organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Substitutional disorder in the substituted nixantphos ligand C39H32Br0.27Cl0.73NOP2

aSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: bala@ukzn.ac.za

(Received 12 March 2008; accepted 21 March 2008; online 2 April 2008)

The structure of 10-(3-bromo/chloro­prop­yl)-4,6-bis­(diphenyl­phosphino)-10H-phenoxazine, C39H32Br0.27Cl0.73NOP2, shows chloro/bromo substitutional disorder in a 3:1 ratio. For application as a ligand in catalysis, the intra­molecular P⋯P distance of 4.263 (2) Å is relevant. The phenoxazine ring system is essentially planar.

Related literature

For related literature see: Osiński et al. (2005[Osiński, P. W., Schürmann, M., Preut, H., Haag, R. & Eilbracht, P. (2005). Acta Cryst. E61, o3115-o3116.]); Ricken et al. (2006a[Ricken, S., Osinski, P. W., Schürmann, M., Preut, H. & Eilbracht, P. (2006a). Acta Cryst. E62, o1807-o1808.],b[Ricken, S., Schürmann, M., Preut, H. & Eilbracht, P. (2006b). Acta Cryst. E62, o2637-o2638.]); (Marimuthu et al., 2008[Marimuthu, T., Bala, M. D. & Friedrich, H. B. (2008). Acta Cryst. E64, o711.]); Deprele & Montchamp (2004[Deprele, S. & Montchamp, J.-L. (2004). Org. Lett. 6, 3805-3808.]); Laungani et al. (2008[Laungani, A. C., Keller, M. & Breit, B. (2008). Acta Cryst. E64, m24-m25.]); van Leeuwen et al. (2002[Leeuwen, P. W. N. M. van, Sandee, A. J., Reek, J. N. H. & Kamer, P. C. J. (2002). J. Mol. Catal. A Chem. 182-183, 107-123.]); Norman et al. (2000[Norman, N. C., Orpen, A. G., Quayle, M. J. & Robins, E. G. (2000). Acta Cryst. C56, 50-52.]); Ricken et al. (2006[Ricken, S., Osiński, P. W., Eilbracht, P. & Haag, R. (2006). J. Mol. Catal. A Chem. 257, 78-88.]); Rotar et al. (2008[Rotar, A., Varga, R. A. & Silvestru, C. (2008). Acta Cryst. E64, m45.]); Sandee et al. (1999[Sandee, A. J., van der Veen, L. A., Reek, J. N. H., Kamer, P. C. J., Lutz, M., Spek, A. L. & van Leeuwen, P. W. N. M. (1999). Angew. Chem. Int. Ed. 38, 3231-3235.], 2001[Sandee, A. J., Reek, J. N. H., Kamer, P. C. J. & van Leeuwen, P. W. N. M. (2001). J. Am. Chem. Soc. 123, 8468-8476.]); Web et al. (2005[Web, P. B., Kunene, T. E. & Cole-Hamilton, D. J. (2005). Green Chem. 7, 373-379.]).

[Scheme 1]

Experimental

Crystal data
  • C39H32Br0.27Cl0.73NOP2

  • Mr = 639.83

  • Triclinic, [P \overline 1]

  • a = 10.0539 (3) Å

  • b = 11.4469 (3) Å

  • c = 14.5299 (3) Å

  • α = 69.544 (1)°

  • β = 83.283 (2)°

  • γ = 81.453 (1)°

  • V = 1545.52 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 173 (2) K

  • 0.42 × 0.19 × 0.17 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: integration (XPREP; Bruker, 2005[Bruker (2005). APEX2 and SAINT-NT (includes XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.792, Tmax = 0.908

  • 24195 measured reflections

  • 7458 independent reflections

  • 5180 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.097

  • S = 0.94

  • 7458 reflections

  • 401 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT-NT (includes XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT-NT (includes XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our ongoing investigation of scorpionate-type ligands (Marimuthu et al., 2008) the title ligand, a diphenylphosphine xanthene based compound, (I) has been prepared in our laboratory. The synthesis strategy involved the addition of an alkyl chain to the amine to form a tridentate ligand. Unlike other scorpionate ligands, (I) has a mixed donor arrangement consisting of N, O & P and it has been used as a precursor in the synthesis of modified nixantphos ligands for continuous flow homogenous hydroformylation of alkenes using supercritical fluids (Web et al., 2005). The functionalization of the nitrogen has been reported in the literature, where the subsequent compounds were successfully immobilized on silica (Sandee et al., 1999, 2001; van Leeuwen et al., 2002), polystyrene (Deprele & Montchamp, 2004) and dendritic supports (Ricken et al., 2006).

The structure of (I) contains chloro- and bromo- substituted alkyl chains in 3:1 ratio (Fig. 1) with an essentially planar phenoxazine ring [with maximum deviation of 0.113 (3) Å for O1] joining the two diphenylphosphino groups. The intramolecular P—P distance of 4.263 (2) Å in (I) compares well to 4.255 (2) Å reported for the precursor nixantphos (Marimuthu et al., 2008). The bond lengths for C—O range from 1.380 (2) to 1.384 (2) and for C—N from 1.398 (2) to 1.402 (2) Å. The bond angles involving the P atoms range from 100.52 (7) to 102.11 (8)°.

The substitutional disorder observed in the halide site of (I) was modelled as 3:1 Cl to Br. The source of the disorder is the sodium hydride induced alkylation using 1-bromo-3-chloropropane adapted for this work. The ligand 1-bromo-3-chloropropane is symmetrical with a chloride and a bromide functionality on either side of a propyl chain, hence a competitive substitution reaction between the two leaving groups. The model of the disordered halide site is in agreement with Br as the more basic and better leaving group than Cl. Other cases of halide substitutional disorder have been reported in the literature (Norman et al., 2000; Laungani et al., 2008; Rotar et al., 2008) and it is interesting to note that all contain only Cl/Br disorder in the 3:1 ratio.

Related literature top

For related literature see: Osiński et al. (2005); Ricken et al. (2006a,b); (Marimuthu et al., 2008).

For related literature, see: Deprele & Montchamp (2004); Laungani et al. (2008); Leeuwen et al. (2002); Norman et al. (2000); Ricken et al. (2006); Rotar et al. (2008); Sandee et al. (1999, 2001); Web et al. (2005).

Experimental top

Synthesis adapted from literature (Web et al., 2005). Yield: 74% of colourless crystals of (I) grown from a solution of dichloromethane/ethanol (1:1) at room temperature, m.p. 493 K (dec.).

Refinement top

All hydrogen atoms were located from a difference map then positioned geometrically and allowed to ride on their respective parent atoms (C—H = 0.95 - 0.99 Å) with Uiso(H) = 1.2 Ueq(C) for aryl H or 1.5 Ueq(C) for CH2. The structure contains substitutional disorder in which Cl1 and Br1 occupy the same position. These were refined with C—Cl and C—Br distances restrained to 1.78 and 1.93 Å and final occupancies for Cl1 and Br1 were 0.734 (2) and 0.266 (2), respectively.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with thermal ellipsoids shown at 50% probability levels.
10-(3-bromo/chloropropyl)-4,6-bis(diphenylphosphino)-10H-phenoxazine top
Crystal data top
C39H32Br0.27Cl0.73NOP2Z = 2
Mr = 639.83F(000) = 665.6
Triclinic, P1Dx = 1.375 Mg m3
Hall symbol: -P 1Melting point: 493(2) K
a = 10.0539 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.4469 (3) ÅCell parameters from 6264 reflections
c = 14.5299 (3) Åθ = 2.5–28.2°
α = 69.544 (1)°µ = 0.58 mm1
β = 83.283 (2)°T = 173 K
γ = 81.453 (1)°Prism, colourless
V = 1545.52 (7) Å30.42 × 0.19 × 0.17 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7458 independent reflections
Radiation source: fine-focus sealed tube5180 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ϕ and ω scansθmax = 28.0°, θmin = 1.5°
Absorption correction: integration
(XPREP; Bruker, 2005)
h = 1312
Tmin = 0.792, Tmax = 0.908k = 1515
24195 measured reflectionsl = 1719
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0499P)2]
where P = (Fo2 + 2Fc2)/3
7458 reflections(Δ/σ)max = 0.006
401 parametersΔρmax = 0.36 e Å3
2 restraintsΔρmin = 0.28 e Å3
Crystal data top
C39H32Br0.27Cl0.73NOP2γ = 81.453 (1)°
Mr = 639.83V = 1545.52 (7) Å3
Triclinic, P1Z = 2
a = 10.0539 (3) ÅMo Kα radiation
b = 11.4469 (3) ŵ = 0.58 mm1
c = 14.5299 (3) ÅT = 173 K
α = 69.544 (1)°0.42 × 0.19 × 0.17 mm
β = 83.283 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7458 independent reflections
Absorption correction: integration
(XPREP; Bruker, 2005)
5180 reflections with I > 2σ(I)
Tmin = 0.792, Tmax = 0.908Rint = 0.051
24195 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0412 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 0.94Δρmax = 0.36 e Å3
7458 reflectionsΔρmin = 0.28 e Å3
401 parameters
Special details top

Experimental. Spectroscopic analysis: 1H NMR (400 MHz,CDCl3, δ, p.p.m.) = 2.13(m, 2H; CH), 2.16(m, 2H; CH), 3.52(m, 2H; CH), 3.69(m, 2H; CH), 6.0(d, 2H; J(H,H) = 7.5 Hz,), 6.34(bd, 2H; J(H,H) = 7.5 Hz,), 6.65(t, 2H J(H,H) = 7.8 Hz), 7.18 – 7.21(bs, 20H); 13C NMR (400 MHz, CDCl3, δ, p.p.m.); = 27.5(ClCH2), 30.8(BrCH2), 41.8(NCH2), 42.6(NCH2), 42.6(NCH2), 111.6(CH), 123.7(CH), 125.5 (C), 128.1(CH), 132.8(CN), 133.8(C),136.8(C),147.0(CO) 31P NMR (600 MHz,CDCl3, δ, p.p.m.) = -19.0; FTIR: cm-1 = 1552(s), 1462(s), 1433(s), 1418(s), 1380(s), 1274(s CN), 1257(m),1206(m), 1092(m), 765(m), 747(m), 722(m), 697(s).516(s), 496(s), 433(s), 400(s); Calculated for C39H32Br0.27Cl0.73NOP2: C=72.03; H= 4.96; N= 2.15; Found C=71.55; H= 4.95; N= 2.26.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.12106 (16)0.58921 (15)0.41860 (12)0.0285 (4)
C20.06839 (17)0.70497 (16)0.42572 (13)0.0337 (4)
H20.08520.72550.48090.040*
C30.00868 (18)0.79126 (17)0.35303 (13)0.0360 (4)
H30.04660.86900.36010.043*
C40.03072 (17)0.76542 (16)0.27087 (13)0.0326 (4)
H40.08190.82610.22100.039*
C50.02184 (16)0.65037 (15)0.26046 (12)0.0275 (4)
C60.09436 (16)0.56450 (15)0.33551 (12)0.0285 (4)
C70.22129 (16)0.36362 (15)0.39245 (11)0.0278 (4)
C80.26881 (17)0.25469 (15)0.37271 (12)0.0283 (4)
C90.35333 (18)0.16430 (16)0.43904 (12)0.0349 (4)
H90.38630.08750.42850.042*
C100.38889 (19)0.18641 (17)0.51980 (13)0.0376 (4)
H100.44710.12490.56420.045*
C110.34067 (17)0.29726 (16)0.53695 (12)0.0322 (4)
H110.36770.31190.59210.039*
C120.25368 (16)0.38670 (15)0.47466 (12)0.0284 (4)
C130.22292 (18)0.52225 (17)0.57888 (12)0.0348 (4)
H13A0.24340.44140.63230.042*
H13B0.14110.56770.60120.042*
C140.33988 (17)0.59931 (17)0.56022 (12)0.0348 (4)
H14A0.41630.56290.52550.042*
H14B0.31240.68600.51680.042*
C150.38590 (18)0.60363 (13)0.65430 (13)0.0417 (5)
H15A0.30610.61820.69750.050*
H15B0.43990.67460.63850.050*
C210.10597 (16)0.74294 (16)0.08074 (12)0.0288 (4)
C220.24546 (18)0.75239 (18)0.09281 (14)0.0403 (4)
H220.28780.68620.14120.048*
C230.32390 (19)0.8556 (2)0.03611 (15)0.0451 (5)
H230.41930.86040.04670.054*
C240.26619 (19)0.95128 (18)0.03519 (13)0.0409 (5)
H240.32071.02220.07460.049*
C250.1281 (2)0.9435 (2)0.04912 (14)0.0481 (5)
H250.08671.00910.09880.058*
C260.04918 (19)0.84080 (18)0.00873 (13)0.0420 (5)
H260.04620.83740.00120.050*
C310.15173 (17)0.60609 (16)0.08889 (12)0.0327 (4)
C320.24948 (19)0.6776 (2)0.09138 (15)0.0489 (5)
H320.23730.72330.13570.059*
C330.3658 (2)0.6825 (2)0.02890 (18)0.0614 (6)
H330.43280.73180.03070.074*
C340.3846 (2)0.6171 (2)0.03508 (16)0.0588 (6)
H340.46410.62180.07800.071*
C350.2896 (2)0.5453 (2)0.03736 (16)0.0567 (6)
H350.30260.49970.08180.068*
C360.1751 (2)0.53893 (18)0.02441 (14)0.0433 (5)
H360.11020.48730.02310.052*
C410.32148 (18)0.09367 (15)0.26043 (11)0.0299 (4)
C420.45411 (19)0.09954 (17)0.22056 (13)0.0374 (4)
H420.48970.17790.19720.045*
C430.53459 (19)0.00586 (19)0.21437 (14)0.0418 (5)
H430.62510.00000.18740.050*
C440.48400 (19)0.12036 (17)0.24733 (13)0.0380 (4)
H440.53920.19320.24250.046*
C450.35297 (19)0.12821 (17)0.28719 (12)0.0370 (4)
H450.31780.20680.31020.044*
C460.27231 (18)0.02186 (15)0.29384 (12)0.0318 (4)
H460.18220.02820.32160.038*
C510.05273 (18)0.19766 (15)0.29170 (13)0.0322 (4)
C520.0264 (2)0.21254 (18)0.21515 (14)0.0445 (5)
H520.00750.25030.14910.053*
C530.1533 (2)0.1735 (2)0.23338 (17)0.0534 (6)
H530.20460.18210.18000.064*
C540.2052 (2)0.12224 (19)0.32848 (17)0.0494 (5)
H540.29220.09460.34110.059*
C550.13087 (19)0.11098 (18)0.40537 (15)0.0423 (5)
H550.16780.07820.47130.051*
C560.00240 (18)0.14728 (16)0.38703 (13)0.0347 (4)
H560.04880.13750.44070.042*
N10.19570 (15)0.49747 (13)0.49120 (10)0.0332 (3)
O10.13571 (13)0.44822 (11)0.32597 (9)0.0371 (3)
P10.01140 (4)0.60026 (4)0.15924 (3)0.02944 (12)
P20.22335 (5)0.24299 (4)0.25806 (3)0.03152 (12)
Cl10.4842 (12)0.4617 (8)0.7179 (10)0.0488 (6)0.7338 (16)
Br10.4972 (14)0.4545 (9)0.7259 (12)0.0488 (6)0.2662 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0291 (9)0.0290 (9)0.0308 (9)0.0055 (7)0.0015 (7)0.0135 (7)
C20.0349 (10)0.0347 (10)0.0387 (10)0.0040 (8)0.0022 (8)0.0215 (8)
C30.0360 (10)0.0317 (10)0.0461 (11)0.0001 (8)0.0033 (8)0.0218 (8)
C40.0333 (9)0.0284 (9)0.0370 (9)0.0020 (8)0.0033 (7)0.0125 (8)
C50.0294 (9)0.0250 (9)0.0293 (8)0.0063 (7)0.0010 (7)0.0096 (7)
C60.0309 (9)0.0251 (9)0.0332 (9)0.0056 (7)0.0009 (7)0.0139 (7)
C70.0318 (9)0.0251 (9)0.0271 (8)0.0061 (7)0.0048 (7)0.0076 (7)
C80.0349 (9)0.0243 (9)0.0277 (8)0.0056 (7)0.0045 (7)0.0097 (7)
C90.0475 (11)0.0240 (9)0.0343 (9)0.0010 (8)0.0101 (8)0.0102 (7)
C100.0457 (11)0.0325 (10)0.0342 (10)0.0007 (8)0.0143 (8)0.0089 (8)
C110.0397 (10)0.0321 (10)0.0277 (9)0.0049 (8)0.0082 (7)0.0116 (7)
C120.0328 (9)0.0281 (9)0.0274 (8)0.0082 (7)0.0016 (7)0.0115 (7)
C130.0417 (10)0.0361 (10)0.0306 (9)0.0086 (8)0.0008 (8)0.0151 (8)
C140.0375 (10)0.0350 (10)0.0325 (9)0.0063 (8)0.0014 (8)0.0117 (8)
C150.0490 (12)0.0382 (11)0.0431 (11)0.0037 (9)0.0135 (9)0.0175 (9)
C210.0313 (9)0.0306 (9)0.0284 (9)0.0019 (7)0.0044 (7)0.0146 (7)
C220.0340 (10)0.0389 (11)0.0462 (11)0.0041 (9)0.0019 (8)0.0125 (9)
C230.0313 (10)0.0525 (13)0.0550 (12)0.0018 (9)0.0081 (9)0.0236 (10)
C240.0470 (12)0.0409 (11)0.0354 (10)0.0077 (9)0.0160 (9)0.0148 (9)
C250.0473 (12)0.0459 (12)0.0393 (11)0.0031 (10)0.0063 (9)0.0004 (9)
C260.0334 (10)0.0459 (12)0.0394 (10)0.0040 (9)0.0043 (8)0.0050 (9)
C310.0317 (9)0.0314 (10)0.0314 (9)0.0029 (8)0.0066 (7)0.0073 (8)
C320.0375 (11)0.0573 (14)0.0555 (13)0.0081 (10)0.0035 (9)0.0223 (11)
C330.0393 (12)0.0654 (16)0.0711 (16)0.0138 (11)0.0013 (11)0.0104 (13)
C340.0501 (14)0.0506 (14)0.0515 (13)0.0140 (11)0.0096 (10)0.0004 (11)
C350.0631 (15)0.0510 (14)0.0477 (13)0.0068 (12)0.0093 (11)0.0159 (11)
C360.0486 (12)0.0397 (11)0.0410 (11)0.0024 (9)0.0024 (9)0.0164 (9)
C410.0419 (10)0.0256 (9)0.0243 (8)0.0011 (8)0.0082 (7)0.0104 (7)
C420.0447 (11)0.0349 (10)0.0362 (10)0.0095 (9)0.0031 (8)0.0145 (8)
C430.0369 (10)0.0507 (13)0.0406 (11)0.0016 (9)0.0034 (8)0.0201 (9)
C440.0480 (11)0.0346 (10)0.0310 (9)0.0104 (9)0.0113 (8)0.0140 (8)
C450.0548 (12)0.0267 (9)0.0287 (9)0.0029 (9)0.0051 (8)0.0082 (7)
C460.0409 (10)0.0268 (9)0.0278 (9)0.0024 (8)0.0019 (7)0.0100 (7)
C510.0421 (10)0.0230 (9)0.0366 (10)0.0056 (8)0.0128 (8)0.0169 (7)
C520.0585 (13)0.0376 (11)0.0401 (11)0.0005 (10)0.0214 (9)0.0132 (9)
C530.0552 (13)0.0475 (13)0.0629 (14)0.0005 (11)0.0333 (11)0.0189 (11)
C540.0403 (11)0.0394 (12)0.0740 (15)0.0032 (9)0.0180 (11)0.0245 (11)
C550.0416 (11)0.0380 (11)0.0513 (12)0.0013 (9)0.0038 (9)0.0222 (9)
C560.0386 (10)0.0333 (10)0.0382 (10)0.0034 (8)0.0103 (8)0.0201 (8)
N10.0436 (9)0.0305 (8)0.0312 (8)0.0019 (7)0.0088 (7)0.0167 (6)
O10.0524 (8)0.0265 (6)0.0376 (7)0.0075 (6)0.0200 (6)0.0169 (5)
P10.0326 (2)0.0276 (2)0.0302 (2)0.00380 (19)0.00480 (18)0.01137 (19)
P20.0463 (3)0.0230 (2)0.0269 (2)0.0012 (2)0.0079 (2)0.00993 (18)
Cl10.0433 (17)0.0434 (7)0.0459 (17)0.0032 (4)0.0128 (10)0.0046 (7)
Br10.0433 (17)0.0434 (7)0.0459 (17)0.0032 (4)0.0128 (10)0.0046 (7)
Geometric parameters (Å, º) top
C1—C21.386 (2)C24—C251.373 (3)
C1—C61.395 (2)C24—H240.9500
C1—N11.398 (2)C25—C261.380 (3)
C2—C31.388 (2)C25—H250.9500
C2—H20.9500C26—H260.9500
C3—C41.375 (2)C31—C321.380 (3)
C3—H30.9500C31—C361.386 (3)
C4—C51.396 (2)C31—P11.8253 (18)
C4—H40.9500C32—C331.389 (3)
C5—C61.382 (2)C32—H320.9500
C5—P11.8345 (16)C33—C341.365 (3)
C6—O11.3837 (19)C33—H330.9500
C7—O11.3799 (19)C34—C351.360 (3)
C7—C81.381 (2)C34—H340.9500
C7—C121.393 (2)C35—C361.368 (3)
C8—C91.398 (2)C35—H350.9500
C8—P21.8313 (16)C36—H360.9500
C9—C101.379 (2)C41—C461.385 (2)
C9—H90.9500C41—C421.392 (2)
C10—C111.385 (2)C41—P21.8335 (17)
C10—H100.9500C42—C431.374 (3)
C11—C121.380 (2)C42—H420.9500
C11—H110.9500C43—C441.381 (3)
C12—N11.402 (2)C43—H430.9500
C13—N11.461 (2)C44—C451.378 (3)
C13—C141.517 (2)C44—H440.9500
C13—H13A0.9900C45—C461.385 (2)
C13—H13B0.9900C45—H450.9500
C14—C151.512 (2)C46—H460.9500
C14—H14A0.9900C51—C561.384 (2)
C14—H14B0.9900C51—C521.390 (2)
C15—Cl11.7770 (18)C51—P21.8281 (18)
C15—Br11.9266 (19)C52—C531.380 (3)
C15—H15A0.9900C52—H520.9500
C15—H15B0.9900C53—C541.372 (3)
C21—C261.381 (2)C53—H530.9500
C21—C221.386 (2)C54—C551.374 (3)
C21—P11.8338 (17)C54—H540.9500
C22—C231.375 (3)C55—C561.383 (2)
C22—H220.9500C55—H550.9500
C23—C241.365 (3)C56—H560.9500
C23—H230.9500
C2—C1—C6117.26 (15)C24—C25—H25119.8
C2—C1—N1122.98 (15)C26—C25—H25119.8
C6—C1—N1119.74 (15)C25—C26—C21121.39 (18)
C1—C2—C3120.70 (16)C25—C26—H26119.3
C1—C2—H2119.7C21—C26—H26119.3
C3—C2—H2119.7C32—C31—C36118.05 (18)
C4—C3—C2120.72 (17)C32—C31—P1124.77 (15)
C4—C3—H3119.6C36—C31—P1117.08 (14)
C2—C3—H3119.6C31—C32—C33119.9 (2)
C3—C4—C5120.29 (17)C31—C32—H32120.1
C3—C4—H4119.9C33—C32—H32120.1
C5—C4—H4119.9C34—C33—C32120.7 (2)
C6—C5—C4117.78 (15)C34—C33—H33119.7
C6—C5—P1117.69 (12)C32—C33—H33119.7
C4—C5—P1124.31 (13)C35—C34—C33119.9 (2)
C5—C6—O1115.95 (14)C35—C34—H34120.0
C5—C6—C1123.20 (15)C33—C34—H34120.0
O1—C6—C1120.80 (15)C34—C35—C36119.9 (2)
O1—C7—C8115.32 (14)C34—C35—H35120.0
O1—C7—C12121.59 (15)C36—C35—H35120.0
C8—C7—C12123.07 (15)C35—C36—C31121.5 (2)
C7—C8—C9117.72 (15)C35—C36—H36119.2
C7—C8—P2117.39 (12)C31—C36—H36119.2
C9—C8—P2124.82 (13)C46—C41—C42118.10 (16)
C10—C9—C8120.13 (16)C46—C41—P2125.35 (14)
C10—C9—H9119.9C42—C41—P2116.47 (13)
C8—C9—H9119.9C43—C42—C41121.27 (17)
C9—C10—C11120.73 (17)C43—C42—H42119.4
C9—C10—H10119.6C41—C42—H42119.4
C11—C10—H10119.6C42—C43—C44120.04 (18)
C12—C11—C10120.61 (15)C42—C43—H43120.0
C12—C11—H11119.7C44—C43—H43120.0
C10—C11—H11119.7C45—C44—C43119.59 (17)
C11—C12—C7117.69 (16)C45—C44—H44120.2
C11—C12—N1123.19 (14)C43—C44—H44120.2
C7—C12—N1119.11 (15)C44—C45—C46120.22 (17)
N1—C13—C14112.39 (14)C44—C45—H45119.9
N1—C13—H13A109.1C46—C45—H45119.9
C14—C13—H13A109.1C41—C46—C45120.78 (17)
N1—C13—H13B109.1C41—C46—H46119.6
C14—C13—H13B109.1C45—C46—H46119.6
H13A—C13—H13B107.9C56—C51—C52117.67 (17)
C15—C14—C13112.46 (15)C56—C51—P2125.18 (13)
C15—C14—H14A109.1C52—C51—P2117.13 (14)
C13—C14—H14A109.1C53—C52—C51121.25 (19)
C15—C14—H14B109.1C53—C52—H52119.4
C13—C14—H14B109.1C51—C52—H52119.4
H14A—C14—H14B107.8C54—C53—C52120.04 (18)
C14—C15—Cl1111.5 (5)C54—C53—H53120.0
C14—C15—Br1114.0 (6)C52—C53—H53120.0
C14—C15—H15A109.3C53—C54—C55119.73 (19)
Cl1—C15—H15A109.3C53—C54—H54120.1
Br1—C15—H15A109.2C55—C54—H54120.1
C14—C15—H15B109.3C54—C55—C56120.16 (19)
Cl1—C15—H15B109.3C54—C55—H55119.9
Br1—C15—H15B106.8C56—C55—H55119.9
H15A—C15—H15B108.0C55—C56—C51121.07 (17)
C26—C21—C22117.21 (17)C55—C56—H56119.5
C26—C21—P1125.12 (13)C51—C56—H56119.5
C22—C21—P1117.65 (13)C1—N1—C12119.14 (13)
C23—C22—C21121.32 (17)C1—N1—C13120.04 (14)
C23—C22—H22119.3C12—N1—C13120.59 (14)
C21—C22—H22119.3C7—O1—C6118.58 (12)
C24—C23—C22120.74 (18)C31—P1—C21100.52 (7)
C24—C23—H23119.6C31—P1—C5102.11 (8)
C22—C23—H23119.6C21—P1—C5101.24 (7)
C23—C24—C25118.97 (18)C51—P2—C8102.00 (8)
C23—C24—H24120.5C51—P2—C41101.66 (8)
C25—C24—H24120.5C8—P2—C41100.58 (7)
C24—C25—C26120.35 (18)
C6—C1—C2—C30.6 (2)C43—C44—C45—C460.2 (3)
N1—C1—C2—C3177.93 (15)C42—C41—C46—C450.3 (2)
C1—C2—C3—C42.2 (3)P2—C41—C46—C45176.23 (13)
C2—C3—C4—C51.4 (3)C44—C45—C46—C410.2 (3)
C3—C4—C5—C60.7 (2)C56—C51—C52—C532.7 (3)
C3—C4—C5—P1175.10 (13)P2—C51—C52—C53175.83 (15)
C4—C5—C6—O1175.16 (14)C51—C52—C53—C541.9 (3)
P1—C5—C6—O10.4 (2)C52—C53—C54—C550.6 (3)
C4—C5—C6—C12.3 (2)C53—C54—C55—C562.2 (3)
P1—C5—C6—C1177.06 (13)C54—C55—C56—C511.3 (3)
C2—C1—C6—C51.6 (2)C52—C51—C56—C551.1 (3)
N1—C1—C6—C5179.76 (15)P2—C51—C56—C55177.33 (14)
C2—C1—C6—O1175.72 (15)C2—C1—N1—C12175.29 (15)
N1—C1—C6—O12.9 (2)C6—C1—N1—C126.2 (2)
O1—C7—C8—C9178.47 (14)C2—C1—N1—C130.9 (2)
C12—C7—C8—C90.0 (2)C6—C1—N1—C13179.40 (14)
O1—C7—C8—P24.6 (2)C11—C12—N1—C1172.78 (15)
C12—C7—C8—P2176.93 (12)C7—C12—N1—C18.2 (2)
C7—C8—C9—C101.3 (2)C11—C12—N1—C131.6 (2)
P2—C8—C9—C10175.33 (14)C7—C12—N1—C13177.40 (14)
C8—C9—C10—C110.7 (3)C14—C13—N1—C180.73 (19)
C9—C10—C11—C121.4 (3)C14—C13—N1—C1293.60 (19)
C10—C11—C12—C72.7 (2)C8—C7—O1—C6173.86 (14)
C10—C11—C12—N1176.35 (16)C12—C7—O1—C67.7 (2)
O1—C7—C12—C11179.65 (14)C5—C6—O1—C7172.70 (14)
C8—C7—C12—C112.0 (2)C1—C6—O1—C79.8 (2)
O1—C7—C12—N11.3 (2)C32—C31—P1—C2181.38 (17)
C8—C7—C12—N1177.05 (15)C36—C31—P1—C2194.87 (15)
N1—C13—C14—C15168.77 (14)C32—C31—P1—C522.66 (18)
C13—C14—C15—Cl177.1 (5)C36—C31—P1—C5161.09 (14)
C13—C14—C15—Br178.6 (6)C26—C21—P1—C3117.74 (17)
C26—C21—C22—C230.7 (3)C22—C21—P1—C31160.68 (14)
P1—C21—C22—C23179.23 (15)C26—C21—P1—C587.00 (16)
C21—C22—C23—C241.1 (3)C22—C21—P1—C594.58 (14)
C22—C23—C24—C250.5 (3)C6—C5—P1—C3176.01 (14)
C23—C24—C25—C260.5 (3)C4—C5—P1—C31109.61 (15)
C24—C25—C26—C210.9 (3)C6—C5—P1—C21179.49 (13)
C22—C21—C26—C250.3 (3)C4—C5—P1—C216.13 (16)
P1—C21—C26—C25178.11 (15)C56—C51—P2—C818.19 (16)
C36—C31—C32—C331.3 (3)C52—C51—P2—C8163.35 (14)
P1—C31—C32—C33174.94 (16)C56—C51—P2—C4185.44 (16)
C31—C32—C33—C340.1 (3)C52—C51—P2—C4193.02 (14)
C32—C33—C34—C350.6 (3)C7—C8—P2—C5180.83 (14)
C33—C34—C35—C360.1 (3)C9—C8—P2—C51102.50 (15)
C34—C35—C36—C311.2 (3)C7—C8—P2—C41174.69 (13)
C32—C31—C36—C351.8 (3)C9—C8—P2—C411.97 (16)
P1—C31—C36—C35174.67 (16)C46—C41—P2—C517.91 (16)
C46—C41—C42—C430.1 (3)C42—C41—P2—C51168.68 (13)
P2—C41—C42—C43176.90 (14)C46—C41—P2—C896.84 (15)
C41—C42—C43—C440.5 (3)C42—C41—P2—C886.57 (14)
C42—C43—C44—C450.6 (3)

Experimental details

Crystal data
Chemical formulaC39H32Br0.27Cl0.73NOP2
Mr639.83
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)10.0539 (3), 11.4469 (3), 14.5299 (3)
α, β, γ (°)69.544 (1), 83.283 (2), 81.453 (1)
V3)1545.52 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.42 × 0.19 × 0.17
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionIntegration
(XPREP; Bruker, 2005)
Tmin, Tmax0.792, 0.908
No. of measured, independent and
observed [I > 2σ(I)] reflections
24195, 7458, 5180
Rint0.051
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.097, 0.94
No. of reflections7458
No. of parameters401
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.28

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2003) and ORTEP-3 for Windows (Farrugia, 1997).

 

Acknowledgements

We thank Dr Manuel Fernandez for the data collection, SASOL, THRIP and the University of KwaZulu-Natal for financial support.

References

First citationBruker (2005). APEX2 and SAINT-NT (includes XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeprele, S. & Montchamp, J.-L. (2004). Org. Lett. 6, 3805–3808.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLaungani, A. C., Keller, M. & Breit, B. (2008). Acta Cryst. E64, m24–m25.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLeeuwen, P. W. N. M. van, Sandee, A. J., Reek, J. N. H. & Kamer, P. C. J. (2002). J. Mol. Catal. A Chem. 182–183, 107–123.  Web of Science CrossRef Google Scholar
First citationMarimuthu, T., Bala, M. D. & Friedrich, H. B. (2008). Acta Cryst. E64, o711.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorman, N. C., Orpen, A. G., Quayle, M. J. & Robins, E. G. (2000). Acta Cryst. C56, 50–52.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOsiński, P. W., Schürmann, M., Preut, H., Haag, R. & Eilbracht, P. (2005). Acta Cryst. E61, o3115–o3116.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRicken, S., Osiński, P. W., Eilbracht, P. & Haag, R. (2006). J. Mol. Catal. A Chem. 257, 78–88.  Web of Science CrossRef CAS Google Scholar
First citationRicken, S., Osinski, P. W., Schürmann, M., Preut, H. & Eilbracht, P. (2006a). Acta Cryst. E62, o1807–o1808.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRicken, S., Schürmann, M., Preut, H. & Eilbracht, P. (2006b). Acta Cryst. E62, o2637–o2638.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRotar, A., Varga, R. A. & Silvestru, C. (2008). Acta Cryst. E64, m45.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSandee, A. J., Reek, J. N. H., Kamer, P. C. J. & van Leeuwen, P. W. N. M. (2001). J. Am. Chem. Soc. 123, 8468–8476.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSandee, A. J., van der Veen, L. A., Reek, J. N. H., Kamer, P. C. J., Lutz, M., Spek, A. L. & van Leeuwen, P. W. N. M. (1999). Angew. Chem. Int. Ed. 38, 3231–3235.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeb, P. B., Kunene, T. E. & Cole-Hamilton, D. J. (2005). Green Chem. 7, 373–379.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds