organic compounds
(R)-(−)-3-Hydroxyquinuclidinium chloride
aFaculty of Chemistry, University of Wrocław, 14 Joliot-Curie St, 50-383 Wrocław, Poland
*Correspondence e-mail: milosz@eto.wchuwr.pl
The quinuclidinium cation of the title compound, C7H14NO+·Cl−, shows a twist along the C—N pseudo-threefold axis, with N—C—C—C torsion angles of −16.0 (1), −16.9 (1) and −15.6 (1)°. The is stabilized by N—H⋯Cl and O—H⋯Cl hydrogen bonds, forming infinite chains along the a and b axes.
Related literature
For related literature see: Carroll et al. (1991); Erman et al. (1994); Frackenpohl & Hoffmann (2000); Bosak et al. (2005); Lis & Jeżowska-Trzebiatowska (1976); Lis et al. (1975); Morrow (1962); Noddack & Noddack (1933); Sterling et al. (1988).
Experimental
Crystal data
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808009185/pk2091sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808009185/pk2091Isup2.hkl
The title compound was obtained from a commercial source (Aldrich) and dissolved in hot methanol. Colourless crystals grew from the solution after a few hours.
The H atoms firstly were all located in difference maps, then set in calculated positions and refined as riding atoms [C—H = 0.99–1.00 Å, O—H = 0.84 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O)].
Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell
CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C7H14NO+·Cl− | Dx = 1.353 Mg m−3 |
Mr = 163.64 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P41 | Cell parameters from 11099 reflections |
Hall symbol: P 4w | θ = 3.3–36.6° |
a = 6.655 (3) Å | µ = 0.41 mm−1 |
c = 18.145 (9) Å | T = 100 K |
V = 803.6 (6) Å3 | Plate, colorless |
Z = 4 | 0.50 × 0.34 × 0.08 mm |
F(000) = 352 |
Kuma KM-4-CCD κ-geometry diffractometer | 3310 independent reflections |
Radiation source: medium-focus sealed tube | 3128 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
ω scans | θmax = 36.7°, θmin = 3.3° |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2007) | h = −11→8 |
Tmin = 0.86, Tmax = 0.97 | k = −8→11 |
11241 measured reflections | l = −23→30 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.026 | H-atom parameters constrained |
wR(F2) = 0.063 | w = 1/[σ2(Fo2) + (0.0453P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max = 0.001 |
3310 reflections | Δρmax = 0.36 e Å−3 |
92 parameters | Δρmin = −0.20 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1261 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.01 (3) |
C7H14NO+·Cl− | Z = 4 |
Mr = 163.64 | Mo Kα radiation |
Tetragonal, P41 | µ = 0.41 mm−1 |
a = 6.655 (3) Å | T = 100 K |
c = 18.145 (9) Å | 0.50 × 0.34 × 0.08 mm |
V = 803.6 (6) Å3 |
Kuma KM-4-CCD κ-geometry diffractometer | 3310 independent reflections |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2007) | 3128 reflections with I > 2σ(I) |
Tmin = 0.86, Tmax = 0.97 | Rint = 0.022 |
11241 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | H-atom parameters constrained |
wR(F2) = 0.063 | Δρmax = 0.36 e Å−3 |
S = 1.00 | Δρmin = −0.20 e Å−3 |
3310 reflections | Absolute structure: Flack (1983), 1261 Friedel pairs |
92 parameters | Absolute structure parameter: −0.01 (3) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl | 0.85575 (3) | 0.53610 (3) | 0.500252 (12) | 0.01541 (5) | |
O1 | 0.08282 (10) | 0.92929 (11) | 0.46762 (4) | 0.01799 (13) | |
H11 | 0.0253 | 0.8180 | 0.4732 | 0.027* | |
N1 | 0.56591 (11) | 0.89016 (11) | 0.51704 (4) | 0.01256 (13) | |
H1 | 0.6593 | 0.7862 | 0.5167 | 0.015* | |
C2 | 0.36697 (13) | 0.80978 (13) | 0.54256 (5) | 0.01451 (15) | |
H21 | 0.3745 | 0.7744 | 0.5955 | 0.017* | |
H22 | 0.3327 | 0.6869 | 0.5145 | 0.017* | |
C3 | 0.20359 (12) | 0.97096 (13) | 0.53048 (5) | 0.01341 (14) | |
H3 | 0.1163 | 0.9797 | 0.5752 | 0.016* | |
C4 | 0.30861 (12) | 1.17237 (13) | 0.51807 (5) | 0.01337 (14) | |
H4 | 0.2084 | 1.2843 | 0.5185 | 0.016* | |
C5 | 0.46336 (13) | 1.20182 (13) | 0.57991 (5) | 0.01436 (15) | |
H52 | 0.3990 | 1.1795 | 0.6284 | 0.017* | |
H51 | 0.5161 | 1.3409 | 0.5787 | 0.017* | |
C6 | 0.63647 (13) | 1.05125 (14) | 0.56902 (5) | 0.01397 (15) | |
H61 | 0.7553 | 1.1206 | 0.5483 | 0.017* | |
H62 | 0.6748 | 0.9912 | 0.6169 | 0.017* | |
C7 | 0.54836 (14) | 0.97482 (14) | 0.44064 (5) | 0.01571 (16) | |
H71 | 0.4843 | 0.8753 | 0.4076 | 0.019* | |
H72 | 0.6835 | 1.0064 | 0.4210 | 0.019* | |
C8 | 0.42035 (14) | 1.16677 (14) | 0.44410 (5) | 0.01546 (15) | |
H82 | 0.5077 | 1.2865 | 0.4394 | 0.019* | |
H81 | 0.3226 | 1.1680 | 0.4030 | 0.019* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl | 0.01498 (9) | 0.01326 (9) | 0.01800 (9) | 0.00201 (7) | 0.00182 (7) | 0.00096 (7) |
O1 | 0.0151 (3) | 0.0194 (3) | 0.0195 (3) | −0.0034 (2) | −0.0051 (2) | −0.0014 (2) |
N1 | 0.0121 (3) | 0.0123 (3) | 0.0133 (3) | 0.0018 (2) | 0.0001 (2) | 0.0000 (2) |
C2 | 0.0139 (3) | 0.0126 (3) | 0.0171 (4) | −0.0022 (3) | −0.0003 (3) | 0.0018 (3) |
C3 | 0.0103 (3) | 0.0151 (3) | 0.0149 (3) | −0.0010 (3) | −0.0001 (3) | −0.0015 (3) |
C4 | 0.0122 (3) | 0.0112 (3) | 0.0167 (4) | 0.0016 (2) | −0.0018 (3) | −0.0008 (3) |
C5 | 0.0136 (3) | 0.0137 (3) | 0.0157 (4) | 0.0002 (3) | −0.0010 (3) | −0.0024 (3) |
C6 | 0.0125 (3) | 0.0148 (3) | 0.0146 (4) | −0.0001 (3) | −0.0027 (3) | −0.0011 (3) |
C7 | 0.0165 (4) | 0.0195 (4) | 0.0111 (3) | 0.0023 (3) | 0.0017 (3) | 0.0007 (3) |
C8 | 0.0158 (4) | 0.0163 (4) | 0.0143 (4) | 0.0005 (3) | −0.0013 (3) | 0.0034 (3) |
O1—C3 | 1.4227 (11) | C4—C5 | 1.5355 (13) |
O1—H11 | 0.8400 | C4—H4 | 1.0000 |
N1—C7 | 1.5009 (13) | C5—C6 | 1.5396 (13) |
N1—C2 | 1.5011 (12) | C5—H52 | 0.9900 |
N1—C6 | 1.5031 (12) | C5—H51 | 0.9900 |
N1—H1 | 0.9300 | C6—H61 | 0.9900 |
C2—C3 | 1.5430 (13) | C6—H62 | 0.9900 |
C2—H21 | 0.9900 | C7—C8 | 1.5367 (14) |
C2—H22 | 0.9900 | C7—H71 | 0.9900 |
C3—C4 | 1.5284 (13) | C7—H72 | 0.9900 |
C3—H3 | 1.0000 | C8—H82 | 0.9900 |
C4—C8 | 1.5349 (14) | C8—H81 | 0.9900 |
C3—O1—H11 | 109.5 | C4—C5—C6 | 108.97 (7) |
C7—N1—C2 | 110.49 (7) | C4—C5—H52 | 109.9 |
C7—N1—C6 | 109.64 (7) | C6—C5—H52 | 109.9 |
C2—N1—C6 | 109.64 (7) | C4—C5—H51 | 109.9 |
C7—N1—H1 | 109.0 | C6—C5—H51 | 109.9 |
C2—N1—H1 | 109.0 | H52—C5—H51 | 108.3 |
C6—N1—H1 | 109.0 | N1—C6—C5 | 108.12 (6) |
N1—C2—C3 | 109.27 (7) | N1—C6—H61 | 110.1 |
N1—C2—H21 | 109.8 | C5—C6—H61 | 110.1 |
C3—C2—H21 | 109.8 | N1—C6—H62 | 110.1 |
N1—C2—H22 | 109.8 | C5—C6—H62 | 110.1 |
C3—C2—H22 | 109.8 | H61—C6—H62 | 108.4 |
H21—C2—H22 | 108.3 | N1—C7—C8 | 108.51 (7) |
O1—C3—C4 | 108.13 (7) | N1—C7—H71 | 110.0 |
O1—C3—C2 | 112.11 (7) | C8—C7—H71 | 110.0 |
C4—C3—C2 | 107.96 (7) | N1—C7—H72 | 110.0 |
O1—C3—H3 | 109.5 | C8—C7—H72 | 110.0 |
C4—C3—H3 | 109.5 | H71—C7—H72 | 108.4 |
C2—C3—H3 | 109.5 | C4—C8—C7 | 108.93 (7) |
C3—C4—C8 | 109.21 (7) | C4—C8—H82 | 109.9 |
C3—C4—C5 | 108.12 (7) | C7—C8—H82 | 109.9 |
C8—C4—C5 | 108.49 (8) | C4—C8—H81 | 109.9 |
C3—C4—H4 | 110.3 | C7—C8—H81 | 109.9 |
C8—C4—H4 | 110.3 | H82—C8—H81 | 108.3 |
C5—C4—H4 | 110.3 | ||
C7—N1—C2—C3 | −50.50 (9) | C8—C4—C5—C6 | −48.56 (9) |
C6—N1—C2—C3 | 70.45 (9) | C7—N1—C6—C5 | 71.20 (8) |
N1—C2—C3—O1 | 102.96 (9) | C2—N1—C6—C5 | −50.27 (9) |
N1—C2—C3—C4 | −16.03 (9) | C4—C5—C6—N1 | −16.88 (9) |
O1—C3—C4—C8 | −53.44 (9) | C2—N1—C7—C8 | 69.13 (9) |
C2—C3—C4—C8 | 68.06 (9) | C6—N1—C7—C8 | −51.82 (9) |
O1—C3—C4—C5 | −171.30 (7) | C3—C4—C8—C7 | −49.82 (9) |
C2—C3—C4—C5 | −49.80 (9) | C5—C4—C8—C7 | 67.81 (9) |
C3—C4—C5—C6 | 69.77 (9) | N1—C7—C8—C4 | −15.62 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl | 0.93 | 2.14 | 3.060 (2) | 171 |
O1—H11···Cli | 0.84 | 2.24 | 3.079 (2) | 173 |
Symmetry code: (i) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C7H14NO+·Cl− |
Mr | 163.64 |
Crystal system, space group | Tetragonal, P41 |
Temperature (K) | 100 |
a, c (Å) | 6.655 (3), 18.145 (9) |
V (Å3) | 803.6 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.41 |
Crystal size (mm) | 0.50 × 0.34 × 0.08 |
Data collection | |
Diffractometer | Kuma KM-4-CCD κ-geometry diffractometer |
Absorption correction | Analytical (CrysAlis RED; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.86, 0.97 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11241, 3310, 3128 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.841 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.063, 1.00 |
No. of reflections | 3310 |
No. of parameters | 92 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.36, −0.20 |
Absolute structure | Flack (1983), 1261 Friedel pairs |
Absolute structure parameter | −0.01 (3) |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl | 0.93 | 2.14 | 3.060 (2) | 171.4 |
O1—H11···Cli | 0.84 | 2.24 | 3.079 (2) | 173.2 |
Symmetry code: (i) x−1, y, z. |
References
Bosak, A., Primožič, I., Oršulić, M., Tomić, S. & Simeon-Rudolf, V. (2005). Croat. Chem. Acta, 78, 121–128. CAS Google Scholar
Carroll, F. I., Abraham, P., Gaetano, K., Mascarella, S. W., Wohl, R. A., Lind, J. & Petzoldt, K. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 3017–3026. CSD CrossRef Web of Science Google Scholar
Erman, L. Ya., Mindrul, V. F., Mikhaleva, I. L., Pankov, D. I. & Kurochkin, V. K. (1994). Zh. Strukt. Khim. 35, 161–163. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Frackenpohl, J. & Hoffmann, H. M. R. (2000). J. Org. Chem. 65, 3982–3996. Web of Science CSD CrossRef PubMed CAS Google Scholar
Lis, T., Głowiak, T. & Jeżowska-Trzebiatowska, B. (1975). Bull. Pol. Acad. Sci. Chem. 23, 739–743. CAS Google Scholar
Lis, T. & Jeżowska-Trzebiatowska, B. (1976). Acta Cryst. B32, 867–869. CrossRef CAS IUCr Journals Web of Science Google Scholar
Morrow, J. C. (1962). Acta Cryst. 15, 851–855. CrossRef CAS IUCr Journals Web of Science Google Scholar
Noddack, V. I. & Noddack, W. (1933). Z. Anorg. Allg. Chem. 215, 129–184. CAS Google Scholar
Oxford Diffraction (2007). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Poland, Wrocław, Poland. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sterling, G. H., Doukas, P. H., Sheldon, R. J. & O'Neill, J. J. (1988). Biochem. Pharmacol. 37, 379–384. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Since the first synthesis of potassium µ-oxo-bis[pentachlororhenate(IV)] (Noddack & Noddack, 1933) numerous efforts have been undertaken to quantitatively describe its structure. To the present day only one structure of [Re2OCl10]4- with potassium cations and one of its oxidized form, [Re2OCl10]3-, with caesium cations have been successfully determined by X-Ray crystallography (Morrow, 1962; Lis & Jeżowska-Trzebiatowska, 1976; Lis et al., 1975;). Our structural studies on [Re2OCl10]4- and [Re2OCl10]3- have shown that the appropriate choice of cation is crucial to obtain good structural parameters for the anion unit. The most suitable properties of the cation are low symmetry, chirality and the ability to form hydrogen bonds. All these requirements are fulfilled by (R)-(–)-3-hydroxyquinuclidinium cation. Quinuclidinium derivatives have been of interest due to their biological activity, especially as a acetylcholinesterase inhibitor (Bosak et al., 2005). It was also proven that quinuclidinium salts protected rats against the toxicity of soman and tabun (Sterling et al., 1988). Aside from the present study, the only other known structure of (R)-(–)-3-hydroxyquinuclidinium was with (R,R)-tartrate anion (Erman et al., 1994).
The asymmetric unit of the crystal (Fig. 1) consists of a (R)-(–)-3-hydroxyquinuclidinium cation and a chloride anion. The quinuclidine moiety has almost exact threefold symmetry about N1–C4, and the two subunits (N1, C2, C6, C7 and C4, C3, C5, C8) are twisted about this axis. The deformation of quinuclidinium cation is reflected in the values of the N1—C2—C3—C4, N1—C6—C5—C4, N1—C7—C8—C4 torsion angles, which are -16.0 (1)° -16.9 (1)° -15.6 (1)°, respectively. Similar rotation has also been observed, but with slightly smaller angles, in 3-hydroxyquinuclidinium tartrate (Erman et al., 1994). The bond lengths of the cation are all normal and are in good agreement with quinuclidinium derivatives (Carroll et al., 1991; Erman et al., 1994; Frackenpohl & Hoffmann, 2000). The anion is surrounded by six symmetry-related cations that act as hydrogen bond acceptors for O—H and N—H groups. The hydrogen bonds link cations and anions into infinite chains running in the a and b axis directions (Figs. 2,3).