organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Di­iodo-3,3′-di­meth­oxy­biphen­yl

aHEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and bMolecular Structure Center, Chemistry Department, Clemson University, Clemson, SC 29634-0973, USA
*Correspondence e-mail: raza_shahm@yahoo.com

(Received 5 April 2008; accepted 21 April 2008; online 26 April 2008)

The mol­ecules of the title compound, C14H12I2O2, lie on inversion centers and are linked by I⋯O inter­actions with inter­molecular distances of 3.324 (3) Å. The aromatic rings display no significant inter­calation or stacking inter­actions.

Related literature

For related literature see: Sakai & Matile (2003[Sakai, N. & Matile, S. (2003). Chem. Commun. pp. 2514-2523.]); Sakai et al. (1997[Sakai, N., Brennan, K. C., Weiss, L. A. & Matile, S. (1997). J. Am. Chem. Soc. 119, 8726-8727.]); Anelli et al. (2001[Anelli, P. L., Brocchetta, M., Maffezzoni, C., Paoli, P., Rossi, P., Ugger, F. & Visigalli, M. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1175-1181.]); Baumeister et al. (2001[Baumeister, B., Sakai, N. & Matile, S. (2001). Org. Lett. 3, 4229-4232.]); Fidzinski et al. (2003[Fidzinski, A., Knoll, R., Rosenthal, A., Schrey, A., Vescovi, U., Koert, M., Weiderholt, M. & Straub, O. (2003). Chem. Biol. 10, 35-43.]); Mullen & Wegner (1998[Mullen, K. & Wegner, G. (1998). Electronic Materials: The Oligomer Approach, pp. 210-225. Weinheim: Wiley-VCH.]); Schwab & Levin (1999[Schwab, P. F. H. & Levin, M. D. (1999). Chem. Rev. 99, 1863-1934.]); Sisson et al. (2006[Sisson, A. L., Shah, M. R., Bhosale, S. & Matile, S. (2006). Chem. Soc. Rev. 35, 1269-1286.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12I2O2

  • Mr = 466.04

  • Monoclinic, P 21 /n

  • a = 6.8616 (14) Å

  • b = 7.7386 (15) Å

  • c = 13.435 (3) Å

  • β = 102.43 (3)°

  • V = 696.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.50 mm−1

  • T = 153 (2) K

  • 0.36 × 0.26 × 0.24 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.241, Tmax = 0.337

  • 5295 measured reflections

  • 1417 independent reflections

  • 1381 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.062

  • S = 1.13

  • 1417 reflections

  • 84 parameters

  • H-atom parameters constrained

  • Δρmax = 1.08 e Å−3

  • Δρmin = −0.90 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: REQAB (Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) and CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Over the last 25 years, much attention has been focused on the synthesis of artificial ion channels due to their potential applications in biomedical and material sciences (Schwab & Levin, 1999; Mullen & Wegner, 1998; Fidzinski et al., 2003). The title compound has been used as a precursor for the synthesis of oligo(p-phenylene)s (Baumeister et al., 2001) and as a source of hydrophobicity and rigidity (Sakai et al., 1997; Sakai & Matile, 2003) in artificial ion channels. When a macrocycles like porphyrin is attached to the oligo(p-phenylene)s, the π-π stacking of porphyrin and the antiperiplanar arrangement of the oligo(p-phenylene)s should result in cylindrical self-assembly process and ultimately lead to the formation of functionalized pores (Sisson et al., 2006). Furthermore, iodinated biphenyl has a bright prospect as X-ray contrast media (Anelli et al., 2001).

In this paper, we report the sysnthesis and crystal structure of the title compound, (I). The molecules of (I) lie on crystallographic inversion centers. The I1—O1 intermolecular distance is 3.324 (3) Å which is significantly shorter than 3.50 Å, the sum of the van der Waals radii for I and O, supporting the idea that oxygen atom of methoxy disturbs the electronic cloud surrounding the iodide, hence creating polarization over iodide and subsequently causes reduction in the I1—O1 intermolecular distance. The crystal structures of three hexaiododerivatives of biphenyl have been reported (Anelli et al., (2001).

Related literature top

For related literature see: Sakai & Matile (2003); Sakai et al. (1997); Anelli et al. (2001); Baumeister et al. (2001); Fidzinski et al. (2003); Mullen & Wegner (1998); Schwab & Levin (1999); Sisson et al. (2006).

Experimental top

Fast Blue B salt (o-dianisidine bisdiazotated zinc double salt, 10.00 g, 21 mmol), was added to a solution of KI (28 g, 0.17 mmol) in water (200 ml). The mixture was stirred at room temperature for 14 h. After dilution with dichloromethane, the crude reaction mixture was concentrated in vacuo. Purification of the crude product on silica gel (dichloromethane:hexane 1:4) followed by evaporation of the solvent under in vacuo gave the pure desired product as a pale yellow solid in 70% yield. Single crystals suitable for X-ray crystallography were obtained by slow evaporation of a solution of pale yellow solid in ethanol at room temperature.

Refinement top

All H atoms were geometrically positioned and were allowed to ride on the corresponding C-atoms with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) of the attached C atom for methyl H atoms and 1.2Ueq(C) for other H atoms. The highest peak in the final difference Fourier map corresponding to a residual electron density of 1.08 e/Å3 was located at 1.2 Å from H5 and was deemed meaningless.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: REQAB (Jacobson, 1998) and CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A thermal ellipsoid plot of the title compound drawn at 50% probability level. The symmetry related atoms have been identified by the letter A in atomic labels.
[Figure 2] Fig. 2. Packing diagram of the structure viewed down the b axis. Hydrogen bonds have been indicated with dashed lines.
4,4'-diiodo-3,3'-dimethoxybiphenyl top
Crystal data top
C14H12I2O2F(000) = 436
Mr = 466.04Dx = 2.222 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2340 reflections
a = 6.8616 (14) Åθ = 3.0–26.4°
b = 7.7386 (15) ŵ = 4.51 mm1
c = 13.435 (3) ÅT = 153 K
β = 102.43 (3)°Chip, colorless
V = 696.7 (2) Å30.36 × 0.26 × 0.24 mm
Z = 2
Data collection top
Rigaku Mercury CCD
diffractometer
1417 independent reflections
Radiation source: Sealed Tube1381 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.039
Detector resolution: 14.6306 pixels mm-1θmax = 26.4°, θmin = 3.1°
ω scansh = 88
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 99
Tmin = 0.241, Tmax = 0.337l = 1611
5295 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0318P)2 + 1.081P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
1417 reflectionsΔρmax = 1.08 e Å3
84 parametersΔρmin = 0.90 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0437 (19)
Crystal data top
C14H12I2O2V = 696.7 (2) Å3
Mr = 466.04Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.8616 (14) ŵ = 4.51 mm1
b = 7.7386 (15) ÅT = 153 K
c = 13.435 (3) Å0.36 × 0.26 × 0.24 mm
β = 102.43 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
1417 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
1381 reflections with I > 2σ(I)
Tmin = 0.241, Tmax = 0.337Rint = 0.039
5295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 1.13Δρmax = 1.08 e Å3
1417 reflectionsΔρmin = 0.90 e Å3
84 parameters
Special details top

Experimental. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.28040 (3)0.14667 (2)0.340534 (14)0.01974 (14)
O10.5702 (3)0.3479 (3)0.22987 (17)0.0195 (5)
C10.5402 (4)0.2888 (3)0.3985 (2)0.0152 (5)
C20.6482 (4)0.3641 (3)0.3325 (2)0.0129 (6)
C30.8273 (4)0.4479 (4)0.3731 (2)0.0151 (5)
H30.90080.50050.32780.018*
C40.9026 (4)0.4569 (3)0.4787 (2)0.0139 (5)
C50.7896 (4)0.3821 (4)0.5427 (2)0.0183 (6)
H50.83660.38840.61530.022*
C60.6107 (4)0.2990 (4)0.5026 (2)0.0203 (6)
H60.53530.24830.54750.024*
C70.6900 (5)0.4047 (5)0.1613 (2)0.0230 (7)
H7A0.70720.52770.16680.035*
H7B0.62510.37520.09270.035*
H7C0.81800.34930.17830.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01475 (17)0.02317 (18)0.02110 (17)0.00579 (6)0.00339 (9)0.00124 (6)
O10.0194 (10)0.0253 (12)0.0136 (10)0.0088 (8)0.0029 (8)0.0017 (7)
C10.0090 (11)0.0127 (12)0.0230 (13)0.0005 (10)0.0019 (10)0.0010 (10)
C20.0140 (13)0.0108 (13)0.0137 (14)0.0005 (9)0.0024 (10)0.0009 (9)
C30.0156 (12)0.0141 (12)0.0161 (13)0.0002 (10)0.0042 (10)0.0009 (10)
C40.0119 (12)0.0111 (11)0.0180 (13)0.0021 (10)0.0019 (10)0.0018 (10)
C50.0143 (13)0.0267 (14)0.0121 (13)0.0008 (12)0.0014 (10)0.0032 (11)
C60.0148 (13)0.0258 (15)0.0200 (14)0.0004 (12)0.0028 (10)0.0021 (12)
C70.0239 (14)0.0306 (17)0.0145 (14)0.0100 (14)0.0038 (11)0.0008 (12)
Geometric parameters (Å, º) top
I1—C12.097 (3)C4—C51.401 (4)
O1—C21.373 (4)C4—C4i1.493 (5)
O1—C71.429 (4)C5—C61.388 (4)
C1—C61.380 (4)C5—H50.9600
C1—C21.399 (4)C6—H60.9600
C2—C31.392 (4)C7—H7A0.9599
C3—C41.404 (4)C7—H7B0.9599
C3—H30.9600C7—H7C0.9599
C2—O1—C7117.8 (2)C6—C5—C4120.8 (3)
C6—C1—C2120.0 (3)C6—C5—H5119.6
C6—C1—I1119.4 (2)C4—C5—H5119.6
C2—C1—I1120.5 (2)C1—C6—C5120.5 (3)
O1—C2—C3123.8 (3)C1—C6—H6119.7
O1—C2—C1117.0 (2)C5—C6—H6119.7
C3—C2—C1119.3 (3)O1—C7—H7A109.5
C2—C3—C4121.4 (3)O1—C7—H7B109.5
C2—C3—H3119.3H7A—C7—H7B109.5
C4—C3—H3119.3O1—C7—H7C109.5
C5—C4—C3117.9 (2)H7A—C7—H7C109.5
C5—C4—C4i121.2 (3)H7B—C7—H7C109.5
C3—C4—C4i120.9 (3)
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H12I2O2
Mr466.04
Crystal system, space groupMonoclinic, P21/n
Temperature (K)153
a, b, c (Å)6.8616 (14), 7.7386 (15), 13.435 (3)
β (°) 102.43 (3)
V3)696.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)4.51
Crystal size (mm)0.36 × 0.26 × 0.24
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.241, 0.337
No. of measured, independent and
observed [I > 2σ(I)] reflections
5295, 1417, 1381
Rint0.039
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.062, 1.13
No. of reflections1417
No. of parameters84
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.08, 0.90

Computer programs: , REQAB (Jacobson, 1998) and CrystalClear (Rigaku/MSC, 2006), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Higher Education Commission of Pakistan for financial support.

References

First citationAnelli, P. L., Brocchetta, M., Maffezzoni, C., Paoli, P., Rossi, P., Ugger, F. & Visigalli, M. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1175–1181.  Web of Science CSD CrossRef Google Scholar
First citationBaumeister, B., Sakai, N. & Matile, S. (2001). Org. Lett. 3, 4229–4232.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFidzinski, A., Knoll, R., Rosenthal, A., Schrey, A., Vescovi, U., Koert, M., Weiderholt, M. & Straub, O. (2003). Chem. Biol. 10, 35–43.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationMullen, K. & Wegner, G. (1998). Electronic Materials: The Oligomer Approach, pp. 210–225. Weinheim: Wiley–VCH.  Google Scholar
First citationRigaku/MSC (2006). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSakai, N., Brennan, K. C., Weiss, L. A. & Matile, S. (1997). J. Am. Chem. Soc. 119, 8726–8727.  CrossRef CAS Web of Science Google Scholar
First citationSakai, N. & Matile, S. (2003). Chem. Commun. pp. 2514–2523.  Web of Science CrossRef Google Scholar
First citationSchwab, P. F. H. & Levin, M. D. (1999). Chem. Rev. 99, 1863–1934.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSisson, A. L., Shah, M. R., Bhosale, S. & Matile, S. (2006). Chem. Soc. Rev. 35, 1269–1286.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds