metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m610-m611

Bis(chloro­acetato)-κ2O,O′;κO-methanol-κO-bis­­(2-methyl­furo[3,2-c]pyridine-κN)copper(II)

aDepartment of Inorganic Chemistry, Slovak Technical University, Radlinského 9, SK-812 37, Bratislava, Slovakia, and bDepartment of Chemistry, Faculty of Natural Science, University of St. Cyril and Methodius, SK-91701 Trnava, Slovakia
*Correspondence e-mail: jan.moncol@stuba.sk

(Received 17 March 2008; accepted 28 March 2008; online 2 April 2008)

In the title compound, [Cu(C2H2ClO2)2(C8H7NO)2(CH4O)], the Cu2+ ion has a highly distorted square-bipyramidal (4 + 1 + 1) coordination environment and is bonded to three carboxyl­ate O atoms of two chloro­acetate anions (monodentate and asymmetrically bidentate), two pyridine N atoms of 2-methyl­furo[3,2-c]pyridine and one methanol O atom. There is an intra­molecular O—H⋯O hydrogen bond. Inter­molecular C—H⋯O hydrogen bonds result in the formation of a three-dimensional network and ππ stacking inter­actions [3.44–3.83 Å] are observed between symmetry-related rings of 2-methyl­furo[3,2-c]pyridine. Further inter­actions in the crystal structure are a short Cl⋯Cl inter­action [3.384 (2)Å] and C—H⋯π inter­actions between 2-methyl­furo[3,2-c]pyridine rings.

Related literature

For general background, see: Desiraju (1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.]); Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]); Suezawa et al. (2002[Suezawa, H., Yoshida, T., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2002). Eur. J. Inorg. Chem. pp. 3148-3155.]). For related literature, see: Baran et al. (2005[Baran, P., Boča, M., Boča, R., Krutošíková, A., Miklovič, J., Pelikán, J. & Titiš, J. (2005). Polyhedron, 24, 1510-1516.]); Eloy & Deryckere (1971[Eloy, F. & Deryckere, A. (1971). J. Heterocycl. Chem. 8, 57-60.]); Ivaniková et al. (2006[Ivaniková, R., Boča, R., Dlháň, Ľ., Fuess, H., Mašlejová, A., Mrázová, V., Svoboda, I. & Titiš, J. (2006). Polyhedron, 25, 3261-3268.]); Mikloš et al. (2005[Mikloš, D., Jašková, J., Segľa, P., Miklovič, J., Mrázová, V., Kaliňaková, B., Hudecová, D., Sillanpää, R., Lis, T. & Melník, M. (2005). Advances in Coordination, Bioinorganic and Inorganic Chemistry, Vol. 7, edited by M. Melník, J. Šima & M. Tatarko, pp. 201-217. Bratislava: Slovak Technical University Press.]); Miklovič et al. (2004[Miklovič, J., Krutošíková, A. & Baran, P. (2004). Acta Cryst. C60, m227-m230.]); New et al. (1989[New, J. S., Christopher, W. L., Yevich, J. P., Butler, R., Schlemmer, R. F. Jr, van der Maelen, C. P. & Cipolline, J. A. (1989). J. Med. Chem. 32, 1147-1156.]); Segľa et al. (2005[Segľa, P., Jašková, J., Mikloš, D., Kaliňaková, B., Hudecová, D., Miklovič, J., Mrázová, V., Švorec, J., Lis, T. & Melník, M. (2005). Advances in Coordination, Bioinorganic and Inorganic Chemistry, Vol. 7, edited by M. Melník, J. Šima & M. Tatarko, pp. 323-340. Bratislava: Slovak Technical University Press.]); Titiš et al. (2007[Titiš, J., Boča, R., Dlháň, Ľ., Ďurčeková, T., Fuess, H., Ivaniková, R., Mrázová, V., Papánková, B. & Svoboda, I. (2007). Polyhedron, 26, 1523-1530.]); Vrábel et al. (2007a[Vrábel, V., Švorc, Ľ., Juristová, N., Miklovič, J. & Kožíšek, J. (2007a). Acta Cryst. E63, m2112-m2113.],b[Vrábel, V., Švorc, Ľ., Juristová, N., Miklovič, J. & Kožíšek, J. (2007b). Acta Cryst. E63, m2427-m2428.]). For similar structures, see: Borel et al. (1978[Borel, M.-M., Boniak, L., Busnot, F. & Leclaire, A. (1978). Rev. Chim. Miner. 15, 397-405.]); Moncol et al. (2007[Moncol, J., Segľa, P., Jašková, J., Fischer, A. & Melník, M. (2007). Acta Cryst. E63, m698-m700.]); Wang et al. (2005[Wang, P., Dong, Y.-B., Ma, J.-P., Huang, R.-Q. & Smith, M. D. (2005). Inorg. Chem. Commun. 8, 596-599.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2H2ClO2)2(C8H7NO)2(CH4O)]

  • Mr = 548.86

  • Monoclinic, C 2/c

  • a = 19.860 (3) Å

  • b = 15.576 (3) Å

  • c = 15.017 (3) Å

  • β = 97.917 (3)°

  • V = 4600.9 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.23 mm−1

  • T = 173 (2) K

  • 0.26 × 0.20 × 0.16 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.776, Tmax = 0.891 (expected range = 0.716–0.822)

  • 16690 measured reflections

  • 4021 independent reflections

  • 3093 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.103

  • S = 1.02

  • 4021 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 1.08 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O8 1.956 (2)
Cu1—O4 1.964 (2)
Cu1—N21 2.031 (3)
Cu1—N11 2.046 (3)
Cu1—O1 2.311 (2)
Cu1—O5 2.833 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O9 0.84 1.86 2.664 (3) 159
C12—H12⋯O4 0.95 2.44 2.944 (4) 113
C20—H20⋯O8 0.95 2.40 2.915 (4) 114
C22—H22⋯O8 0.95 2.41 2.886 (4) 111
C30—H30⋯O4 0.95 2.53 3.000 (4) 111
C6—H6A⋯O5i 0.99 2.60 3.510 (4) 154
C16—H16C⋯O1ii 0.98 2.63 3.413 (4) 137
C14—H14⋯O9ii 0.95 2.55 3.450 (4) 159
C20—H20⋯O5i 0.95 2.57 3.221 (4) 126
C29—H29⋯O5iii 0.95 2.69 3.451 (4) 138
C19—H19⋯O5i 0.95 2.65 3.235 (4) 120
C16—H16A⋯O9iv 0.98 2.65 3.610 (4) 167
C24—H24⋯O9v 0.95 2.67 3.408 (4) 135
C1—H1B⋯C14vi 0.98 2.87 3.834 (4) 168
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y, -z+{\script{1\over 2}}]; (iv) [x, -y+1, z+{\script{1\over 2}}]; (v) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [x, -y+1, z-{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Furopyridines are components of many biologically active compounds, for example the furo[3,2-c]pyridine ring system has potential antipsychotic activity (New et al., 1989). The furo[3,2-c]pyridine and its derivatives can be readily coordinated to metal centers through the pyridine N-donor atom (Baran et al., 2005; Ivaniková et al., 2006; Mikloš et al. (2005); Miklovič et al., 2004; Segľa et al. (2005); Titiš et al., 2007; Vrábel et al., 2007a,b). As part of our efforts to investigate metal(II) complexes based on furo[3,2-c]pyridine derivatives, we describe the X-ray characterization of the title compound.

In the title compound, the CuII atom is six-coordinated by two carboxylate O atoms of the asymmetrically chelating bidentate chloroacetate anion [Cu1–O4 = 1.964 (2) and Cu–O5 = 2.833 (2) Å], one carboxylate O atom of the monodentate chloroacetate anion [Cu1–O8 = 1.956 (2) Å], two N atoms of pyridine rings of 2-methylfuro[3,2-c]pyridine [Cu1–N11 = 2.046 (3) and Cu1–N21 = 2.031 (3) Å] and one O atom of methanol molecule [Cu1–O1 = 2.311 (2) Å], resulting in highly distorted square-bipyramidal geometry (Fig. 1). The intramolecular O–H···O hydrogen bond forms a six-membered metallocycle (Fig. 1).

The bond lengths and angles may be compared with the corresponding values in similar complexes, with axial water molecule [aquabis(benzoato)bis(γ-picoline)copper(II) (II) (refcode: BZGPCU10, Borel et al., 1978); aquabis(3-pyridylacrylato)bis(3-pyridylmethanol)copper(II) (III), (refcode: XEYTAX, Moncol et al., 2007); aquabis(acetato)bis(2-(3-pyridyl)-5-(4-pyridyl)-1,3,4-oxadiazole)copper(II) (IV), (refcode: QAQNOM, Wang et al., 2005)]. In the molecular structure of all three complexes (II–IV), there is highly distorted square-bipyramidal (4 + 1 + 1) coordination environment, the longer Cu–O bond distances for asymmetrically chelating bidentate carboxylate anions are in the range of 2.61–2.78 Å.

The hydrogen-bond parameters of the title compound are listed in Table 2. The molecules of the title compound are linked through weak C–H···O hydrogen-bonding interactions (Figures 2 and 3), where acceptor atoms of hydrogen-bonds are carboxylate O atoms (O5 and O9). As can be seen in Figure 2, there are observed also short Cl2···Cl2vi [symmetry code: (vi) -x + 2, y, -z + 1/2] contacts (Desiraju, 1995) of 3.384 (2)Å between the molecules of the title compound. The additional interactions are the π-π stacking interactions (Janiak, 2000), between the two adjacent furo[3,2-c]pyridine rings, [N21/C22—C25/O27/C28—C30] (πa) and [N11/C12—C15/O17/C18—C20] (πb). Four 2-methylfuro[3,2-c]pyridine rings are stacked in the order πb-πa···πa-πa···πa-πb (Figure 2). The distances between πa-πaiii and πa-πbvii [symmetry codes: (iii) -x + 1, y, -z + 1/2, (vii) -x + 3/2, y + 1/2, -z + 1/2] 2-methylfuro[3,2-c]pyridine rings are in ranges 3.44–3.66 Å and 3.45–3.83 Å, respectively. The CH/π interaction (Suezawa et al., 2002) is also observed between methyl H atom of the methanol ligand and furan ring of 2-methylfuro[3,2-c]pyridine [C1–H1B···πbviii, symmetry code: (viii) x, -y + 1, z - 1/2] (Figure 3). The distances Datm (interatomic distance H1B/C14) and Dpln (H/π-plane distance) (Suezawa et al., 2002) are 2.77 and 2.85 Å, respectively.

Related literature top

For general background, see: Desiraju (1995); Janiak (2000); Suezawa et al. (2002); For related literature, see: Baran et al. (2005); Eloy & Deryckere (1971); Ivaniková et al. (2006); Mikloš et al. (2005); Miklovič et al. (2004); New et al. (1989); Segľa et al. (2005); Titiš et al. (2007); Vrábel et al. (2007a,b) For similar structures, see: Borel et al. (1978); Moncol et al. (2007); Wang et al. (2005).

Experimental top

The organic compounds 2-methylfuro[3,2-c]pyridine (Mefpy) has been prepared using procedure described in Eloy & Deryckere (1971). Complex Cu(C2H2ClO2)2.2H2O (0.002 mol, 0.57 g) was dissolved in 30 cm3 of methanol and treated with a methanolic solution of Mefpy (0.004 mol, 0.53 g, 10 cm3 me thanol) in a molar ratio of 1:2. The mixture was stirred and left to stand at room temperature giving a crystalline compound of [Cu(C2H2ClO2)2(C8H7NO)2(CH4O)]. The Anal. Calc.: C, 45.95; H, 4.04; N, 5.10; Cu, 11.58; Found: C, 45.57; H, 3.87; N, 5.00; Cu, 11.45. IR (KBr) cm-1: 1640vs,br νas(COO-); 1371vs νs(COO-); 1605m ν(C?N)Mefpy; 654m δ(py)Mefpy; 428m χ(py)Mefpy; 1041m ν(CO)methanol. UV-VIS: 645 nm.

Refinement top

All H atoms of C–H (aromatic, methyl and methylene) and hydroxyl O–H bonds were placed in calculated positions (0.95, 0.98, 0.99 and 0.84 Å, respectively); isotropic displacement parameters were fixed (Uiso(H) = xUiso(C/O) (x = 1.2 for aromatic and methylene; and 1.5 for methyl and hydroxyl) of C or O atoms to which they were attached) using a riding model.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound, with the atom numbering scheme and thermal ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound with C–H···O hydrogen bonds, Cl···Cl contacts and π-π stacking interactions. Symmetry codes: (ii) -x + 3/2, y - 1/2, -z + 1/2; (iii) -x + 1, y, -z + 1/2; (v) -x + 3/2, y + 1/2, -z + 1/2; (vi) -x + 2, y, -z + 1/2].
[Figure 3] Fig. 3. The C–H···O hydrogen bonds and CH/π interactions in crystal structure of the title compound. Symmetry codes: (i) -x + 3/2, -y + 3/2, -z + 1; (v) -x + 3/2, y + 1/2, -z + 1/2].
Bis(chloroacetato)-κ2O,O';κO-methanol-κO-bis(2- methylfuro[3,2-c]pyridine-κN)copper(II) top
Crystal data top
[Cu(C2H2ClO2)2(C8H7NO)2(CH4O)]F(000) = 2248
Mr = 548.86Dx = 1.585 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C2ycCell parameters from 4021 reflections
a = 19.860 (3) Åθ = 2.3–25.0°
b = 15.576 (3) ŵ = 1.23 mm1
c = 15.017 (3) ÅT = 173 K
β = 97.917 (3)°Block, green
V = 4600.9 (15) Å30.26 × 0.20 × 0.16 mm
Z = 8
Data collection top
Nonius KappaCCD area-detector
diffractometer
4021 independent reflections
Radiation source: Enraf–Nonius FR5903093 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 2.3°
ω and ϕ scansh = 2123
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1618
Tmin = 0.776, Tmax = 0.891l = 1617
16690 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0452P)2 + 8.8488P]
where P = (Fo2 + 2Fc2)/3
4021 reflections(Δ/σ)max = 0.001
300 parametersΔρmax = 1.08 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Cu(C2H2ClO2)2(C8H7NO)2(CH4O)]V = 4600.9 (15) Å3
Mr = 548.86Z = 8
Monoclinic, C2/cMo Kα radiation
a = 19.860 (3) ŵ = 1.23 mm1
b = 15.576 (3) ÅT = 173 K
c = 15.017 (3) Å0.26 × 0.20 × 0.16 mm
β = 97.917 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
4021 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
3093 reflections with I > 2σ(I)
Tmin = 0.776, Tmax = 0.891Rint = 0.076
16690 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.02Δρmax = 1.08 e Å3
4021 reflectionsΔρmin = 0.53 e Å3
300 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.68144 (2)0.73110 (3)0.32031 (2)0.02193 (13)
Cl10.47011 (5)0.61664 (6)0.48363 (6)0.0391 (2)
Cl20.91758 (6)0.91134 (8)0.26724 (8)0.0570 (3)
O10.70672 (12)0.67987 (16)0.18435 (15)0.0311 (6)
H1O0.74750.69530.19610.042*
O40.60027 (12)0.65827 (15)0.31521 (14)0.0245 (5)
O50.58725 (13)0.72145 (16)0.44549 (15)0.0329 (6)
O80.75801 (11)0.81089 (15)0.34186 (15)0.0255 (5)
O90.82188 (13)0.76344 (17)0.24003 (16)0.0346 (6)
O170.85280 (12)0.44366 (15)0.51707 (14)0.0260 (5)
O270.51950 (12)1.02340 (16)0.12018 (15)0.0308 (6)
N110.73795 (14)0.63899 (18)0.39349 (17)0.0239 (6)
N210.62599 (14)0.82756 (18)0.25534 (17)0.0234 (6)
C10.7054 (2)0.5932 (3)0.1550 (3)0.0401 (10)
H1A0.74100.56050.19210.060*
H1B0.71310.59080.09200.060*
H1C0.66090.56840.16090.060*
C20.51644 (18)0.6003 (2)0.3912 (2)0.0281 (8)
H2A0.53760.54260.39650.034*
H2B0.48440.60170.33460.034*
C30.57154 (17)0.6670 (2)0.3861 (2)0.0241 (7)
C60.86409 (19)0.8740 (2)0.3437 (2)0.0336 (9)
H6A0.89240.84620.39510.040*
H6B0.84110.92370.36740.040*
C70.81103 (17)0.8109 (2)0.3028 (2)0.0261 (8)
C120.72171 (17)0.5554 (2)0.3792 (2)0.0249 (7)
H120.68190.54070.33950.030*
C130.76207 (17)0.4910 (2)0.4212 (2)0.0232 (7)
C140.76156 (18)0.3984 (2)0.4209 (2)0.0275 (8)
H140.72930.36230.38660.033*
C150.81551 (18)0.3731 (2)0.4786 (2)0.0266 (8)
C160.84283 (19)0.2884 (2)0.5111 (2)0.0315 (8)
H16A0.84110.28360.57590.047*
H16B0.89000.28300.49960.047*
H16C0.81540.24260.47940.047*
C180.81968 (17)0.5148 (2)0.4800 (2)0.0244 (7)
C190.83756 (17)0.5989 (2)0.4963 (2)0.0243 (7)
H190.87710.61470.53600.029*
C200.79452 (17)0.6590 (2)0.4514 (2)0.0238 (7)
H200.80510.71800.46170.029*
C220.63954 (17)0.9106 (2)0.2739 (2)0.0246 (7)
H220.67570.92500.31970.030*
C230.60218 (17)0.9759 (2)0.2279 (2)0.0226 (7)
C240.60092 (18)1.0681 (2)0.2304 (2)0.0263 (8)
H240.62971.10420.27010.032*
C250.55152 (18)1.0935 (2)0.1662 (2)0.0275 (8)
C260.5241 (2)1.1790 (3)0.1366 (3)0.0374 (9)
H26A0.54401.22290.17910.056*
H26B0.47461.17900.13470.056*
H26C0.53561.19170.07660.056*
C280.55083 (18)0.9522 (2)0.1590 (2)0.0266 (8)
C290.53615 (18)0.8676 (2)0.1379 (2)0.0301 (8)
H290.50110.85150.09130.036*
C300.57544 (18)0.8075 (2)0.1887 (2)0.0282 (8)
H300.56650.74850.17610.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0215 (2)0.0189 (2)0.0251 (2)0.00278 (18)0.00206 (15)0.00040 (16)
Cl10.0352 (5)0.0397 (6)0.0453 (6)0.0002 (4)0.0153 (4)0.0061 (4)
Cl20.0403 (6)0.0577 (8)0.0748 (8)0.0195 (6)0.0142 (5)0.0131 (6)
O10.0346 (15)0.0283 (15)0.0303 (13)0.0045 (12)0.0037 (10)0.0056 (10)
O40.0244 (13)0.0213 (13)0.0276 (13)0.0045 (10)0.0031 (9)0.0003 (9)
O50.0376 (15)0.0274 (15)0.0333 (14)0.0084 (12)0.0033 (11)0.0046 (11)
O80.0220 (13)0.0193 (13)0.0346 (13)0.0003 (10)0.0023 (10)0.0006 (10)
O90.0335 (15)0.0354 (15)0.0353 (14)0.0043 (12)0.0065 (11)0.0019 (11)
O170.0273 (13)0.0228 (13)0.0265 (12)0.0005 (11)0.0017 (9)0.0015 (10)
O270.0319 (14)0.0308 (15)0.0277 (13)0.0050 (12)0.0028 (10)0.0045 (10)
N110.0246 (16)0.0272 (17)0.0199 (14)0.0026 (13)0.0030 (11)0.0017 (11)
N210.0215 (15)0.0263 (17)0.0224 (14)0.0026 (12)0.0036 (11)0.0001 (11)
C10.051 (3)0.030 (2)0.040 (2)0.0026 (19)0.0080 (18)0.0042 (17)
C20.028 (2)0.0220 (19)0.0347 (19)0.0048 (16)0.0075 (15)0.0013 (14)
C30.0235 (19)0.0196 (19)0.0277 (19)0.0012 (14)0.0017 (14)0.0036 (14)
C60.026 (2)0.029 (2)0.046 (2)0.0072 (16)0.0048 (16)0.0026 (16)
C70.0230 (19)0.0218 (19)0.032 (2)0.0004 (15)0.0009 (15)0.0089 (15)
C120.0256 (19)0.024 (2)0.0245 (17)0.0046 (15)0.0002 (13)0.0020 (14)
C130.0274 (19)0.0249 (19)0.0171 (16)0.0026 (15)0.0020 (13)0.0008 (13)
C140.031 (2)0.026 (2)0.0242 (18)0.0025 (16)0.0014 (14)0.0038 (14)
C150.035 (2)0.0222 (19)0.0237 (18)0.0001 (16)0.0072 (14)0.0005 (13)
C160.034 (2)0.027 (2)0.034 (2)0.0018 (16)0.0025 (15)0.0015 (15)
C180.0265 (19)0.027 (2)0.0197 (17)0.0022 (16)0.0033 (13)0.0028 (13)
C190.0238 (19)0.025 (2)0.0236 (17)0.0045 (15)0.0007 (13)0.0014 (13)
C200.0247 (19)0.0228 (19)0.0239 (17)0.0055 (15)0.0030 (13)0.0022 (13)
C220.0252 (19)0.025 (2)0.0235 (17)0.0052 (15)0.0030 (13)0.0008 (13)
C230.0227 (18)0.0249 (19)0.0196 (17)0.0006 (15)0.0012 (12)0.0015 (13)
C240.0263 (19)0.024 (2)0.0282 (18)0.0022 (15)0.0024 (14)0.0000 (14)
C250.026 (2)0.027 (2)0.0302 (19)0.0004 (16)0.0081 (15)0.0017 (14)
C260.038 (2)0.035 (2)0.038 (2)0.0091 (19)0.0036 (17)0.0105 (16)
C280.0270 (19)0.031 (2)0.0220 (18)0.0021 (16)0.0052 (14)0.0024 (14)
C290.026 (2)0.034 (2)0.0280 (19)0.0029 (16)0.0042 (14)0.0020 (15)
C300.028 (2)0.027 (2)0.0298 (19)0.0072 (16)0.0023 (14)0.0049 (15)
Geometric parameters (Å, º) top
Cu1—O81.956 (2)C14—C151.341 (5)
Cu1—O41.964 (2)C14—H140.9500
Cu1—N212.031 (3)C15—O171.404 (4)
Cu1—N112.046 (3)C15—C161.484 (5)
Cu1—O12.311 (2)C16—H16A0.9800
Cu1—O52.833 (2)C16—H16B0.9800
Cl1—C21.786 (3)C16—H16C0.9800
Cl2—C61.767 (4)O17—C181.367 (4)
Cl2—Cl2i3.384 (2)C18—C191.371 (5)
O1—C11.419 (4)C19—C201.380 (5)
O1—H1O0.84C19—H190.9500
C1—H1A0.9800C20—H200.9500
C1—H1B0.9800N21—C221.343 (4)
C1—H1C0.9800N21—C301.353 (4)
O4—C31.282 (4)C22—C231.385 (5)
O5—C31.239 (4)C22—H220.9500
C2—C31.519 (5)C23—C281.399 (5)
C2—H2A0.9900C23—C241.438 (5)
C2—H2B0.9900C24—C251.337 (5)
O8—C71.273 (4)C24—H240.9500
O9—C71.240 (4)C25—O271.398 (4)
C6—C71.509 (5)C25—C261.483 (5)
C6—H6A0.9900C26—H26A0.9800
C6—H6B0.9900C26—H26B0.9800
N11—C121.351 (4)C26—H26C0.9800
N11—C201.359 (4)O27—C281.362 (4)
C12—C131.382 (5)C28—C291.378 (5)
C12—H120.9500C29—C301.379 (5)
C13—C181.396 (5)C29—H290.9500
C13—C141.442 (5)C30—H300.9500
O8—Cu1—O4171.36 (9)C15—C14—C13106.7 (3)
O8—Cu1—N2188.12 (10)C15—C14—H14126.7
O4—Cu1—N2191.19 (10)C13—C14—H14126.7
O8—Cu1—N1190.01 (10)C14—C15—O17111.4 (3)
O4—Cu1—N1190.14 (10)C14—C15—C16134.2 (3)
N21—Cu1—N11176.10 (10)O17—C15—C16114.3 (3)
O8—Cu1—O196.14 (9)C15—C16—H16A109.5
O4—Cu1—O192.47 (9)C15—C16—H16B109.5
N21—Cu1—O190.02 (10)H16A—C16—H16B109.5
N11—Cu1—O193.59 (10)C15—C16—H16C109.5
O8—Cu1—O5119.56 (8)H16A—C16—H16C109.5
O4—Cu1—O551.81 (8)H16B—C16—H16C109.5
N21—Cu1—O589.66 (9)C18—O17—C15105.6 (3)
N11—Cu1—O588.28 (9)O17—C18—C19127.1 (3)
O1—Cu1—O5144.26 (8)O17—C18—C13110.4 (3)
C1—O1—Cu1127.3 (2)C19—C18—C13122.4 (3)
C1—O1—H1O108.3C18—C19—C20115.7 (3)
Cu1—O1—H1O92.0C18—C19—H19122.1
O1—C1—H1A109.8C20—C19—H19122.1
O1—C1—H1B109.7N11—C20—C19124.0 (3)
H1A—C1—H1B109.5N11—C20—H20118.0
O1—C1—H1C109.0C19—C20—H20118.0
H1A—C1—H1C109.5C22—N21—C30118.9 (3)
H1B—C1—H1C109.5C22—N21—Cu1122.2 (2)
C3—O4—Cu1111.3 (2)C30—N21—Cu1118.8 (2)
C3—O5—Cu171.48 (19)N21—C22—C23121.7 (3)
C3—C2—Cl1113.2 (2)N21—C22—H22119.1
C3—C2—H2A108.9C23—C22—H22119.1
Cl1—C2—H2A108.9C22—C23—C28117.5 (3)
C3—C2—H2B108.9C22—C23—C24136.9 (3)
Cl1—C2—H2B108.9C28—C23—C24105.6 (3)
H2A—C2—H2B107.8C25—C24—C23106.9 (3)
O5—C3—O4125.0 (3)C25—C24—H24126.6
O5—C3—C2122.9 (3)C23—C24—H24126.6
O4—C3—C2112.1 (3)C24—C25—O27111.4 (3)
C7—O8—Cu1126.7 (2)C24—C25—C26133.1 (3)
C7—C6—Cl2113.5 (3)O27—C25—C26115.5 (3)
C7—C6—H6A108.8C25—C26—H26A109.5
Cl2—C6—H6A108.8C25—C26—H26B109.5
C7—C6—H6B109.0H26A—C26—H26B109.5
Cl2—C6—H6B108.9C25—C26—H26C109.5
H6A—C6—H6B107.7H26A—C26—H26C109.5
O9—C7—O8126.2 (3)H26B—C26—H26C109.5
O9—C7—C6120.9 (3)C28—O27—C25105.9 (3)
O8—C7—C6112.8 (3)O27—C28—C29127.7 (3)
C12—N11—C20118.8 (3)O27—C28—C23110.2 (3)
C12—N11—Cu1119.3 (2)C29—C28—C23122.1 (3)
C20—N11—Cu1121.8 (2)C28—C29—C30115.9 (3)
N11—C12—C13121.1 (3)C28—C29—H29122.0
N11—C12—H12119.5C30—C29—H29122.0
C13—C12—H12119.5N21—C30—C29123.9 (3)
C12—C13—C18118.0 (3)N21—C30—H30118.1
C12—C13—C14136.2 (3)C29—C30—H30118.1
C18—C13—C14105.8 (3)
O8—Cu1—O1—C1136.2 (3)C13—C14—C15—C16177.9 (4)
O4—Cu1—O1—C144.5 (3)C14—C15—O17—C180.4 (4)
N21—Cu1—O1—C1135.7 (3)C16—C15—O17—C18179.2 (3)
N11—Cu1—O1—C145.8 (3)C15—O17—C18—C19179.3 (3)
O5—Cu1—O1—C146.2 (3)C15—O17—C18—C131.3 (3)
N21—Cu1—O4—C392.4 (2)C12—C13—C18—O17178.7 (3)
N11—Cu1—O4—C383.9 (2)C14—C13—C18—O171.7 (4)
O1—Cu1—O4—C3177.5 (2)C12—C13—C18—C190.7 (5)
O5—Cu1—O4—C33.75 (19)C14—C13—C18—C19178.9 (3)
O8—Cu1—O5—C3176.77 (19)O17—C18—C19—C20178.7 (3)
O4—Cu1—O5—C33.81 (19)C13—C18—C19—C200.6 (5)
N21—Cu1—O5—C395.6 (2)C12—N11—C20—C190.9 (5)
N11—Cu1—O5—C387.7 (2)Cu1—N11—C20—C19174.1 (2)
O1—Cu1—O5—C36.0 (3)C18—C19—C20—N110.7 (5)
Cu1—O5—C3—O45.6 (3)O8—Cu1—N21—C2226.3 (3)
Cu1—O5—C3—C2172.3 (3)O4—Cu1—N21—C22145.1 (3)
Cu1—O4—C3—O58.2 (4)O1—Cu1—N21—C22122.5 (3)
Cu1—O4—C3—C2169.9 (2)O5—Cu1—N21—C2293.3 (3)
Cl1—C2—C3—O57.2 (4)O8—Cu1—N21—C30151.0 (2)
Cl1—C2—C3—O4174.6 (2)O4—Cu1—N21—C3037.6 (2)
N21—Cu1—O8—C7106.4 (3)O1—Cu1—N21—C3054.8 (2)
N11—Cu1—O8—C777.0 (3)O5—Cu1—N21—C3089.4 (2)
O1—Cu1—O8—C716.6 (3)C30—N21—C22—C231.5 (5)
O5—Cu1—O8—C7165.0 (2)Cu1—N21—C22—C23178.7 (2)
Cl2i—Cl2—C6—C7117.3 (3)N21—C22—C23—C282.0 (5)
Cu1—O8—C7—O94.8 (5)N21—C22—C23—C24178.3 (4)
Cu1—O8—C7—C6172.6 (2)C22—C23—C24—C25179.6 (4)
Cl2—C6—C7—O929.4 (4)C28—C23—C24—C250.0 (4)
Cl2—C6—C7—O8153.1 (3)C23—C24—C25—O270.2 (4)
O8—Cu1—N11—C12156.7 (2)C23—C24—C25—C26178.3 (4)
O4—Cu1—N11—C1231.9 (2)C24—C25—O27—C280.4 (4)
O1—Cu1—N11—C1260.6 (2)C26—C25—O27—C28178.4 (3)
O5—Cu1—N11—C1283.7 (2)C25—O27—C28—C29178.6 (3)
O8—Cu1—N11—C2018.3 (3)C25—O27—C28—C230.4 (3)
O4—Cu1—N11—C20153.1 (2)C22—C23—C28—O27179.4 (3)
O1—Cu1—N11—C20114.4 (2)C24—C23—C28—O270.3 (4)
O5—Cu1—N11—C20101.3 (2)C22—C23—C28—C291.5 (5)
C20—N11—C12—C131.0 (5)C24—C23—C28—C29178.8 (3)
Cu1—N11—C12—C13174.2 (2)O27—C28—C29—C30179.3 (3)
N11—C12—C13—C180.9 (5)C23—C28—C29—C300.4 (5)
N11—C12—C13—C14178.6 (3)C22—N21—C30—C290.3 (5)
C12—C13—C14—C15179.1 (4)Cu1—N21—C30—C29177.6 (3)
C18—C13—C14—C151.4 (4)C28—C29—C30—N210.3 (5)
C13—C14—C15—O170.6 (4)
Symmetry code: (i) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O90.841.862.664 (3)159
C12—H12···O40.952.442.944 (4)113
C20—H20···O80.952.402.915 (4)114
C22—H22···O80.952.412.886 (4)111
C30—H30···O40.952.533.000 (4)111
C6—H6A···O5ii0.992.603.510 (4)154
C16—H16C···O1iii0.982.633.413 (4)137
C14—H14···O9iii0.952.553.450 (4)159
C20—H20···O5ii0.952.573.221 (4)126
C29—H29···O5iv0.952.693.451 (4)138
C19—H19···O5ii0.952.653.235 (4)120
C16—H16A···O9v0.982.653.610 (4)167
C24—H24···O9vi0.952.673.408 (4)135
C1—H1B···C14vii0.982.873.834 (4)168
Symmetry codes: (ii) x+3/2, y+3/2, z+1; (iii) x+3/2, y1/2, z+1/2; (iv) x+1, y, z+1/2; (v) x, y+1, z+1/2; (vi) x+3/2, y+1/2, z+1/2; (vii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C2H2ClO2)2(C8H7NO)2(CH4O)]
Mr548.86
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)19.860 (3), 15.576 (3), 15.017 (3)
β (°) 97.917 (3)
V3)4600.9 (15)
Z8
Radiation typeMo Kα
µ (mm1)1.23
Crystal size (mm)0.26 × 0.20 × 0.16
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.776, 0.891
No. of measured, independent and
observed [I > 2σ(I)] reflections
16690, 4021, 3093
Rint0.076
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.103, 1.02
No. of reflections4021
No. of parameters300
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.08, 0.53

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), enCIFer (Allen et al., 2004).

Selected bond lengths (Å) top
Cu1—O81.956 (2)Cu1—N112.046 (3)
Cu1—O41.964 (2)Cu1—O12.311 (2)
Cu1—N212.031 (3)Cu1—O52.833 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O90.841.862.664 (3)158.7
C12—H12···O40.952.442.944 (4)113.1
C20—H20···O80.952.402.915 (4)114.1
C22—H22···O80.952.412.886 (4)110.9
C30—H30···O40.952.533.000 (4)110.6
C6—H6A···O5i0.992.603.510 (4)153.6
C16—H16C···O1ii0.982.633.413 (4)137.4
C14—H14···O9ii0.952.553.450 (4)159.0
C20—H20···O5i0.952.573.221 (4)126.3
C29—H29···O5iii0.952.693.451 (4)137.8
C19—H19···O5i0.952.653.235 (4)120.1
C16—H16A···O9iv0.982.653.610 (4)166.7
C24—H24···O9v0.952.673.408 (4)134.7
C1—H1B···C14vi0.982.873.834 (4)168
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+3/2, y1/2, z+1/2; (iii) x+1, y, z+1/2; (iv) x, y+1, z+1/2; (v) x+3/2, y+1/2, z+1/2; (vi) x, y+1, z1/2.
 

Acknowledgements

We thank Professor R. Sillanpää for measuring the diffraction data and the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences (1/4454/07 and 1/0353/08) for financial support.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBaran, P., Boča, M., Boča, R., Krutošíková, A., Miklovič, J., Pelikán, J. & Titiš, J. (2005). Polyhedron, 24, 1510–1516.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBorel, M.-M., Boniak, L., Busnot, F. & Leclaire, A. (1978). Rev. Chim. Miner. 15, 397–405.  CAS Google Scholar
First citationDesiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327.  CrossRef CAS Web of Science Google Scholar
First citationEloy, F. & Deryckere, A. (1971). J. Heterocycl. Chem. 8, 57–60.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationIvaniková, R., Boča, R., Dlháň, Ľ., Fuess, H., Mašlejová, A., Mrázová, V., Svoboda, I. & Titiš, J. (2006). Polyhedron, 25, 3261–3268.  Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationMikloš, D., Jašková, J., Segľa, P., Miklovič, J., Mrázová, V., Kaliňaková, B., Hudecová, D., Sillanpää, R., Lis, T. & Melník, M. (2005). Advances in Coordination, Bioinorganic and Inorganic Chemistry, Vol. 7, edited by M. Melník, J. Šima & M. Tatarko, pp. 201–217. Bratislava: Slovak Technical University Press.  Google Scholar
First citationMiklovič, J., Krutošíková, A. & Baran, P. (2004). Acta Cryst. C60, m227–m230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoncol, J., Segľa, P., Jašková, J., Fischer, A. & Melník, M. (2007). Acta Cryst. E63, m698–m700.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNew, J. S., Christopher, W. L., Yevich, J. P., Butler, R., Schlemmer, R. F. Jr, van der Maelen, C. P. & Cipolline, J. A. (1989). J. Med. Chem. 32, 1147–1156.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSegľa, P., Jašková, J., Mikloš, D., Kaliňaková, B., Hudecová, D., Miklovič, J., Mrázová, V., Švorec, J., Lis, T. & Melník, M. (2005). Advances in Coordination, Bioinorganic and Inorganic Chemistry, Vol. 7, edited by M. Melník, J. Šima & M. Tatarko, pp. 323–340. Bratislava: Slovak Technical University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuezawa, H., Yoshida, T., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2002). Eur. J. Inorg. Chem. pp. 3148–3155.  CrossRef Google Scholar
First citationTitiš, J., Boča, R., Dlháň, Ľ., Ďurčeková, T., Fuess, H., Ivaniková, R., Mrázová, V., Papánková, B. & Svoboda, I. (2007). Polyhedron, 26, 1523–1530.  Google Scholar
First citationVrábel, V., Švorc, Ľ., Juristová, N., Miklovič, J. & Kožíšek, J. (2007a). Acta Cryst. E63, m2112–m2113.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVrábel, V., Švorc, Ľ., Juristová, N., Miklovič, J. & Kožíšek, J. (2007b). Acta Cryst. E63, m2427–m2428.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, P., Dong, Y.-B., Ma, J.-P., Huang, R.-Q. & Smith, M. D. (2005). Inorg. Chem. Commun. 8, 596–599.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m610-m611
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds