organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Di­chloro­phenyl 4-methyl­benzoate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 26 March 2008; accepted 7 April 2008; online 16 April 2008)

The structure of the title compound (26DCP4MeBA), C14H10Cl2O2, resembles those of phenyl benzoate (PBA), 2,6-dichloro­phenyl benzoate (26DCPBA), 2,4-dichloro­phenyl 4-methyl­benzoate (24DCP4MeBA) and other aryl benzoates, with similar bond parameters. The dihedral angle between the benzene and benzoyl rings in 26DCP4MeBA is 77.97 (9)°, compared with values of 55.7 (PBA), 75.75 (10) (26DCPBA) and 48.13 (5)° (24DCP4MeBA). The mol­ecules in the title compound are packed into zigzag chains in the bc plane.

Related literature

For related literature, see: Adams & Morsi (1976[Adams, J. M. & Morsi, S. E. (1976). Acta Cryst. B32, 1345-1347.]); Gowda et al. (2007a[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007a). Acta Cryst. E63, o3876.],b[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007b). Acta Cryst. E63, o3877.]); Nayak & Gowda (2008[Nayak, R. & Gowda, B. T. (2008). Z. Naturforsch. Teil A, 63. In the press.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10Cl2O2

  • Mr = 281.12

  • Monoclinic, P 21 /n

  • a = 9.5688 (8) Å

  • b = 11.1370 (9) Å

  • c = 13.1947 (9) Å

  • β = 108.898 (7)°

  • V = 1330.33 (18) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.32 mm−1

  • T = 299 (2) K

  • 0.60 × 0.35 × 0.30 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.202, Tmax = 0.273

  • 3035 measured reflections

  • 2366 independent reflections

  • 2025 reflections with I > 2σ(I)

  • Rint = 0.040

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.168

  • S = 1.01

  • 2366 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Version 1.2. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Version 6.2c. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, as part of a study of the substituent effects on the structures of chemically and industrially significant compounds (Gowda et al., 2007a,b), the structure of 2,6-dichlorophenyl 4-methylbenzoate (26DCP4MeBA) has been determined. The structure of 26DCP4MeBA (Fig. 1) resembles those of phenyl benzoate (PBA) (Adams & Morsi, 1976), 2,6-dichlorophenyl benzoate (26DCPBA) (Gowda et al., 2007a), 2,4-dichlorophenyl 4-methyl benzoate (24DCP4MeBA) (Gowda et al., 2007b) and other aryl benzoates. The bond parameters in 26DCP4MeBA are similar to those in PBA, 26DCPBA, 24DCP4MeBA and other benzoates. The dihedral angle between the benzene and benzoyl rings in 26DCP4MeBA is 77.97 (9)°, compared to the values of 55.7° (PBA)(Adams & Morsi, 1976), 75.75 (10)° (26DCPBA)(Gowda et al., 2007a) and 48.13 (5)° (24DCP4MeBA)(Gowda et al., 2007b). The molecules in 26DCP4MeBA are packed into a zigzag structure with the dichlorophenyl ring being nearly orthogonal to the benzoyl ring (Fig. 2).

Related literature top

For related literature, see: Adams & Morsi (1976); Gowda et al. (2007a,b); Nayak & Gowda (2008).

Experimental top

The title compound was prepared according to a literature method (Nayak & Gowda, 2008). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Nayak & Gowda, 2008). Single crystals of the title compound were obtained by slow evaporation of an ethanolic solution.

Refinement top

The H atoms were positioned with idealized geometry using a riding model (C—H = 0.93–0.96 Å) with Uiso = 1.2 Ueq of the parent atom.

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound as viewed down a.
[Figure 3] Fig. 3. A view of the title molecule and unit cell
2,6-Dichlorophenyl 4-methylbenzoate top
Crystal data top
C14H10Cl2O2F(000) = 576
Mr = 281.12Dx = 1.404 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 9.5688 (8) Åθ = 5.3–18.7°
b = 11.1370 (9) ŵ = 4.32 mm1
c = 13.1947 (9) ÅT = 299 K
β = 108.898 (7)°Rod, colourless
V = 1330.33 (18) Å30.60 × 0.35 × 0.30 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2025 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 67.0°, θmin = 5.0°
ω/2θ scansh = 112
Absorption correction: ψ scan
(North et al., 1968)
k = 130
Tmin = 0.202, Tmax = 0.273l = 1515
3035 measured reflections3 standard reflections every 120 min
2366 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.168 w = 1/[σ2(Fo2) + (0.1211P)2 + 0.3061P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.011
2366 reflectionsΔρmax = 0.36 e Å3
165 parametersΔρmin = 0.43 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0170 (18)
Crystal data top
C14H10Cl2O2V = 1330.33 (18) Å3
Mr = 281.12Z = 4
Monoclinic, P21/nCu Kα radiation
a = 9.5688 (8) ŵ = 4.32 mm1
b = 11.1370 (9) ÅT = 299 K
c = 13.1947 (9) Å0.60 × 0.35 × 0.30 mm
β = 108.898 (7)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2025 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.040
Tmin = 0.202, Tmax = 0.2733 standard reflections every 120 min
3035 measured reflections intensity decay: none
2366 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.01Δρmax = 0.36 e Å3
2366 reflectionsΔρmin = 0.43 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1987 (2)0.6943 (2)0.02446 (17)0.0490 (5)
C20.1627 (3)0.5987 (2)0.0454 (2)0.0568 (6)
C30.0175 (3)0.5780 (3)0.1077 (2)0.0683 (7)
H30.00650.51270.15410.082*
C40.0902 (3)0.6551 (3)0.0999 (2)0.0705 (7)
H40.18790.64180.14150.085*
C50.0563 (3)0.7510 (3)0.0320 (2)0.0679 (7)
H50.13040.80300.02800.082*
C60.0887 (3)0.7707 (2)0.03086 (19)0.0547 (6)
C70.4023 (2)0.6546 (2)0.17553 (18)0.0499 (5)
C80.5626 (2)0.6726 (2)0.22269 (17)0.0484 (5)
C90.6386 (3)0.7563 (2)0.1830 (2)0.0636 (7)
H90.58810.80630.12660.076*
C100.7903 (3)0.7648 (3)0.2280 (3)0.0744 (8)
H100.84090.82100.20090.089*
C110.8687 (3)0.6923 (3)0.3118 (2)0.0693 (8)
C120.7918 (3)0.6113 (3)0.3517 (2)0.0681 (7)
H120.84260.56200.40860.082*
C130.6393 (3)0.6016 (2)0.3082 (2)0.0574 (6)
H130.58870.54710.33690.069*
C141.0350 (3)0.7024 (4)0.3581 (3)0.1081 (14)
H14A1.06060.75520.41890.130*
H14B1.07330.73420.30470.130*
H14C1.07660.62450.37990.130*
O10.34465 (16)0.71769 (15)0.08263 (13)0.0551 (5)
O20.32703 (19)0.59229 (19)0.21108 (15)0.0692 (6)
Cl10.30058 (9)0.50474 (7)0.05432 (7)0.0849 (4)
Cl20.13347 (8)0.89253 (7)0.11604 (6)0.0796 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0404 (11)0.0544 (12)0.0506 (12)0.0032 (9)0.0127 (9)0.0059 (9)
C20.0570 (14)0.0574 (14)0.0578 (13)0.0078 (10)0.0210 (11)0.0025 (10)
C30.0700 (16)0.0723 (17)0.0568 (14)0.0073 (13)0.0124 (12)0.0048 (12)
C40.0492 (13)0.093 (2)0.0597 (15)0.0064 (13)0.0040 (11)0.0035 (14)
C50.0443 (12)0.091 (2)0.0654 (15)0.0142 (12)0.0139 (11)0.0084 (14)
C60.0488 (12)0.0627 (14)0.0522 (12)0.0091 (10)0.0157 (10)0.0002 (10)
C70.0464 (12)0.0493 (12)0.0528 (12)0.0002 (9)0.0143 (9)0.0007 (9)
C80.0424 (11)0.0485 (12)0.0538 (12)0.0010 (9)0.0148 (9)0.0070 (9)
C90.0577 (14)0.0586 (14)0.0741 (16)0.0067 (11)0.0206 (12)0.0040 (12)
C100.0577 (15)0.0775 (19)0.090 (2)0.0224 (13)0.0267 (14)0.0050 (15)
C110.0432 (13)0.091 (2)0.0695 (16)0.0092 (12)0.0131 (11)0.0208 (14)
C120.0478 (13)0.0830 (18)0.0635 (15)0.0035 (12)0.0042 (11)0.0020 (13)
C130.0479 (13)0.0621 (14)0.0597 (14)0.0038 (10)0.0139 (10)0.0018 (10)
C140.0438 (15)0.161 (4)0.110 (3)0.0203 (19)0.0125 (16)0.025 (3)
O10.0408 (8)0.0593 (10)0.0611 (10)0.0006 (6)0.0109 (7)0.0097 (7)
O20.0502 (9)0.0845 (13)0.0681 (11)0.0149 (8)0.0125 (8)0.0170 (9)
Cl10.0880 (6)0.0766 (5)0.0967 (6)0.0244 (4)0.0389 (5)0.0084 (4)
Cl20.0782 (5)0.0754 (5)0.0764 (5)0.0184 (3)0.0128 (4)0.0178 (3)
Geometric parameters (Å, º) top
C1—C61.377 (3)C8—C131.379 (3)
C1—C21.377 (3)C8—C91.385 (3)
C1—O11.383 (3)C9—C101.382 (4)
C2—C31.386 (4)C9—H90.9300
C2—Cl11.718 (2)C10—C111.379 (4)
C3—C41.371 (4)C10—H100.9300
C3—H30.9300C11—C121.372 (4)
C4—C51.364 (4)C11—C141.513 (4)
C4—H40.9300C12—C131.389 (4)
C5—C61.384 (4)C12—H120.9300
C5—H50.9300C13—H130.9300
C6—Cl21.725 (3)C14—H14A0.9600
C7—O21.199 (3)C14—H14B0.9600
C7—O11.365 (3)C14—H14C0.9600
C7—C81.470 (3)
C6—C1—C2119.2 (2)C9—C8—C7122.4 (2)
C6—C1—O1120.3 (2)C10—C9—C8119.4 (3)
C2—C1—O1120.4 (2)C10—C9—H9120.3
C1—C2—C3120.8 (2)C8—C9—H9120.3
C1—C2—Cl1119.07 (19)C11—C10—C9121.8 (3)
C3—C2—Cl1120.2 (2)C11—C10—H10119.1
C4—C3—C2119.0 (3)C9—C10—H10119.1
C4—C3—H3120.5C12—C11—C10118.2 (2)
C2—C3—H3120.5C12—C11—C14121.3 (3)
C5—C4—C3121.0 (2)C10—C11—C14120.5 (3)
C5—C4—H4119.5C11—C12—C13121.0 (3)
C3—C4—H4119.5C11—C12—H12119.5
C4—C5—C6119.7 (2)C13—C12—H12119.5
C4—C5—H5120.1C8—C13—C12120.2 (2)
C6—C5—H5120.1C8—C13—H13119.9
C1—C6—C5120.2 (2)C12—C13—H13119.9
C1—C6—Cl2119.48 (19)C11—C14—H14A109.5
C5—C6—Cl2120.26 (19)C11—C14—H14B109.5
O2—C7—O1122.0 (2)H14A—C14—H14B109.5
O2—C7—C8126.1 (2)C11—C14—H14C109.5
O1—C7—C8111.85 (18)H14A—C14—H14C109.5
C13—C8—C9119.3 (2)H14B—C14—H14C109.5
C13—C8—C7118.3 (2)C7—O1—C1116.30 (17)
C6—C1—C2—C30.9 (4)O2—C7—C8—C9172.7 (3)
O1—C1—C2—C3177.0 (2)O1—C7—C8—C97.8 (3)
C6—C1—C2—Cl1179.23 (18)C13—C8—C9—C101.7 (4)
O1—C1—C2—Cl13.2 (3)C7—C8—C9—C10177.0 (2)
C1—C2—C3—C40.8 (4)C8—C9—C10—C110.2 (5)
Cl1—C2—C3—C4179.3 (2)C9—C10—C11—C121.0 (5)
C2—C3—C4—C50.1 (4)C9—C10—C11—C14179.0 (3)
C3—C4—C5—C60.6 (4)C10—C11—C12—C130.5 (4)
C2—C1—C6—C50.2 (4)C14—C11—C12—C13179.4 (3)
O1—C1—C6—C5176.3 (2)C9—C8—C13—C122.2 (4)
C2—C1—C6—Cl2178.59 (18)C7—C8—C13—C12176.6 (2)
O1—C1—C6—Cl22.5 (3)C11—C12—C13—C81.0 (4)
C4—C5—C6—C10.5 (4)O2—C7—O1—C18.0 (3)
C4—C5—C6—Cl2179.3 (2)C8—C7—O1—C1171.58 (18)
O2—C7—C8—C138.5 (4)C6—C1—O1—C7100.0 (3)
O1—C7—C8—C13171.0 (2)C2—C1—O1—C784.0 (3)

Experimental details

Crystal data
Chemical formulaC14H10Cl2O2
Mr281.12
Crystal system, space groupMonoclinic, P21/n
Temperature (K)299
a, b, c (Å)9.5688 (8), 11.1370 (9), 13.1947 (9)
β (°) 108.898 (7)
V3)1330.33 (18)
Z4
Radiation typeCu Kα
µ (mm1)4.32
Crystal size (mm)0.60 × 0.35 × 0.30
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.202, 0.273
No. of measured, independent and
observed [I > 2σ(I)] reflections
3035, 2366, 2025
Rint0.040
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.168, 1.01
No. of reflections2366
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.43

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationAdams, J. M. & Morsi, S. E. (1976). Acta Cryst. B32, 1345–1347.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEnraf–Nonius (1996). CAD-4-PC. Version 1.2. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007a). Acta Cryst. E63, o3876.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007b). Acta Cryst. E63, o3877.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNayak, R. & Gowda, B. T. (2008). Z. Naturforsch. Teil A, 63. In the press.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Version 6.2c. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds