organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­methyl­phenyl benzoate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 28 March 2008; accepted 7 April 2008; online 16 April 2008)

The structure of the title compound (23DMPBA), C15H14O2, resembles those of phenyl benzoate (PBA), 3-methyl­phenyl benzoate (3MePBA), 2,6-dichloro­phenyl benzoate (26DC­PBA) and other aryl benzoates, with similar bond parameters. The dihedral angle between the benzene and benzoyl rings in 23DMPBA is 87.36 (6)°, compared with values of 55.7° in PBA, 79.61 (6)° in 3MePBA and 75.75 (10)° in 26DCPBA. The mol­ecules in 23DMPBA are packed into a chain-like structure in the direction of the a axis.

Related literature

For related literature, see: Adams & Morsi (1976[Adams, J. M. & Morsi, S. E. (1976). Acta Cryst. B32, 1345-1347.]); Gowda et al. (2007a[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007a). Acta Cryst. E63, o3756.],b[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007b). Acta Cryst. E63, o4286.]); Nayak & Gowda (2008[Nayak, R. & Gowda, B. T. (2008). Z. Naturforsch. Teil A, 63. In the press.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14O2

  • Mr = 226.26

  • Monoclinic, C 2/c

  • a = 15.190 (2) Å

  • b = 8.417 (1) Å

  • c = 20.604 (2) Å

  • β = 112.20 (1)°

  • V = 2439.0 (5) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.65 mm−1

  • T = 299 (2) K

  • 0.50 × 0.44 × 0.36 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2328 measured reflections

  • 2173 independent reflections

  • 1886 reflections with I > 2σ(I)

  • Rint = 0.083

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.157

  • S = 1.07

  • 2173 reflections

  • 181 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Version 1.2. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Version 6.2c. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, as part of a study of the substituent effects on the structures of aryl benzoates (Gowda et al., 2007a,b), the structure of 2,3-dimethylphenyl benzoate (23DMPBA) has been determined. The structure of 23DMPBA (Fig. 1) is similar to those of phenyl benzoate (PBA) (Adams & Morsi, 1976); 3-methylphenyl benzoate (3MePBA) (Gowda et al., 2007a), 2,3-dichlorophenyl benzoate (23DCPBA), 2,6-dichlorophenyl benzoate (26DCPBA) and other aryl benzoates (Gowda et al., 2007b). The bond parameters in 23DMPBA are similar to those in PBA, 3MePBA, 23DCPBA, 26DCPBA and other aryl benzoates. The dihedral angle between the benzene and benzoyl rings in 23DMPBA is 87.36 (6)°, compared to the values of 55.7° in PBA, 79.61 (6)° in 3MePBA and 75.75 (10)° in 26DCPBA. The molecules in the title compound are packed with the 2,3-dimethylphenyl and the benzoyl rings nearly orthogonal to each other, in the direction of the a axis (Fig. 2).

Related literature top

For related literature, see: Adams & Morsi (1976); Gowda et al. (2007a,b); Nayak & Gowda (2008).

Experimental top

The title compound was prepared according to a literature method (Nayak & Gowda, 2008). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Nayak & Gowda, 2008). Single crystals of the title compound were obtained by slow evaporation of an ethanolic solution.

Refinement top

The H atoms of the methyl groups were positioned with idealized geometry using a riding model with C—H = 0.96 Å The other H atoms were located in difference map, and their positional parameters were refined freely (C—H = 0.91 (2)–1.04 (2) Å). All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound as viewed down a axis.
[Figure 3] Fig. 3. View of the molecule in the unit cell.
2,3-Dimethylphenyl benzoate top
Crystal data top
C15H14O2F(000) = 960
Mr = 226.26Dx = 1.232 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 15.190 (2) Åθ = 6.1–21.6°
b = 8.417 (1) ŵ = 0.65 mm1
c = 20.604 (2) ÅT = 299 K
β = 112.20 (1)°Prism, colourless
V = 2439.0 (5) Å30.50 × 0.44 × 0.36 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.083
Radiation source: fine-focus sealed tubeθmax = 66.9°, θmin = 4.6°
Graphite monochromatorh = 181
ω/2θ scansk = 100
2328 measured reflectionsl = 2324
2173 independent reflections3 standard reflections every 120 min
1886 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.157 w = 1/[σ2(Fo2) + (0.0825P)2 + 1.2712P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.037
2173 reflectionsΔρmax = 0.17 e Å3
181 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0061 (5)
Crystal data top
C15H14O2V = 2439.0 (5) Å3
Mr = 226.26Z = 8
Monoclinic, C2/cCu Kα radiation
a = 15.190 (2) ŵ = 0.65 mm1
b = 8.417 (1) ÅT = 299 K
c = 20.604 (2) Å0.50 × 0.44 × 0.36 mm
β = 112.20 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.083
2328 measured reflections3 standard reflections every 120 min
2173 independent reflections intensity decay: none
1886 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.17 e Å3
2173 reflectionsΔρmin = 0.17 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.11995 (13)0.7351 (2)0.40638 (10)0.0564 (5)
C20.11817 (13)0.6814 (2)0.46975 (10)0.0595 (5)
C30.17181 (15)0.5454 (2)0.49885 (10)0.0642 (5)
C40.22248 (16)0.4726 (3)0.46390 (12)0.0704 (6)
H40.2630 (18)0.381 (3)0.4882 (13)0.085*
C50.22058 (17)0.5274 (3)0.40080 (12)0.0715 (6)
H50.2588 (18)0.475 (3)0.3809 (14)0.086*
C60.16888 (15)0.6605 (3)0.37155 (11)0.0649 (5)
H60.1671 (17)0.701 (3)0.3293 (13)0.078*
C70.01527 (13)0.8854 (2)0.33725 (10)0.0567 (5)
C80.04911 (12)1.0494 (2)0.31758 (9)0.0504 (4)
C90.00808 (13)1.1812 (2)0.34477 (10)0.0564 (5)
H90.0723 (16)1.168 (3)0.3779 (11)0.068*
C100.02700 (15)1.3317 (2)0.32619 (11)0.0623 (5)
H100.0154 (16)1.430 (3)0.3487 (12)0.075*
C110.11960 (15)1.3535 (3)0.28000 (11)0.0631 (5)
H110.1449 (17)1.458 (3)0.2661 (13)0.076*
C120.17667 (14)1.2230 (3)0.25200 (11)0.0645 (5)
H120.2430 (17)1.236 (3)0.2159 (13)0.077*
C130.14166 (13)1.0727 (3)0.27052 (11)0.0591 (5)
H130.1795 (16)0.987 (3)0.2533 (12)0.071*
C140.06335 (18)0.7675 (4)0.50556 (15)0.0871 (8)
H14A0.01340.70020.50760.105*
H14B0.03620.86220.47980.105*
H14C0.10510.79540.55220.105*
C150.1773 (2)0.4813 (3)0.56843 (13)0.0935 (8)
H15A0.11430.46290.56700.112*
H15B0.20910.55680.60460.112*
H15C0.21210.38310.57800.112*
O10.07702 (9)0.88173 (15)0.37981 (8)0.0675 (4)
O20.06258 (11)0.76695 (18)0.31914 (10)0.0883 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0502 (9)0.0455 (9)0.0609 (10)0.0046 (7)0.0065 (8)0.0017 (8)
C20.0535 (10)0.0564 (11)0.0610 (11)0.0095 (8)0.0129 (8)0.0072 (8)
C30.0677 (11)0.0563 (11)0.0564 (10)0.0138 (9)0.0095 (9)0.0000 (8)
C40.0738 (13)0.0501 (11)0.0703 (13)0.0013 (10)0.0079 (10)0.0009 (9)
C50.0752 (13)0.0619 (12)0.0719 (13)0.0045 (10)0.0217 (11)0.0120 (10)
C60.0691 (12)0.0617 (12)0.0573 (11)0.0039 (9)0.0164 (9)0.0044 (9)
C70.0490 (9)0.0546 (11)0.0584 (10)0.0054 (8)0.0112 (8)0.0043 (8)
C80.0471 (9)0.0549 (10)0.0493 (9)0.0032 (7)0.0182 (7)0.0015 (7)
C90.0490 (9)0.0566 (11)0.0596 (10)0.0050 (8)0.0158 (8)0.0020 (8)
C100.0629 (11)0.0524 (11)0.0707 (12)0.0060 (9)0.0244 (9)0.0003 (9)
C110.0648 (12)0.0569 (11)0.0691 (12)0.0077 (9)0.0271 (10)0.0086 (9)
C120.0511 (10)0.0692 (12)0.0668 (12)0.0066 (9)0.0148 (9)0.0069 (9)
C130.0471 (9)0.0610 (11)0.0645 (11)0.0054 (8)0.0157 (8)0.0020 (9)
C140.0745 (14)0.0993 (19)0.0908 (17)0.0057 (13)0.0348 (13)0.0173 (14)
C150.111 (2)0.0891 (17)0.0706 (14)0.0173 (15)0.0230 (13)0.0152 (13)
O10.0532 (7)0.0483 (8)0.0808 (9)0.0021 (5)0.0025 (6)0.0035 (6)
O20.0634 (9)0.0556 (9)0.1143 (13)0.0099 (7)0.0022 (8)0.0049 (8)
Geometric parameters (Å, º) top
C1—C61.365 (3)C8—C91.390 (2)
C1—C21.391 (3)C9—C101.372 (3)
C1—O11.407 (2)C9—H90.96 (2)
C2—C31.402 (3)C10—C111.381 (3)
C2—C141.492 (3)C10—H101.04 (2)
C3—C41.380 (3)C11—C121.383 (3)
C3—C151.504 (3)C11—H110.96 (2)
C4—C51.369 (3)C12—C131.370 (3)
C4—H41.00 (3)C12—H121.01 (3)
C5—C61.370 (3)C13—H130.91 (2)
C5—H50.94 (3)C14—H14A0.9600
C6—H60.92 (2)C14—H14B0.9600
C7—O21.203 (2)C14—H14C0.9600
C7—O11.344 (2)C15—H15A0.9600
C7—C81.475 (3)C15—H15B0.9600
C8—C131.387 (3)C15—H15C0.9600
C6—C1—C2123.46 (19)C8—C9—H9120.3 (14)
C6—C1—O1117.59 (18)C9—C10—C11120.18 (19)
C2—C1—O1118.66 (18)C9—C10—H10119.9 (13)
C1—C2—C3116.89 (19)C11—C10—H10119.9 (13)
C1—C2—C14121.2 (2)C10—C11—C12119.76 (19)
C3—C2—C14121.9 (2)C10—C11—H11121.1 (15)
C4—C3—C2119.20 (19)C12—C11—H11119.1 (15)
C4—C3—C15119.8 (2)C13—C12—C11120.09 (18)
C2—C3—C15121.0 (2)C13—C12—H12118.8 (14)
C5—C4—C3122.0 (2)C11—C12—H12121.0 (14)
C5—C4—H4121.7 (14)C12—C13—C8120.62 (19)
C3—C4—H4116.3 (14)C12—C13—H13120.3 (14)
C4—C5—C6119.7 (2)C8—C13—H13119.0 (15)
C4—C5—H5117.5 (16)C2—C14—H14A109.5
C6—C5—H5122.7 (16)C2—C14—H14B109.5
C1—C6—C5118.7 (2)H14A—C14—H14B109.5
C1—C6—H6120.0 (15)C2—C14—H14C109.5
C5—C6—H6121.3 (15)H14A—C14—H14C109.5
O2—C7—O1122.50 (17)H14B—C14—H14C109.5
O2—C7—C8125.80 (16)C3—C15—H15A109.5
O1—C7—C8111.70 (15)C3—C15—H15B109.5
C13—C8—C9118.88 (18)H15A—C15—H15B109.5
C13—C8—C7118.69 (16)C3—C15—H15C109.5
C9—C8—C7122.43 (16)H15A—C15—H15C109.5
C10—C9—C8120.46 (17)H15B—C15—H15C109.5
C10—C9—H9119.2 (14)C7—O1—C1119.33 (14)
C6—C1—C2—C31.5 (3)O1—C7—C8—C13176.36 (16)
O1—C1—C2—C3172.15 (15)O2—C7—C8—C9175.1 (2)
C6—C1—C2—C14179.93 (19)O1—C7—C8—C94.1 (3)
O1—C1—C2—C146.5 (3)C13—C8—C9—C101.0 (3)
C1—C2—C3—C40.2 (3)C7—C8—C9—C10178.57 (18)
C14—C2—C3—C4178.79 (19)C8—C9—C10—C110.2 (3)
C1—C2—C3—C15177.84 (19)C9—C10—C11—C120.6 (3)
C14—C2—C3—C150.8 (3)C10—C11—C12—C130.6 (3)
C2—C3—C4—C51.3 (3)C11—C12—C13—C80.3 (3)
C15—C3—C4—C5179.3 (2)C9—C8—C13—C121.0 (3)
C3—C4—C5—C61.5 (3)C7—C8—C13—C12178.55 (18)
C2—C1—C6—C51.2 (3)O2—C7—O1—C12.1 (3)
O1—C1—C6—C5172.43 (17)C8—C7—O1—C1177.08 (16)
C4—C5—C6—C10.3 (3)C6—C1—O1—C796.1 (2)
O2—C7—C8—C134.5 (3)C2—C1—O1—C790.0 (2)

Experimental details

Crystal data
Chemical formulaC15H14O2
Mr226.26
Crystal system, space groupMonoclinic, C2/c
Temperature (K)299
a, b, c (Å)15.190 (2), 8.417 (1), 20.604 (2)
β (°) 112.20 (1)
V3)2439.0 (5)
Z8
Radiation typeCu Kα
µ (mm1)0.65
Crystal size (mm)0.50 × 0.44 × 0.36
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2328, 2173, 1886
Rint0.083
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.157, 1.07
No. of reflections2173
No. of parameters181
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.17

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationAdams, J. M. & Morsi, S. E. (1976). Acta Cryst. B32, 1345–1347.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEnraf–Nonius (1996). CAD-4-PC. Version 1.2. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007a). Acta Cryst. E63, o3756.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007b). Acta Cryst. E63, o4286.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNayak, R. & Gowda, B. T. (2008). Z. Naturforsch. Teil A, 63. In the press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Version 6.2c. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds