organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(R)-(−)-3-Hy­droxy­quinuclidinium chloride

aFaculty of Chemistry, University of Wrocław, 14 Joliot-Curie St, 50-383 Wrocław, Poland
*Correspondence e-mail: milosz@eto.wchuwr.pl

(Received 20 March 2008; accepted 4 April 2008; online 16 April 2008)

The quinuclidinium cation of the title compound, C7H14NO+·Cl, shows a twist along the C—N pseudo-threefold axis, with N—C—C—C torsion angles of −16.0 (1), −16.9 (1) and −15.6 (1)°. The crystal structure is stabilized by N—H⋯Cl and O—H⋯Cl hydrogen bonds, forming infinite chains along the a and b axes.

Related literature

For related literature see: Carroll et al. (1991[Carroll, F. I., Abraham, P., Gaetano, K., Mascarella, S. W., Wohl, R. A., Lind, J. & Petzoldt, K. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 3017-3026.]); Erman et al. (1994[Erman, L. Ya., Mindrul, V. F., Mikhaleva, I. L., Pankov, D. I. & Kurochkin, V. K. (1994). Zh. Strukt. Khim. 35, 161-163.]); Frackenpohl & Hoffmann (2000[Frackenpohl, J. & Hoffmann, H. M. R. (2000). J. Org. Chem. 65, 3982-3996.]); Bosak et al. (2005[Bosak, A., Primožič, I., Oršulić, M., Tomić, S. & Simeon-Rudolf, V. (2005). Croat. Chem. Acta, 78, 121-128.]); Lis & Jeżowska-Trzebiatowska (1976[Lis, T. & Jeżowska-Trzebiatowska, B. (1976). Acta Cryst. B32, 867-869.]); Lis et al. (1975[Lis, T., Głowiak, T. & Jeżowska-Trzebiatowska, B. (1975). Bull. Pol. Acad. Sci. Chem. 23, 739-743.]); Morrow (1962[Morrow, J. C. (1962). Acta Cryst. 15, 851-855.]); Noddack & Noddack (1933[Noddack, V. I. & Noddack, W. (1933). Z. Anorg. Allg. Chem. 215, 129-184.]); Sterling et al. (1988[Sterling, G. H., Doukas, P. H., Sheldon, R. J. & O'Neill, J. J. (1988). Biochem. Pharmacol. 37, 379-384.]).

[Scheme 1]

Experimental

Crystal data
  • C7H14NO+·Cl

  • Mr = 163.64

  • Tetragonal, P 41

  • a = 6.655 (3) Å

  • c = 18.145 (9) Å

  • V = 803.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 100 (2) K

  • 0.50 × 0.34 × 0.08 mm

Data collection
  • Kuma KM-4 CCD κ-geometry diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Poland, Wrocław, Poland.]) Tmin = 0.86, Tmax = 0.97

  • 11241 measured reflections

  • 3310 independent reflections

  • 3128 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.063

  • S = 1.00

  • 3310 reflections

  • 92 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1361 Friedel pairs

  • Flack parameter: −0.01 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl 0.93 2.14 3.060 (2) 171
O1—H11⋯Cli 0.84 2.24 3.079 (2) 173
Symmetry code: (i) x-1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Poland, Wrocław, Poland.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Poland, Wrocław, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Since the first synthesis of potassium µ-oxo-bis[pentachlororhenate(IV)] (Noddack & Noddack, 1933) numerous efforts have been undertaken to quantitatively describe its structure. To the present day only one structure of [Re2OCl10]4- with potassium cations and one of its oxidized form, [Re2OCl10]3-, with caesium cations have been successfully determined by X-Ray crystallography (Morrow, 1962; Lis & Jeżowska-Trzebiatowska, 1976; Lis et al., 1975;). Our structural studies on [Re2OCl10]4- and [Re2OCl10]3- have shown that the appropriate choice of cation is crucial to obtain good structural parameters for the anion unit. The most suitable properties of the cation are low symmetry, chirality and the ability to form hydrogen bonds. All these requirements are fulfilled by (R)-(–)-3-hydroxyquinuclidinium cation. Quinuclidinium derivatives have been of interest due to their biological activity, especially as a acetylcholinesterase inhibitor (Bosak et al., 2005). It was also proven that quinuclidinium salts protected rats against the toxicity of soman and tabun (Sterling et al., 1988). Aside from the present study, the only other known structure of (R)-(–)-3-hydroxyquinuclidinium was with (R,R)-tartrate anion (Erman et al., 1994).

The asymmetric unit of the crystal (Fig. 1) consists of a (R)-(–)-3-hydroxyquinuclidinium cation and a chloride anion. The quinuclidine moiety has almost exact threefold symmetry about N1–C4, and the two subunits (N1, C2, C6, C7 and C4, C3, C5, C8) are twisted about this axis. The deformation of quinuclidinium cation is reflected in the values of the N1—C2—C3—C4, N1—C6—C5—C4, N1—C7—C8—C4 torsion angles, which are -16.0 (1)° -16.9 (1)° -15.6 (1)°, respectively. Similar rotation has also been observed, but with slightly smaller angles, in 3-hydroxyquinuclidinium tartrate (Erman et al., 1994). The bond lengths of the cation are all normal and are in good agreement with quinuclidinium derivatives (Carroll et al., 1991; Erman et al., 1994; Frackenpohl & Hoffmann, 2000). The anion is surrounded by six symmetry-related cations that act as hydrogen bond acceptors for O—H and N—H groups. The hydrogen bonds link cations and anions into infinite chains running in the a and b axis directions (Figs. 2,3).

Related literature top

For related literature see: Carroll et al. (1991); Erman et al. (1994); Frackenpohl & Hoffmann (2000); Bosak et al. (2005); Lis & Jeżowska-Trzebiatowska (1976); Lis et al. (1975); Morrow (1962); Noddack & Noddack (1933); Sterling et al. (1988).

Experimental top

The title compound was obtained from a commercial source (Aldrich) and dissolved in hot methanol. Colourless crystals grew from the solution after a few hours.

Refinement top

The H atoms firstly were all located in difference maps, then set in calculated positions and refined as riding atoms [C—H = 0.99–1.00 Å, O—H = 0.84 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O)].

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (R)-(-)-3-hydroxyquinuclidinium cation with atom labelling scheme. The thermal displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. A view of molecular packing showing chains formed along a and b directions. The hydrogen bonds are shown as dashed lines. The H atoms not involved in any interaction are omitted for clarity.
[Figure 3] Fig. 3. A view of (R)-(-)-3-hydroxyquinuclidinium cations and chloride anion forming hydrogen bonds. The thermal displacement ellipsoids are drawn at 30% probability level. Symmetry code: [ii] x + 1,y,z.
(R)-(-)-3-Hydroxyquinuclidinium chloride top
Crystal data top
C7H14NO+·ClDx = 1.353 Mg m3
Mr = 163.64Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41Cell parameters from 11099 reflections
Hall symbol: P 4wθ = 3.3–36.6°
a = 6.655 (3) ŵ = 0.41 mm1
c = 18.145 (9) ÅT = 100 K
V = 803.6 (6) Å3Plate, colorless
Z = 40.50 × 0.34 × 0.08 mm
F(000) = 352
Data collection top
Kuma KM-4-CCD κ-geometry
diffractometer
3310 independent reflections
Radiation source: medium-focus sealed tube3128 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 36.7°, θmin = 3.3°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2007)
h = 118
Tmin = 0.86, Tmax = 0.97k = 811
11241 measured reflectionsl = 2330
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0453P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3310 reflectionsΔρmax = 0.36 e Å3
92 parametersΔρmin = 0.20 e Å3
1 restraintAbsolute structure: Flack (1983), 1261 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (3)
Crystal data top
C7H14NO+·ClZ = 4
Mr = 163.64Mo Kα radiation
Tetragonal, P41µ = 0.41 mm1
a = 6.655 (3) ÅT = 100 K
c = 18.145 (9) Å0.50 × 0.34 × 0.08 mm
V = 803.6 (6) Å3
Data collection top
Kuma KM-4-CCD κ-geometry
diffractometer
3310 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2007)
3128 reflections with I > 2σ(I)
Tmin = 0.86, Tmax = 0.97Rint = 0.022
11241 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.063Δρmax = 0.36 e Å3
S = 1.00Δρmin = 0.20 e Å3
3310 reflectionsAbsolute structure: Flack (1983), 1261 Friedel pairs
92 parametersAbsolute structure parameter: 0.01 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.85575 (3)0.53610 (3)0.500252 (12)0.01541 (5)
O10.08282 (10)0.92929 (11)0.46762 (4)0.01799 (13)
H110.02530.81800.47320.027*
N10.56591 (11)0.89016 (11)0.51704 (4)0.01256 (13)
H10.65930.78620.51670.015*
C20.36697 (13)0.80978 (13)0.54256 (5)0.01451 (15)
H210.37450.77440.59550.017*
H220.33270.68690.51450.017*
C30.20359 (12)0.97096 (13)0.53048 (5)0.01341 (14)
H30.11630.97970.57520.016*
C40.30861 (12)1.17237 (13)0.51807 (5)0.01337 (14)
H40.20841.28430.51850.016*
C50.46336 (13)1.20182 (13)0.57991 (5)0.01436 (15)
H520.39901.17950.62840.017*
H510.51611.34090.57870.017*
C60.63647 (13)1.05125 (14)0.56902 (5)0.01397 (15)
H610.75531.12060.54830.017*
H620.67480.99120.61690.017*
C70.54836 (14)0.97482 (14)0.44064 (5)0.01571 (16)
H710.48430.87530.40760.019*
H720.68351.00640.42100.019*
C80.42035 (14)1.16677 (14)0.44410 (5)0.01546 (15)
H820.50771.28650.43940.019*
H810.32261.16800.40300.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.01498 (9)0.01326 (9)0.01800 (9)0.00201 (7)0.00182 (7)0.00096 (7)
O10.0151 (3)0.0194 (3)0.0195 (3)0.0034 (2)0.0051 (2)0.0014 (2)
N10.0121 (3)0.0123 (3)0.0133 (3)0.0018 (2)0.0001 (2)0.0000 (2)
C20.0139 (3)0.0126 (3)0.0171 (4)0.0022 (3)0.0003 (3)0.0018 (3)
C30.0103 (3)0.0151 (3)0.0149 (3)0.0010 (3)0.0001 (3)0.0015 (3)
C40.0122 (3)0.0112 (3)0.0167 (4)0.0016 (2)0.0018 (3)0.0008 (3)
C50.0136 (3)0.0137 (3)0.0157 (4)0.0002 (3)0.0010 (3)0.0024 (3)
C60.0125 (3)0.0148 (3)0.0146 (4)0.0001 (3)0.0027 (3)0.0011 (3)
C70.0165 (4)0.0195 (4)0.0111 (3)0.0023 (3)0.0017 (3)0.0007 (3)
C80.0158 (4)0.0163 (4)0.0143 (4)0.0005 (3)0.0013 (3)0.0034 (3)
Geometric parameters (Å, º) top
O1—C31.4227 (11)C4—C51.5355 (13)
O1—H110.8400C4—H41.0000
N1—C71.5009 (13)C5—C61.5396 (13)
N1—C21.5011 (12)C5—H520.9900
N1—C61.5031 (12)C5—H510.9900
N1—H10.9300C6—H610.9900
C2—C31.5430 (13)C6—H620.9900
C2—H210.9900C7—C81.5367 (14)
C2—H220.9900C7—H710.9900
C3—C41.5284 (13)C7—H720.9900
C3—H31.0000C8—H820.9900
C4—C81.5349 (14)C8—H810.9900
C3—O1—H11109.5C4—C5—C6108.97 (7)
C7—N1—C2110.49 (7)C4—C5—H52109.9
C7—N1—C6109.64 (7)C6—C5—H52109.9
C2—N1—C6109.64 (7)C4—C5—H51109.9
C7—N1—H1109.0C6—C5—H51109.9
C2—N1—H1109.0H52—C5—H51108.3
C6—N1—H1109.0N1—C6—C5108.12 (6)
N1—C2—C3109.27 (7)N1—C6—H61110.1
N1—C2—H21109.8C5—C6—H61110.1
C3—C2—H21109.8N1—C6—H62110.1
N1—C2—H22109.8C5—C6—H62110.1
C3—C2—H22109.8H61—C6—H62108.4
H21—C2—H22108.3N1—C7—C8108.51 (7)
O1—C3—C4108.13 (7)N1—C7—H71110.0
O1—C3—C2112.11 (7)C8—C7—H71110.0
C4—C3—C2107.96 (7)N1—C7—H72110.0
O1—C3—H3109.5C8—C7—H72110.0
C4—C3—H3109.5H71—C7—H72108.4
C2—C3—H3109.5C4—C8—C7108.93 (7)
C3—C4—C8109.21 (7)C4—C8—H82109.9
C3—C4—C5108.12 (7)C7—C8—H82109.9
C8—C4—C5108.49 (8)C4—C8—H81109.9
C3—C4—H4110.3C7—C8—H81109.9
C8—C4—H4110.3H82—C8—H81108.3
C5—C4—H4110.3
C7—N1—C2—C350.50 (9)C8—C4—C5—C648.56 (9)
C6—N1—C2—C370.45 (9)C7—N1—C6—C571.20 (8)
N1—C2—C3—O1102.96 (9)C2—N1—C6—C550.27 (9)
N1—C2—C3—C416.03 (9)C4—C5—C6—N116.88 (9)
O1—C3—C4—C853.44 (9)C2—N1—C7—C869.13 (9)
C2—C3—C4—C868.06 (9)C6—N1—C7—C851.82 (9)
O1—C3—C4—C5171.30 (7)C3—C4—C8—C749.82 (9)
C2—C3—C4—C549.80 (9)C5—C4—C8—C767.81 (9)
C3—C4—C5—C669.77 (9)N1—C7—C8—C415.62 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl0.932.143.060 (2)171
O1—H11···Cli0.842.243.079 (2)173
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC7H14NO+·Cl
Mr163.64
Crystal system, space groupTetragonal, P41
Temperature (K)100
a, c (Å)6.655 (3), 18.145 (9)
V3)803.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.50 × 0.34 × 0.08
Data collection
DiffractometerKuma KM-4-CCD κ-geometry
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.86, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
11241, 3310, 3128
Rint0.022
(sin θ/λ)max1)0.841
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.063, 1.00
No. of reflections3310
No. of parameters92
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.20
Absolute structureFlack (1983), 1261 Friedel pairs
Absolute structure parameter0.01 (3)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl0.932.143.060 (2)171.4
O1—H11···Cli0.842.243.079 (2)173.2
Symmetry code: (i) x1, y, z.
 

References

First citationBosak, A., Primožič, I., Oršulić, M., Tomić, S. & Simeon-Rudolf, V. (2005). Croat. Chem. Acta, 78, 121–128.  CAS Google Scholar
First citationCarroll, F. I., Abraham, P., Gaetano, K., Mascarella, S. W., Wohl, R. A., Lind, J. & Petzoldt, K. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 3017–3026.  CSD CrossRef Web of Science Google Scholar
First citationErman, L. Ya., Mindrul, V. F., Mikhaleva, I. L., Pankov, D. I. & Kurochkin, V. K. (1994). Zh. Strukt. Khim. 35, 161–163.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFrackenpohl, J. & Hoffmann, H. M. R. (2000). J. Org. Chem. 65, 3982–3996.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLis, T., Głowiak, T. & Jeżowska-Trzebiatowska, B. (1975). Bull. Pol. Acad. Sci. Chem. 23, 739–743.  CAS Google Scholar
First citationLis, T. & Jeżowska-Trzebiatowska, B. (1976). Acta Cryst. B32, 867–869.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMorrow, J. C. (1962). Acta Cryst. 15, 851–855.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNoddack, V. I. & Noddack, W. (1933). Z. Anorg. Allg. Chem. 215, 129–184.  CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Poland, Wrocław, Poland.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSterling, G. H., Doukas, P. H., Sheldon, R. J. & O'Neill, J. J. (1988). Biochem. Pharmacol. 37, 379–384.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds