organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-tert-Butyl-5,6,8-tri­nitro­naphtho[1,8a,8-cd][1,2]di­thiole

aKey Laboratory for Functional Polymer Materials and Center for Nanoscale Science and Technology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Weijin Road No. 94, Tianjin, People's Republic of China
*Correspondence e-mail: yschen99@nankai.edu.cn

(Received 18 March 2008; accepted 7 April 2008; online 10 April 2008)

Nitration of 2,7-di-tert-butyl­naphthalene 1,8-disulfide with fuming nitric acid in 1:3 molar ratio gives the title compound, C14H11N3O6S2. A tape motif is formed by weak head-to-tail inter­actions (3.131 Å) between S and NO2 O atoms of a symmetry-related mol­ecule.

Related literature

For related literature, see: Barltrop et al. (1954[Barltrop, J. A., Hayes, P. M. & Calvin, M. (1954). J. Am. Chem. Soc. 76, 4348-4367.]); Claeson et al. (1960[Claeson, G., Androes, G. M. & Calvin, M. (1960). J. Am. Chem. Soc. 82, 4428-4429.]); Shigeru et al. (1982[Shigeru, O., Tatsuya, N. & Toshikazu, T. (1982). Heterocycles, 18, 41-44.]); Smiles & Price (1928[Smiles, S. & Price, W. (1928). J. Chem. Soc. pp. 2372-2374.]); Stepanov et al. (1977[Stepanov, B. I., Rodionov, V. Ya. & Voinova, S. E. (1977). Zh. Org. Khim. 13, 841-845.]); Tesmer & Vahrenkamp (2001[Tesmer, M. & Vahrenkamp, H. (2001). Eur. J. Inorg. Chem. 5, 1183-1188.]); Zweig & Hoffman (1965[Zweig, A. & Hoffman, A. K. (1965). J. Org. Chem. 30, 3997-4001.]); Ashe et al. (1994[Ashe, A. J., Kampf, J. W. & Savla, P. M. (1994). Heteroatom. Chem. 5, 113-119.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11N3O6S2

  • Mr = 381.38

  • Monoclinic, C 2/c

  • a = 19.477 (3) Å

  • b = 20.754 (4) Å

  • c = 8.1658 (14) Å

  • β = 105.909 (3)°

  • V = 3174.4 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 294 (2) K

  • 0.26 × 0.24 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.876, Tmax = 0.964

  • 8118 measured reflections

  • 2803 independent reflections

  • 1856 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.108

  • S = 1.03

  • 2803 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Naphthalene-1,8-disulfide is a bright-red crystalline compound (Smiles et al., 1928; Zweig et al., 1965) due to the introduction of S—S group into the naphthalene ring leading to a considerable bathochromic shift of the absorption bands characteristic of disulfides in the electronic spectrum (Barltrop et al., 1954; Claeson et al., 1960). There are only a few reports concerning the nitration of naphthalene-1,8-disulfide (Stepanov et al., 1977; Shigeru et al., 1982). In an attempt to nitrate 2,7-di-tert-butyl-naphthalene-1,8-disulfide(BNT) (Tesmer et al., 2001) with fuming nitric acid in an attempted synthesis of 3,8-di-tert-butyl-5,6-dinitro-naphtho[1,8-cd][1,2]dithiole, the title compound was obtained unexpectedly. Herein, we present its preparation and single-crystal structure (Fig. 1).

The crystal was obtained by recrystallization from ethyl acetate. The length of the S—S bond is 2.0627 (10) Å, which is consistent with that of analogues reported by Arthur et al. (1994). The three rings form a slightly non-perfect plane owing to the asymmetric substitution of nitro and tert-butyl groups. The dihedral angles between the rings are: A/B, 3.9 (3) °; A/C, 2.3 (3) °; B/C, 3.0 (3) °. A perspective view of the packing is shown in Figure 2. A slightly wavy tape motif is formed by the head-to-tail weak interactions between S1 and O2 of a molecule related via 0.5+x,0.5-y,0.5+z.

Related literature top

For related literature, see: Barltrop et al. (1954); Claeson et al. (1960); Shigeru et al. (1982); Smiles & Price (1928); Stepanov et al. (1977); Tesmer & Vahrenkamp (2001); Zweig & Hoffman (1965); Ashe et al. (1994).

Experimental top

To a solution of BNT (3.02 g, 10 mmol) in acetic acid (50 mL), fuming nitric acid (30 mmol) was added. The reaction mixture was stirred for 0.5 h and cooled to room temperature. The precipitate was collected by filtration and recrystallized from ethyl acetate to give the title compound as red crystals, yield 80%.

Refinement top

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained C-H distances of 0.96 Å (RCH3) and 0.93 Å (CArH) with Uiso(H) values set to either 1.5Ueq (RCH3) or 1.2Ueq of the attached C atom.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability ellipsoids.
[Figure 2] Fig. 2. Packing structure of the title compound.
3-tert-Butyl-5,6,8-trinitronaphtho[1,8a,8-cd][1,2]dithiole top
Crystal data top
C14H11N3O6S2F(000) = 1568
Mr = 381.38Dx = 1.596 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2099 reflections
a = 19.477 (3) Åθ = 2.7–25.8°
b = 20.754 (4) ŵ = 0.37 mm1
c = 8.1658 (14) ÅT = 294 K
β = 105.909 (3)°Block, red
V = 3174.4 (10) Å30.26 × 0.24 × 0.10 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
2803 independent reflections
Radiation source: fine-focus sealed tube1856 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1923
Tmin = 0.876, Tmax = 0.964k = 2422
8118 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0578P)2]
where P = (Fo2 + 2Fc2)/3
2803 reflections(Δ/σ)max = 0.001
229 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C14H11N3O6S2V = 3174.4 (10) Å3
Mr = 381.38Z = 8
Monoclinic, C2/cMo Kα radiation
a = 19.477 (3) ŵ = 0.37 mm1
b = 20.754 (4) ÅT = 294 K
c = 8.1658 (14) Å0.26 × 0.24 × 0.10 mm
β = 105.909 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2803 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1856 reflections with I > 2σ(I)
Tmin = 0.876, Tmax = 0.964Rint = 0.037
8118 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.03Δρmax = 0.24 e Å3
2803 reflectionsΔρmin = 0.26 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22607 (3)0.26843 (3)0.74057 (9)0.0476 (2)
S20.21867 (3)0.17028 (3)0.77160 (9)0.0490 (2)
O10.10572 (11)0.34597 (11)0.3300 (3)0.0838 (7)
O20.12517 (9)0.26776 (9)0.4864 (2)0.0525 (5)
O30.10009 (10)0.18790 (11)0.2446 (2)0.0661 (6)
O40.12944 (10)0.12220 (10)0.4212 (3)0.0665 (6)
O50.08457 (13)0.00261 (10)0.7190 (3)0.1019 (9)
O60.18753 (12)0.05183 (10)0.7857 (3)0.0809 (7)
N10.08510 (11)0.30111 (12)0.4295 (3)0.0494 (6)
N20.08763 (12)0.15858 (12)0.3800 (3)0.0513 (6)
N30.12234 (14)0.05040 (12)0.7216 (3)0.0693 (8)
C10.13641 (12)0.28171 (11)0.6422 (3)0.0349 (6)
C20.09381 (12)0.22503 (11)0.6122 (3)0.0332 (6)
C30.12897 (13)0.16621 (11)0.6715 (3)0.0378 (6)
C40.08893 (14)0.10991 (12)0.6509 (3)0.0469 (7)
C50.01708 (14)0.10991 (13)0.5605 (3)0.0487 (7)
H50.00840.07140.54310.058*
C60.01603 (12)0.16565 (12)0.4978 (3)0.0402 (6)
C70.01938 (12)0.22687 (11)0.5293 (3)0.0349 (6)
C80.00856 (12)0.28886 (12)0.4886 (3)0.0378 (6)
C90.03362 (13)0.34351 (12)0.5203 (3)0.0418 (6)
H90.01160.38310.48820.050*
C100.10644 (13)0.34324 (12)0.5964 (3)0.0388 (6)
C110.14946 (14)0.40632 (12)0.6359 (3)0.0445 (7)
C120.20882 (15)0.40735 (14)0.5453 (4)0.0603 (8)
H12A0.23630.44620.57460.090*
H12B0.18800.40580.42440.090*
H12C0.23940.37070.58030.090*
C130.18252 (17)0.41303 (14)0.8288 (3)0.0655 (9)
H13A0.21450.37770.86910.098*
H13B0.14530.41270.88530.098*
H13C0.20840.45290.85230.098*
C140.10141 (16)0.46540 (13)0.5768 (4)0.0678 (9)
H14A0.12950.50400.60380.102*
H14B0.06430.46610.63380.102*
H14C0.08040.46310.45600.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0239 (3)0.0561 (5)0.0571 (5)0.0011 (3)0.0013 (3)0.0029 (3)
S20.0287 (4)0.0533 (4)0.0576 (5)0.0105 (3)0.0008 (3)0.0063 (3)
O10.0463 (13)0.1089 (19)0.0858 (15)0.0205 (12)0.0004 (11)0.0525 (15)
O20.0270 (10)0.0763 (14)0.0557 (12)0.0019 (9)0.0140 (9)0.0021 (10)
O30.0457 (12)0.1145 (17)0.0317 (10)0.0013 (11)0.0000 (9)0.0013 (11)
O40.0399 (12)0.0745 (15)0.0789 (14)0.0160 (11)0.0057 (11)0.0059 (11)
O50.0882 (18)0.0412 (13)0.155 (3)0.0054 (12)0.0030 (17)0.0026 (14)
O60.0535 (14)0.0582 (13)0.1134 (19)0.0205 (11)0.0069 (13)0.0051 (12)
N10.0285 (12)0.0749 (17)0.0422 (13)0.0080 (11)0.0051 (10)0.0072 (12)
N20.0314 (13)0.0721 (17)0.0468 (14)0.0024 (12)0.0050 (11)0.0145 (12)
N30.0602 (18)0.0427 (15)0.093 (2)0.0105 (14)0.0005 (16)0.0149 (14)
C10.0269 (13)0.0478 (15)0.0289 (13)0.0022 (11)0.0060 (10)0.0008 (11)
C20.0247 (13)0.0481 (15)0.0252 (12)0.0044 (11)0.0042 (10)0.0027 (10)
C30.0315 (13)0.0438 (15)0.0352 (13)0.0043 (11)0.0041 (11)0.0106 (11)
C40.0418 (16)0.0425 (16)0.0504 (16)0.0070 (13)0.0027 (13)0.0099 (13)
C50.0423 (16)0.0485 (17)0.0507 (17)0.0061 (13)0.0053 (13)0.0127 (13)
C60.0269 (13)0.0571 (17)0.0336 (14)0.0022 (12)0.0032 (11)0.0081 (12)
C70.0292 (13)0.0541 (16)0.0219 (12)0.0015 (11)0.0079 (10)0.0016 (11)
C80.0248 (13)0.0569 (17)0.0303 (13)0.0072 (12)0.0051 (10)0.0064 (12)
C90.0395 (15)0.0478 (17)0.0383 (14)0.0105 (12)0.0107 (12)0.0116 (12)
C100.0350 (14)0.0505 (17)0.0313 (13)0.0015 (12)0.0097 (11)0.0039 (11)
C110.0460 (17)0.0451 (16)0.0410 (15)0.0004 (12)0.0097 (13)0.0026 (12)
C120.0556 (19)0.066 (2)0.0591 (19)0.0194 (15)0.0155 (15)0.0042 (14)
C130.094 (3)0.0513 (18)0.0480 (18)0.0007 (16)0.0145 (17)0.0109 (14)
C140.068 (2)0.0496 (18)0.082 (2)0.0001 (15)0.0139 (17)0.0122 (15)
Geometric parameters (Å, º) top
S1—C11.733 (2)C5—H50.9300
S1—S22.0627 (10)C6—C71.435 (3)
S2—C31.716 (2)C7—C81.401 (3)
O1—N11.229 (3)C8—C91.383 (3)
O2—N11.226 (3)C9—C101.384 (3)
O3—N21.227 (3)C9—H90.9300
O4—N21.223 (3)C10—C111.540 (3)
O5—N31.231 (3)C11—C121.534 (4)
O6—N31.234 (3)C11—C131.536 (3)
N1—C81.458 (3)C11—C141.538 (4)
N2—C61.468 (3)C12—H12A0.9600
N3—C41.441 (3)C12—H12B0.9600
C1—C101.411 (3)C12—H12C0.9600
C1—C21.421 (3)C13—H13A0.9600
C2—C31.419 (3)C13—H13B0.9600
C2—C71.422 (3)C13—H13C0.9600
C3—C41.389 (3)C14—H14A0.9600
C4—C51.392 (3)C14—H14B0.9600
C5—C61.355 (3)C14—H14C0.9600
C1—S1—S296.81 (8)C9—C8—N1114.8 (2)
C3—S2—S194.96 (9)C7—C8—N1122.3 (2)
O2—N1—O1123.5 (2)C8—C9—C10124.3 (2)
O2—N1—C8118.4 (2)C8—C9—H9117.8
O1—N1—C8118.1 (2)C10—C9—H9117.8
O4—N2—O3124.9 (2)C9—C10—C1114.9 (2)
O4—N2—C6117.8 (2)C9—C10—C11121.5 (2)
O3—N2—C6117.3 (2)C1—C10—C11123.5 (2)
O5—N3—O6124.5 (3)C12—C11—C13109.5 (2)
O5—N3—C4118.8 (3)C12—C11—C14108.2 (2)
O6—N3—C4116.6 (3)C13—C11—C14107.3 (2)
C10—C1—C2121.6 (2)C12—C11—C10110.5 (2)
C10—C1—S1123.91 (18)C13—C11—C10110.1 (2)
C2—C1—S1114.50 (17)C14—C11—C10111.3 (2)
C3—C2—C1116.7 (2)C11—C12—H12A109.5
C3—C2—C7121.3 (2)C11—C12—H12B109.5
C1—C2—C7122.0 (2)H12A—C12—H12B109.5
C4—C3—C2118.7 (2)C11—C12—H12C109.5
C4—C3—S2124.31 (19)H12A—C12—H12C109.5
C2—C3—S2116.97 (18)H12B—C12—H12C109.5
C3—C4—C5120.9 (2)C11—C13—H13A109.5
C3—C4—N3119.7 (2)C11—C13—H13B109.5
C5—C4—N3119.4 (2)H13A—C13—H13B109.5
C6—C5—C4120.4 (2)C11—C13—H13C109.5
C6—C5—H5119.8H13A—C13—H13C109.5
C4—C5—H5119.8H13B—C13—H13C109.5
C5—C6—C7122.2 (2)C11—C14—H14A109.5
C5—C6—N2115.5 (2)C11—C14—H14B109.5
C7—C6—N2122.0 (2)H14A—C14—H14B109.5
C8—C7—C2114.6 (2)C11—C14—H14C109.5
C8—C7—C6129.4 (2)H14A—C14—H14C109.5
C2—C7—C6116.0 (2)H14B—C14—H14C109.5
C9—C8—C7122.5 (2)
C1—S1—S2—C32.27 (11)C1—C2—C7—C83.2 (3)
S2—S1—C1—C10176.23 (18)C3—C2—C7—C64.8 (3)
S2—S1—C1—C22.85 (17)C1—C2—C7—C6176.2 (2)
C10—C1—C2—C3176.8 (2)C5—C6—C7—C8173.2 (2)
S1—C1—C2—C32.3 (3)N2—C6—C7—C813.8 (4)
C10—C1—C2—C72.3 (3)C5—C6—C7—C27.6 (3)
S1—C1—C2—C7178.63 (16)N2—C6—C7—C2165.4 (2)
C1—C2—C3—C4177.5 (2)C2—C7—C8—C92.6 (3)
C7—C2—C3—C41.5 (3)C6—C7—C8—C9176.7 (2)
C1—C2—C3—S20.2 (3)C2—C7—C8—N1169.64 (19)
C7—C2—C3—S2179.27 (17)C6—C7—C8—N111.1 (4)
S1—S2—C3—C4179.1 (2)O2—N1—C8—C9138.7 (2)
S1—S2—C3—C21.51 (19)O1—N1—C8—C938.6 (3)
C2—C3—C4—C55.7 (4)O2—N1—C8—C734.1 (3)
S2—C3—C4—C5176.7 (2)O1—N1—C8—C7148.6 (3)
C2—C3—C4—N3175.3 (2)C7—C8—C9—C101.0 (4)
S2—C3—C4—N32.3 (4)N1—C8—C9—C10171.8 (2)
O5—N3—C4—C3171.9 (3)C8—C9—C10—C10.2 (4)
O6—N3—C4—C36.0 (4)C8—C9—C10—C11176.9 (2)
O5—N3—C4—C59.0 (4)C2—C1—C10—C90.5 (3)
O6—N3—C4—C5173.0 (3)S1—C1—C10—C9179.49 (17)
C3—C4—C5—C63.2 (4)C2—C1—C10—C11176.2 (2)
N3—C4—C5—C6177.8 (2)S1—C1—C10—C112.8 (3)
C4—C5—C6—C73.7 (4)C9—C10—C11—C12121.4 (3)
C4—C5—C6—N2169.7 (2)C1—C10—C11—C1262.2 (3)
O4—N2—C6—C546.7 (3)C9—C10—C11—C13117.6 (3)
O3—N2—C6—C5130.7 (3)C1—C10—C11—C1358.8 (3)
O4—N2—C6—C7139.9 (2)C9—C10—C11—C141.2 (3)
O3—N2—C6—C742.7 (3)C1—C10—C11—C14177.6 (2)
C3—C2—C7—C8175.8 (2)

Experimental details

Crystal data
Chemical formulaC14H11N3O6S2
Mr381.38
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)19.477 (3), 20.754 (4), 8.1658 (14)
β (°) 105.909 (3)
V3)3174.4 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.26 × 0.24 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.876, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
8118, 2803, 1856
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.108, 1.03
No. of reflections2803
No. of parameters229
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.26

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the NSFC (grant Nos. 20644004, 20774047), MoST (grant No. 2006CB932702) and the NSF of Tianjin City (grant No. 07JCYBJC03000).

References

First citationAshe, A. J., Kampf, J. W. & Savla, P. M. (1994). Heteroatom. Chem. 5, 113–119.  CSD CrossRef CAS Web of Science Google Scholar
First citationBarltrop, J. A., Hayes, P. M. & Calvin, M. (1954). J. Am. Chem. Soc. 76, 4348–4367.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClaeson, G., Androes, G. M. & Calvin, M. (1960). J. Am. Chem. Soc. 82, 4428–4429.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShigeru, O., Tatsuya, N. & Toshikazu, T. (1982). Heterocycles, 18, 41–44.  Google Scholar
First citationSmiles, S. & Price, W. (1928). J. Chem. Soc. pp. 2372–2374.  Google Scholar
First citationStepanov, B. I., Rodionov, V. Ya. & Voinova, S. E. (1977). Zh. Org. Khim. 13, 841–845.  CAS Google Scholar
First citationTesmer, M. & Vahrenkamp, H. (2001). Eur. J. Inorg. Chem. 5, 1183–1188.  CrossRef Google Scholar
First citationZweig, A. & Hoffman, A. K. (1965). J. Org. Chem. 30, 3997–4001.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds