metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{4-Bromo-2-[2-(iso­propyl­amino)ethyl­imino­meth­yl]phenolato}thio­cyanato­copper(II)

aChemical Engineering & Pharmaceutics College, Henan University of Science and Technology, Luoyang Henan 471003, People's Republic of China, and, Department of Chemistry, Pingdingshan University, Pingdingshan Henan 467000, People's Republic of China, and bZhoukou Vocational and Technical College, Zhoukou Henan 466600, People's Republic of China
*Correspondence e-mail: junying-ma@163.com

(Received 5 April 2008; accepted 15 April 2008; online 18 April 2008)

In the title mononuclear Schiff base copper(II) complex, [Cu(C12H16BrN2O)(NCS)], the CuII ion is coordinated by two N atoms and one O atom from a Schiff base ligand, and by one N atom from a thio­cyanate anion, giving a square-planar geometry. There are long-range inter­actions between the Cu atom and S [3.151 (5) Å] and Br [3.929 (5) Å] atoms above and below the square plane.

Related literature

For related literature, see: Ma et al. (2005[Ma, J.-Y., Wu, T.-X., She, X.-G. & Pan, X.-F. (2005). Acta Cryst. E61, m695-m696.]); Ma, Gu et al. (2006[Ma, J.-Y., Gu, S.-H., Guo, J.-W., Lv, B.-L. & Yin, W.-P. (2006). Acta Cryst. E62, m1437-m1438.]); Ma, Lv et al. (2006[Ma, J.-Y., Lv, B.-L., Gu, S.-H., Guo, J.-W. & Yin, W.-P. (2006). Acta Cryst. E62, m1322-m1323.]); Ma, Wu et al. (2006[Ma, J.-Y., Wu, T.-X., She, X.-G. & Pan, X.-F. (2006). Z. Kristallogr. New Cryst. Struct. 221, 53-54.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C12H16BrN2O)(NCS)]

  • Mr = 405.80

  • Monoclinic, P 21 /n

  • a = 6.161 (2) Å

  • b = 20.223 (3) Å

  • c = 12.930 (3) Å

  • β = 95.332 (5)°

  • V = 1604.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.98 mm−1

  • T = 298 (2) K

  • 0.40 × 0.38 × 0.37 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.299, Tmax = 0.321 (expected range = 0.214–0.229)

  • 11914 measured reflections

  • 3474 independent reflections

  • 2126 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.153

  • S = 1.01

  • 3474 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.903 (4)
Cu1—N1 1.932 (4)
Cu1—N3 1.959 (5)
Cu1—N2 2.075 (5)
O1—Cu1—N1 92.32 (17)
O1—Cu1—N3 87.98 (19)
N1—Cu1—N3 177.5 (2)
O1—Cu1—N2 171.59 (18)
N1—Cu1—N2 84.45 (18)
N3—Cu1—N2 94.91 (19)

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, we have reported some metal complexes derived from the Schiff base ligands (Ma, Lv et al., 2006; Ma, Gu et al., 2006; Ma, Wu et al., 2006; Ma et al., 2005). As part of a further investigation of the structures of such complexes, the title mononuclear copper(II) complex, is reported in this paper.

In the complex the Cu atom is coordinated by two nitrogen atoms and one oxygen atom from a Schiff base ligand, and by one nitrogen atom from a thiocyanate anion, giving a square planar geometry (Fig. 1). There exist long range interactions between the Cu and S (3.151 (5) Å; symmetry code: 1 + x, y, z) and Br (3.929 (5) Å; symmetry code: 1 - x, - y, 1 - z) atoms above and below the square plane. All the bond lengths and angles (Table 1) related to the Cu atom in the complex are within normal ranges. The four coordinating atoms around the Cu centre are approximately coplanar, giving a square-planar geometry with an average deviation of 0.047 (4) Å; the Cu atom lies 0.089 (2) Å above this plane. The C8—C9—N2—C10 torsion angle is 2.0 (3)°.

Related literature top

For related literature, see: Ma et al. (2005); Ma, Gu, Guo et al. (2006); Ma, Lv et al. (2006); Ma, Wu et al. (2006).

Experimental top

N-Isopropylethane-1,2-diamine (0.5 mmol, 51.0 mg) and 5-bromosalicylaldehyde (0.5 mmol, 100.5 mg) were dissolved in methanol (30 ml). The mixture was stirred for 1 h to obtain a clear yellow solution. To the solution was added with stirring a methanol solution (20 ml) of copper(II) acetate (0.5 mmol, 99.6 mg) and a methanol solution (10 ml) of ammonium thiocyanate (0.5 mmol, 38.0 mg). After keeping the resulting solution in air for a few days, blue block-shaped crystals were formed.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93-0.97 Å, N—H = 0.91 Å, and with Uĩso~(H) = 1.2U~eq~(C,N) and 1.5U~eq~(methyl C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure at the 30% probability level ellipsoids.
{4-Bromo-2-[2-(isopropylamino)ethyliminomethyl]phenolato}thiocyanatocopper(II) top
Crystal data top
[Cu(C12H16BrN2O)(NCS)]F(000) = 812
Mr = 405.80Dx = 1.680 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1880 reflections
a = 6.161 (2) Åθ = 2.5–24.3°
b = 20.223 (3) ŵ = 3.98 mm1
c = 12.930 (3) ÅT = 298 K
β = 95.332 (5)°Block, blue
V = 1604.0 (7) Å30.40 × 0.38 × 0.37 mm
Z = 4
Data collection top
Bruker SMART 1000
diffractometer
3474 independent reflections
Radiation source: fine-focus sealed tube2126 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.299, Tmax = 0.321k = 2525
11914 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0682P)2]
where P = (Fo2 + 2Fc2)/3
3474 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Cu(C12H16BrN2O)(NCS)]V = 1604.0 (7) Å3
Mr = 405.80Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.161 (2) ŵ = 3.98 mm1
b = 20.223 (3) ÅT = 298 K
c = 12.930 (3) Å0.40 × 0.38 × 0.37 mm
β = 95.332 (5)°
Data collection top
Bruker SMART 1000
diffractometer
3474 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2126 reflections with I > 2σ(I)
Tmin = 0.299, Tmax = 0.321Rint = 0.076
11914 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.01Δρmax = 0.81 e Å3
3474 reflectionsΔρmin = 0.49 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.26493 (10)0.20760 (3)0.47898 (5)0.0450 (2)
N10.5364 (7)0.1721 (2)0.5425 (3)0.0408 (10)
N20.3292 (7)0.2854 (2)0.5819 (4)0.0534 (12)
H2A0.26640.27290.63970.064*
N30.0164 (8)0.2425 (3)0.4201 (4)0.0616 (14)
O10.2003 (6)0.1286 (2)0.4022 (3)0.0551 (10)
S10.4273 (2)0.25260 (9)0.31058 (11)0.0566 (4)
Br10.80195 (10)0.08910 (3)0.28530 (5)0.0677 (3)
C10.6219 (9)0.0194 (3)0.3274 (4)0.0475 (13)
C20.6939 (9)0.0269 (3)0.3994 (4)0.0466 (13)
H20.83640.02450.42990.056*
C30.5578 (8)0.0781 (2)0.4285 (4)0.0382 (12)
C40.3387 (8)0.0829 (3)0.3822 (4)0.0418 (12)
C50.2699 (9)0.0321 (3)0.3099 (4)0.0532 (15)
H50.12700.03260.27950.064*
C60.4065 (10)0.0175 (3)0.2836 (5)0.0552 (15)
H60.35540.04990.23650.066*
C70.6414 (9)0.1221 (3)0.5099 (4)0.0436 (12)
H70.78080.11400.54130.052*
C80.6326 (9)0.2117 (3)0.6316 (4)0.0544 (15)
H8A0.79020.20770.63760.065*
H8B0.58010.19570.69550.065*
C90.5675 (9)0.2829 (3)0.6140 (4)0.0536 (15)
H9A0.60060.30810.67730.064*
H9B0.64780.30190.56020.064*
C100.2371 (15)0.3525 (4)0.5575 (6)0.092 (2)
H100.08180.34470.53760.111*
C110.242 (2)0.3952 (5)0.6475 (9)0.150 (4)
H11A0.21220.36970.70720.225*
H11B0.13280.42900.63540.225*
H11C0.38280.41540.65960.225*
C120.319 (2)0.3811 (5)0.4651 (7)0.152 (5)
H12A0.22460.41650.43960.228*
H12B0.32210.34770.41250.228*
H12C0.46330.39790.48240.228*
C130.1851 (9)0.2472 (3)0.3741 (4)0.0457 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0348 (4)0.0592 (5)0.0396 (4)0.0019 (3)0.0042 (3)0.0043 (3)
N10.038 (2)0.048 (3)0.035 (2)0.006 (2)0.0057 (18)0.002 (2)
N20.051 (3)0.066 (3)0.044 (3)0.010 (2)0.007 (2)0.005 (2)
N30.042 (3)0.079 (4)0.061 (3)0.011 (3)0.008 (2)0.015 (3)
O10.036 (2)0.066 (3)0.061 (3)0.0002 (19)0.0087 (17)0.011 (2)
S10.0407 (8)0.0800 (11)0.0466 (8)0.0024 (8)0.0086 (6)0.0161 (8)
Br10.0639 (5)0.0571 (4)0.0838 (5)0.0015 (3)0.0157 (4)0.0128 (3)
C10.043 (3)0.045 (3)0.055 (3)0.004 (3)0.007 (3)0.000 (3)
C20.043 (3)0.046 (3)0.050 (3)0.002 (3)0.001 (2)0.007 (3)
C30.039 (3)0.038 (3)0.037 (3)0.004 (2)0.000 (2)0.005 (2)
C40.037 (3)0.046 (3)0.041 (3)0.006 (2)0.001 (2)0.004 (2)
C50.040 (3)0.062 (4)0.054 (4)0.009 (3)0.011 (3)0.007 (3)
C60.058 (4)0.052 (4)0.054 (4)0.013 (3)0.001 (3)0.007 (3)
C70.038 (3)0.048 (3)0.044 (3)0.001 (3)0.003 (2)0.015 (3)
C80.049 (3)0.063 (4)0.048 (3)0.006 (3)0.013 (3)0.009 (3)
C90.056 (4)0.057 (4)0.049 (3)0.002 (3)0.006 (3)0.014 (3)
C100.121 (7)0.082 (5)0.073 (5)0.032 (5)0.002 (5)0.017 (4)
C110.248 (14)0.083 (7)0.124 (9)0.029 (7)0.039 (9)0.018 (6)
C120.280 (15)0.099 (7)0.084 (6)0.089 (9)0.055 (8)0.028 (6)
C130.046 (3)0.049 (3)0.043 (3)0.002 (3)0.007 (3)0.002 (3)
Geometric parameters (Å, º) top
Cu1—O11.903 (4)C4—C51.426 (7)
Cu1—N11.932 (4)C5—C61.372 (8)
Cu1—N31.959 (5)C5—H50.9300
Cu1—N22.075 (5)C6—H60.9300
N1—C71.292 (6)C7—H70.9300
N1—C81.481 (6)C8—C91.507 (8)
N2—C91.489 (7)C8—H8A0.9700
N2—C101.493 (9)C8—H8B0.9700
N2—H2A0.9100C9—H9A0.9700
N3—C131.152 (6)C9—H9B0.9700
O1—C41.300 (6)C10—C111.448 (11)
S1—C131.639 (6)C10—C121.458 (12)
Br1—C11.905 (5)C10—H100.9800
C1—C21.364 (7)C11—H11A0.9600
C1—C61.394 (8)C11—H11B0.9600
C2—C31.406 (7)C11—H11C0.9600
C2—H20.9300C12—H12A0.9600
C3—C41.428 (7)C12—H12B0.9600
C3—C71.436 (7)C12—H12C0.9600
O1—Cu1—N192.32 (17)N1—C7—C3124.6 (5)
O1—Cu1—N387.98 (19)N1—C7—H7117.7
N1—Cu1—N3177.5 (2)C3—C7—H7117.7
O1—Cu1—N2171.59 (18)N1—C8—C9108.5 (5)
N1—Cu1—N284.45 (18)N1—C8—H8A110.0
N3—Cu1—N294.91 (19)C9—C8—H8A110.0
C7—N1—C8120.1 (4)N1—C8—H8B110.0
C7—N1—Cu1126.3 (3)C9—C8—H8B110.0
C8—N1—Cu1113.5 (3)H8A—C8—H8B108.4
C9—N2—C10115.9 (5)N2—C9—C8108.5 (5)
C9—N2—Cu1106.1 (3)N2—C9—H9A110.0
C10—N2—Cu1120.5 (4)C8—C9—H9A110.0
C9—N2—H2A104.2N2—C9—H9B110.0
C10—N2—H2A104.2C8—C9—H9B110.0
Cu1—N2—H2A104.2H9A—C9—H9B108.4
C13—N3—Cu1162.4 (5)C11—C10—C12116.1 (9)
C4—O1—Cu1126.3 (3)C11—C10—N2113.2 (7)
C2—C1—C6119.7 (5)C12—C10—N2112.3 (6)
C2—C1—Br1122.8 (4)C11—C10—H10104.6
C6—C1—Br1117.5 (4)C12—C10—H10104.6
C1—C2—C3121.6 (5)N2—C10—H10104.6
C1—C2—H2119.2C10—C11—H11A109.5
C3—C2—H2119.2C10—C11—H11B109.5
C2—C3—C4120.1 (5)H11A—C11—H11B109.5
C2—C3—C7118.1 (5)C10—C11—H11C109.5
C4—C3—C7121.8 (5)H11A—C11—H11C109.5
O1—C4—C5118.8 (5)H11B—C11—H11C109.5
O1—C4—C3125.2 (5)C10—C12—H12A109.5
C5—C4—C3116.0 (5)C10—C12—H12B109.5
C6—C5—C4122.4 (5)H12A—C12—H12B109.5
C6—C5—H5118.8C10—C12—H12C109.5
C4—C5—H5118.8H12A—C12—H12C109.5
C5—C6—C1120.2 (5)H12B—C12—H12C109.5
C5—C6—H6119.9N3—C13—S1178.7 (6)
C1—C6—H6119.9

Experimental details

Crystal data
Chemical formula[Cu(C12H16BrN2O)(NCS)]
Mr405.80
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)6.161 (2), 20.223 (3), 12.930 (3)
β (°) 95.332 (5)
V3)1604.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)3.98
Crystal size (mm)0.40 × 0.38 × 0.37
Data collection
DiffractometerBruker SMART 1000
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.299, 0.321
No. of measured, independent and
observed [I > 2σ(I)] reflections
11914, 3474, 2126
Rint0.076
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.153, 1.01
No. of reflections3474
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.49

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O11.903 (4)Cu1—N31.959 (5)
Cu1—N11.932 (4)Cu1—N22.075 (5)
O1—Cu1—N192.32 (17)O1—Cu1—N2171.59 (18)
O1—Cu1—N387.98 (19)N1—Cu1—N284.45 (18)
N1—Cu1—N3177.5 (2)N3—Cu1—N294.91 (19)
 

Acknowledgements

We acknowledge the Scientific Research Foundation of Henan University of Science and Technology (Project No. 05–072).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMa, J.-Y., Gu, S.-H., Guo, J.-W., Lv, B.-L. & Yin, W.-P. (2006). Acta Cryst. E62, m1437–m1438.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, J.-Y., Lv, B.-L., Gu, S.-H., Guo, J.-W. & Yin, W.-P. (2006). Acta Cryst. E62, m1322–m1323.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, J.-Y., Wu, T.-X., She, X.-G. & Pan, X.-F. (2005). Acta Cryst. E61, m695–m696.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, J.-Y., Wu, T.-X., She, X.-G. & Pan, X.-F. (2006). Z. Kristallogr. New Cryst. Struct. 221, 53–54.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds