base, thiosemicarbazones and their metal complexes have become the subjects of intensive study because of their wide ranging biological activities, analytical applications and interesting chemical and structural properties (Zimmer, et al., 1991). In addition, salicylaldehyde thiosemicarbazone and its substituent analogs as well as their copper complexes has been synthesized. The N—S donor also have theoretical interest, as they are capable of furnishing an environment of controlled geometry and ligand field strength.

In the title compound there is a DMF molecule coordinated through O, in addition to one N, one O and one S atom from the tridentate ligand 3,5-dichlorosalicylaldehyde thiosemicarbazone forming a slightly distorted planar square geometry (Fig. 1). In the unit cell, above and below the distorted square plane are Cl and S atoms at a long distance forming a "4 + 2" geometry. The weak interaction length of S–Cu is 2.9791 (2) Å. This bond distance are in the range of upper values for a long coordination distance (2.5–3.0 Å) in Cu(II) compounds. The length of Cl–Cu is 3.3800 (3) Å (Fig. 2). All of these facts can be seen as the result of the Jahn-Teller effect (Garcia-Orozco et al., 2002). A three-dimensional network is formed through these Cl–Cu, S–Cu contacts, N–H···N and N–H···O hydrogen bonds (Fig.3).

Related literature top

For studies of thiosemicarbazone complexes containing amino acids, see: Garcia-Orozco et al. (2002); Seena et al. (2007); Valdes-Martinez et al. (1995); Singh et al. (1997); Shen et al. (1997); Zimmer et al. (1991).

Experimental top

An EtOH solution (15 ml) of 3,5-dichlorosalicylaldehyde (5 mmol) was added dropwise to the solution (15 ml) of thiosemicarbazide (5 mmol) and 0.75 ml acetic anhydride with stirring at ca 70°C for 4.5 h. The light brown precipitate was removed by filtration and recrystallized from 1:1 (v/v) MeOH/EtOH solution. Then a mixture of the ligand (0.5 mmol) and copper nitrate (0.5 mmol) in EtOH (35 ml) was stirred at ca 65° C for 2 h to give the desired complex. The Cu complex was dissolved in DMF, and ether slowly diffused into the DMF solution to afford almost quantitatively green crystals of the mononuclear complex at ambient temperature after several days.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SMART (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit showing 30% probability displacement ellipsoids. Carbon-bound H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The interactions of Cl···Cu and S···Cu in the asymmetric unit one-dimensional chains.
[Figure 3] Fig. 3. A view down the b axis, broken line showing short Cl–Cu and S···Cu contacts and hydrogen bonds.
(3,5-Dichlorosalicylaldehyde thiosemicarbazonato-κ3S,N1,O)(N,N'- dimethylformamide-κO)copper(II) dimethylformamide solvate top
Crystal data top
[Cu(C8H5Cl2N3OS)(C3H7NO)]·C3H7NOF(000) = 964
Mr = 471.84Dx = 1.552 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.4979 (10) ÅCell parameters from 3442 reflections
b = 9.8057 (12) Åθ = 2.3–26.8°
c = 21.744 (2) ŵ = 1.47 mm1
β = 94.263 (2)°T = 298 K
V = 2019.5 (4) Å3Block, green
Z = 40.49 × 0.47 × 0.24 mm
Data collection top
Bruker SMART 1000
diffractometer
3558 independent reflections
Radiation source: fine-focus sealed tube2587 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1110
Tmin = 0.532, Tmax = 0.719k = 911
9869 measured reflectionsl = 2325
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0377P)2 + 1.6178P]
where P = (Fo2 + 2Fc2)/3
3558 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Cu(C8H5Cl2N3OS)(C3H7NO)]·C3H7NOV = 2019.5 (4) Å3
Mr = 471.84Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.4979 (10) ŵ = 1.47 mm1
b = 9.8057 (12) ÅT = 298 K
c = 21.744 (2) Å0.49 × 0.47 × 0.24 mm
β = 94.263 (2)°
Data collection top
Bruker SMART 1000
diffractometer
3558 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2587 reflections with I > 2σ(I)
Tmin = 0.532, Tmax = 0.719Rint = 0.034
9869 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.06Δρmax = 0.31 e Å3
3558 reflectionsΔρmin = 0.50 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.54152 (4)0.31930 (4)0.51062 (2)0.04237 (15)
Cl10.29920 (11)0.05605 (11)0.41172 (6)0.0706 (3)
Cl20.69572 (16)0.09500 (13)0.24825 (6)0.0928 (4)
N10.7172 (3)0.3290 (3)0.46944 (12)0.0353 (6)
N20.8232 (3)0.4197 (3)0.48940 (14)0.0433 (7)
N30.8875 (3)0.5886 (3)0.55631 (15)0.0592 (9)
H3A0.96660.59380.53960.071*
H3B0.87100.64180.58640.071*
N40.1645 (3)0.2314 (4)0.58339 (19)0.0736 (11)
N50.3114 (4)0.6470 (4)0.24057 (17)0.0673 (10)
O10.4724 (2)0.1664 (2)0.46316 (13)0.0515 (6)
O20.3799 (2)0.3059 (3)0.56320 (12)0.0536 (7)
O30.4168 (4)0.7162 (4)0.15577 (16)0.0890 (10)
S10.63125 (9)0.49051 (9)0.57083 (4)0.0431 (2)
C10.7899 (3)0.4974 (3)0.53551 (15)0.0386 (8)
C20.7456 (3)0.2575 (3)0.42245 (17)0.0427 (8)
H20.83090.27510.40550.051*
C30.6572 (3)0.1521 (3)0.39345 (17)0.0430 (8)
C40.5275 (4)0.1113 (3)0.41651 (18)0.0440 (9)
C50.4564 (4)0.0012 (3)0.38446 (19)0.0496 (10)
C60.5066 (5)0.0603 (4)0.3345 (2)0.0604 (11)
H60.45660.13170.31500.072*
C70.6330 (5)0.0162 (4)0.31267 (18)0.0579 (10)
C80.7069 (4)0.0878 (4)0.34189 (18)0.0517 (10)
H80.79160.11630.32720.062*
C90.2784 (4)0.2276 (4)0.55256 (19)0.0568 (10)
H90.28310.16320.52140.068*
C100.1465 (5)0.3332 (6)0.6303 (3)0.1007 (19)
H10A0.22700.39270.63340.151*
H10B0.13770.28900.66920.151*
H10C0.06290.38540.61950.151*
C110.0480 (5)0.1379 (6)0.5678 (3)0.118 (2)
H11A0.03300.18850.55170.178*
H11B0.02520.08960.60420.178*
H11C0.07500.07400.53740.178*
C120.3156 (6)0.7130 (5)0.1874 (2)0.0765 (14)
H120.23510.76070.17310.092*
C130.4330 (6)0.5683 (5)0.2633 (3)0.1003 (18)
H13A0.41520.47320.25560.151*
H13B0.45080.58310.30680.151*
H13C0.51390.59630.24250.151*
C140.1882 (5)0.6465 (6)0.2757 (2)0.0926 (16)
H14A0.11490.70010.25470.139*
H14B0.21210.68470.31580.139*
H14C0.15570.55460.28000.139*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0313 (2)0.0425 (3)0.0537 (3)0.00725 (18)0.00661 (18)0.0006 (2)
Cl10.0498 (6)0.0584 (6)0.1019 (9)0.0229 (5)0.0066 (6)0.0054 (6)
Cl20.1295 (12)0.0781 (8)0.0717 (8)0.0265 (8)0.0131 (8)0.0339 (7)
N10.0274 (14)0.0357 (15)0.0427 (16)0.0085 (11)0.0012 (12)0.0040 (13)
N20.0286 (14)0.0462 (17)0.0556 (19)0.0114 (12)0.0064 (13)0.0158 (15)
N30.0365 (17)0.072 (2)0.071 (2)0.0200 (16)0.0127 (15)0.0359 (18)
N40.039 (2)0.089 (3)0.094 (3)0.0100 (18)0.0143 (19)0.029 (2)
N50.077 (3)0.068 (2)0.057 (2)0.009 (2)0.0072 (19)0.0059 (19)
O10.0362 (13)0.0408 (14)0.0782 (19)0.0120 (11)0.0087 (12)0.0043 (13)
O20.0386 (14)0.0559 (16)0.0681 (18)0.0111 (12)0.0152 (12)0.0063 (13)
O30.098 (3)0.101 (3)0.067 (2)0.024 (2)0.0003 (19)0.0309 (19)
S10.0349 (5)0.0519 (5)0.0431 (5)0.0045 (4)0.0068 (4)0.0034 (4)
C10.0312 (17)0.044 (2)0.0401 (19)0.0040 (15)0.0008 (15)0.0022 (16)
C20.0309 (18)0.044 (2)0.054 (2)0.0099 (15)0.0033 (16)0.0054 (18)
C30.0384 (19)0.0362 (19)0.054 (2)0.0046 (15)0.0019 (16)0.0013 (17)
C40.0380 (19)0.0337 (19)0.059 (2)0.0007 (15)0.0046 (17)0.0041 (17)
C50.044 (2)0.037 (2)0.066 (3)0.0097 (16)0.0119 (19)0.0091 (19)
C60.070 (3)0.039 (2)0.068 (3)0.011 (2)0.021 (2)0.004 (2)
C70.074 (3)0.047 (2)0.051 (2)0.008 (2)0.007 (2)0.0089 (19)
C80.053 (2)0.047 (2)0.055 (2)0.0087 (18)0.0024 (19)0.0049 (19)
C90.045 (2)0.063 (3)0.063 (3)0.004 (2)0.008 (2)0.013 (2)
C100.072 (3)0.134 (5)0.102 (4)0.014 (3)0.045 (3)0.024 (4)
C110.048 (3)0.141 (5)0.167 (6)0.033 (3)0.011 (3)0.042 (5)
C120.089 (4)0.066 (3)0.072 (3)0.015 (3)0.010 (3)0.013 (3)
C130.118 (5)0.099 (4)0.087 (4)0.023 (3)0.029 (3)0.041 (3)
C140.083 (4)0.119 (4)0.077 (3)0.017 (3)0.012 (3)0.007 (3)
Geometric parameters (Å, º) top
Cu1—O11.909 (2)C2—H20.9300
Cu1—N11.954 (3)C3—C81.398 (5)
Cu1—O21.985 (2)C3—C41.421 (5)
Cu1—S12.2567 (10)C4—C51.427 (5)
Cl1—C51.740 (4)C5—C61.359 (6)
Cl2—C71.743 (4)C6—C71.393 (6)
N1—C21.284 (4)C6—H60.9300
N1—N21.388 (3)C7—C81.367 (5)
N2—C11.316 (4)C8—H80.9300
N3—C11.342 (4)C9—H90.9300
N3—H3A0.8600C10—H10A0.9600
N3—H3B0.8600C10—H10B0.9600
N4—C91.315 (5)C10—H10C0.9600
N4—C101.446 (6)C11—H11A0.9600
N4—C111.458 (6)C11—H11B0.9600
N5—C121.328 (6)C11—H11C0.9600
N5—C141.444 (6)C12—H120.9300
N5—C131.446 (6)C13—H13A0.9600
O1—C41.294 (4)C13—H13B0.9600
O2—C91.241 (4)C13—H13C0.9600
O3—C121.223 (6)C14—H14A0.9600
S1—C11.743 (3)C14—H14B0.9600
C2—C31.447 (4)C14—H14C0.9600
O1—Cu1—N193.55 (11)C5—C6—H6120.1
O1—Cu1—O290.55 (11)C7—C6—H6120.1
N1—Cu1—O2172.04 (11)C8—C7—C6119.9 (4)
O1—Cu1—S1176.26 (8)C8—C7—Cl2120.7 (3)
N1—Cu1—S186.04 (8)C6—C7—Cl2119.4 (3)
O2—Cu1—S189.43 (8)C7—C8—C3121.1 (4)
C2—N1—N2114.1 (3)C7—C8—H8119.4
C2—N1—Cu1125.1 (2)C3—C8—H8119.4
N2—N1—Cu1120.8 (2)O2—C9—N4123.0 (4)
C1—N2—N1113.5 (3)O2—C9—H9118.5
C1—N3—H3A120.0N4—C9—H9118.5
C1—N3—H3B120.0N4—C10—H10A109.5
H3A—N3—H3B120.0N4—C10—H10B109.5
C9—N4—C10121.6 (4)H10A—C10—H10B109.5
C9—N4—C11120.2 (5)N4—C10—H10C109.5
C10—N4—C11118.0 (4)H10A—C10—H10C109.5
C12—N5—C14122.7 (4)H10B—C10—H10C109.5
C12—N5—C13118.8 (4)N4—C11—H11A109.5
C14—N5—C13118.4 (4)N4—C11—H11B109.5
C4—O1—Cu1127.5 (2)H11A—C11—H11B109.5
C9—O2—Cu1123.8 (3)N4—C11—H11C109.5
C1—S1—Cu194.29 (11)H11A—C11—H11C109.5
N2—C1—N3116.3 (3)H11B—C11—H11C109.5
N2—C1—S1125.3 (2)O3—C12—N5125.3 (5)
N3—C1—S1118.4 (3)O3—C12—H12117.3
N1—C2—C3126.0 (3)N5—C12—H12117.3
N1—C2—H2117.0N5—C13—H13A109.5
C3—C2—H2117.0N5—C13—H13B109.5
C8—C3—C4120.6 (3)H13A—C13—H13B109.5
C8—C3—C2116.9 (3)N5—C13—H13C109.5
C4—C3—C2122.5 (3)H13A—C13—H13C109.5
O1—C4—C3124.8 (3)H13B—C13—H13C109.5
O1—C4—C5119.6 (3)N5—C14—H14A109.5
C3—C4—C5115.6 (3)N5—C14—H14B109.5
C6—C5—C4123.0 (4)H14A—C14—H14B109.5
C6—C5—Cl1119.3 (3)N5—C14—H14C109.5
C4—C5—Cl1117.7 (3)H14A—C14—H14C109.5
C5—C6—C7119.8 (3)H14B—C14—H14C109.5
O1—Cu1—N1—C27.1 (3)N1—C2—C3—C42.9 (6)
O2—Cu1—N1—C2127.9 (7)Cu1—O1—C4—C33.3 (5)
S1—Cu1—N1—C2176.6 (3)Cu1—O1—C4—C5176.6 (2)
O1—Cu1—N1—N2174.1 (2)C8—C3—C4—O1178.8 (3)
O2—Cu1—N1—N253.3 (9)C2—C3—C4—O13.1 (5)
S1—Cu1—N1—N22.2 (2)C8—C3—C4—C51.2 (5)
C2—N1—N2—C1176.6 (3)C2—C3—C4—C5176.9 (3)
Cu1—N1—N2—C12.3 (4)O1—C4—C5—C6179.0 (3)
N1—Cu1—O1—C47.1 (3)C3—C4—C5—C61.0 (5)
O2—Cu1—O1—C4179.7 (3)O1—C4—C5—Cl11.6 (4)
S1—Cu1—O1—C490.6 (13)C3—C4—C5—Cl1178.5 (3)
O1—Cu1—O2—C97.4 (3)C4—C5—C6—C70.1 (6)
N1—Cu1—O2—C9128.4 (7)Cl1—C5—C6—C7179.4 (3)
S1—Cu1—O2—C9176.3 (3)C5—C6—C7—C80.7 (6)
O1—Cu1—S1—C182.5 (12)C5—C6—C7—Cl2179.5 (3)
N1—Cu1—S1—C11.24 (14)C6—C7—C8—C30.5 (6)
O2—Cu1—S1—C1172.22 (14)Cl2—C7—C8—C3179.7 (3)
N1—N2—C1—N3179.1 (3)C4—C3—C8—C70.5 (6)
N1—N2—C1—S10.9 (4)C2—C3—C8—C7177.7 (3)
Cu1—S1—C1—N20.6 (3)Cu1—O2—C9—N4171.5 (3)
Cu1—S1—C1—N3179.4 (3)C10—N4—C9—O23.2 (7)
N2—N1—C2—C3177.6 (3)C11—N4—C9—O2179.0 (4)
Cu1—N1—C2—C33.5 (5)C14—N5—C12—O3179.7 (5)
N1—C2—C3—C8178.9 (3)C13—N5—C12—O31.9 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N2i0.862.142.992 (4)170
N3—H3B···O3ii0.862.082.886 (4)157
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C8H5Cl2N3OS)(C3H7NO)]·C3H7NO
Mr471.84
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.4979 (10), 9.8057 (12), 21.744 (2)
β (°) 94.263 (2)
V3)2019.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.47
Crystal size (mm)0.49 × 0.47 × 0.24
Data collection
DiffractometerBruker SMART 1000
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.532, 0.719
No. of measured, independent and
observed [I > 2σ(I)] reflections
9869, 3558, 2587
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.06
No. of reflections3558
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.50

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O11.909 (2)Cu1—O21.985 (2)
Cu1—N11.954 (3)Cu1—S12.2567 (10)
O1—Cu1—N193.55 (11)O2—Cu1—S189.43 (8)
O1—Cu1—O290.55 (11)C4—O1—Cu1127.5 (2)
N1—Cu1—O2172.04 (11)C9—O2—Cu1123.8 (3)
O1—Cu1—S1176.26 (8)C1—S1—Cu194.29 (11)
N1—Cu1—S186.04 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N2i0.862.142.992 (4)170
N3—H3B···O3ii0.862.082.886 (4)157
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

We acknowledge financial support by the Key Laboratory of Non-ferrous Metal Materials and New Processing Technology, Ministry of Education, China.

References

First citationBruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGarcia-Orozco, I., Tapia-Benavides, A. R., Alvarez-Toledano, C., Toscano, R. A., Ramirez-Rosales, D. & Zamorano-Ulloa, R. (2002). J. Mol. Struct. 604, 57–64.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeena, E. B., Maliyeckal, R. & Kurup, P. (2007). Polyhedron, 26, 829–, 36.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, X., Wu, D., Huang, X., Liu, Q., Huang, Z. & Kang, B. (1997). Polyhedron, 16, 1477–1482.  CSD CrossRef CAS Web of Science Google Scholar
First citationSingh, K., Long, J. R. & Stavropoulos, P. (1997). J. Am. Chem. Soc. 119, 2942–2943.  CSD CrossRef CAS Web of Science Google Scholar
First citationValdes-Martinez, J., Toscano, R. A. & Ramirez-Ortiz, J. (1995). Polyhedron, 14, 579–583.  CSD CrossRef CAS Web of Science Google Scholar
First citationZimmer, M., Schulte, G., Luo, X.-L. & Crabtree, R. H. (1991). Angew. Chem. Int. Ed. Engl. 30, 193–194.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m633-m634
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds