organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(5-methyl-3-phenyl-1H-pyrazol-1-yl)methane

aMolecular Technology Unit Cell, Department of Chemistry, Walailak University, Thasala, Nakorn Si Thammarat 80161, Thailand, and bDepartment of Chemistry, Faculty of Science, University of Sheffield, Brook Hill, Sheffield S3 7HF, England
*Correspondence e-mail: hdavid@wu.ac.th

(Received 10 April 2008; accepted 18 April 2008; online 23 April 2008)

The first crystal structure of a second-generation tris­(pyrazol­yl)methane, namely the title compound, C31H28N6, is reported. The mol­ecule exhibits a helical conformation with an average twist of 35.1°. In addition, there are C—H⋯π inter­actions of 3.202 (2) Å between the pyrazole C—H group and neighbouring phenyl groups.

Related literature

For related literature, see: Astley et al. (1993[Astley, T., Gulbis, J. M., Hitchman, M. A. & Tiekink, E. R. T. (1993). J. Chem. Soc. Dalton Trans. pp. 509-515.]); Fujisawa et al. (2004[Fujisawa, K., Ono, T., Aoki, H., Ishikawa, Y., Miyashita, Y., Okamoto, K., Nakazawa, H. & Higashimura, H. (2004). Inorg. Chem. Commun. 7, 330-332.]); Goodman & Bateman (2001[Goodman, M. S. & Bateman, M. A. (2001). Tetrahedron Lett. 42, 5-7.]); Ochando et al. (1997[Ochando, L. E., Rius, J., Louër, D., Claramunt, R. M., Lopez, C., Elguero, J. & Amigó, J. M. (1997). Acta Cryst. B53, 939-944.]); Pettinari & Pettinari (2005[Pettinari, C. & Pettinari, R. (2005). Coord. Chem. Rev. 249, 525-543.]); Reger et al. (2000[Reger, D. L., Grattan, T. C., Brown, K. J., Little, C. A., Lamba, J. J. S., Rhiengold, A. L. & Sommer, R. D. (2000). J. Organomet. Chem. 607, 120-128.], 2002[Reger, D. L., Little, C. A., Smith, M. D. & Long, G. J. (2002). Inorg. Chem. 41, 4453-4460.]); Riche & Pascard-Billy (1974[Riche, C. & Pascard-Billy, C. (1974). Acta Cryst. B30, 1874-1876.]); Declercq & Van Meerssche (1984[Declercq, J.-P. & Van Meerssche, M. (1984). Acta Cryst. C40, 1098-1101.]).

[Scheme 1]

Experimental

Crystal data
  • C31H28N6

  • Mr = 484.59

  • Monoclinic, C c

  • a = 6.678 (3) Å

  • b = 21.730 (9) Å

  • c = 17.831 (7) Å

  • β = 94.922 (7)°

  • V = 2578.2 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 150 (2) K

  • 0.38 × 0.34 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.984

  • 9586 measured reflections

  • 2932 independent reflections

  • 2129 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.071

  • S = 0.98

  • 2932 reflections

  • 337 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Tris–(pyrazolyl)methanes (tpzmR,R'), neutral analogues of the more widely studied tris–(pyrazolyl)borates (tpR,R'), are an increasing important class of ligands with a wide variety of coordination and organometallic complexes now reported (Pettinari & Pettinari, 2005). In most of these studies only the simplest members of the series tpzm and tpzmMe,Me which generally form inert sandwich complexes with first row transition metals are utilized (Astley et al., 1993; Reger et al., 2002). In contrast, second generation tris–(pyrazolyl)methane ligands (tpzmPh, tpzmi–Pr and tpzmt–Bu) remain poorly represented owing to their time consuming synthesis and low yields. However, Reger (Reger et al., 2000) recently reported an improved procedure for these ligands, while Fujisawa and co–workers (Fujisawa et al., 2004) have shown that even tzpmi–Pr,i–Pr may be prepared. Structural studies of tris–(pyrazolyl)methanes are even rarer and to date only tpzmMe,Me has been reported (Declercq & Van Meerssche, 1984; Ochando et al., 1997). Herein, we report the synthesis and the first structural characterization of a second generation tris–(pyrazolyl)methane ligand namely, tpzmPh,Me (I).

Colourless block shaped crystals of I were grown from CH2Cl2/n–hexane, the compound crystallizing in a monoclinic Cc space group. The structure of the molecule I is shown on Fig. 1. The pyrazoles are bonded to the central CH–group in a tetrahedral fashion with N—C1—N angles [112.8 (2)°, 110.4 (2)° and 111.1 (2)°] close to the ideal tetrahedral value of 109.5° and similar to those found in tpzmMe,Me [110°, 111°, 111° (Declercq & Van Meerssche, 1984)]. In addition, the structure shows that the methyl groups are in the 5–position of the pyrazole rings with the phenyl rings in the 3–position thereby minimizing steric congestion around the central CH–group and confirming the presence of a single regioisomer.

The propeller–like conformation of the molecule can be defined by the angle between the plane formed by H1A, C1 and the first pyrazole N atom and the mean plane of the pyrazole ring. The values for I are 50.4 (2)°, 18.7 (3)° and 36.3 (2)° and are comparable to those observed in the structures of tpzmMe,Me [the values of each ring averaged over four molecules are 29 (3)°, 23 (2)° and 62 (1)° (Declercq & Van Meerssche, 1984)] and triphenylmethane [30°, 34° and 53°, and 21°, 38° and 47° for each one of the two molecules in the asymmetric unit (Riche & Pascard-Billy, 1974)]. A further method for describing this helical twist is through H1A–C1–N–N torsion angles (Ochando et al., 1997). The torsion angles for I are 133.7 (3)°, -18.3 (4)° and 148.9 (3)° for H1A–C1–N1–N2, H1A–C1–N3–N4 and H1A–C1–N5–N6, respectively. These are in good agreement with the values observed in tpzmMe,Me [121 (1)°, -21 (1)° and 147 (1)° (Declercq & Van Meerssche, 1984)]. Assuming an α–conformation when the torsion angle is negative and β– when positive, it follows that the conformation in the case of I is βαβ–, identical to the most stable conformer of tpzmMe,Me (Declercq & Van Meerssche, 1984).

The pyrazole bond lengths in I vary between 1.328 (3)Å and 1.414 (3)Å and are very similar to those found in tpzmMe,Me [1.33–1.40Å (Declercq & Van Meerssche, 1984)]. The phenyl rings are essentially co-planar with the pyrazole rings (dihedral angles: 3.4 (1)° and 2.8 (1)°) except in the case of the C20—N5 pyrazole ring in which the dihedral angles between the two planes is 15.7 (2)°.

A further point of interest is the packing within the structure of I which reveals C—H···π interactions between the pyrazole C3—H3 and the centroid of the ring C14/C15/C16/C17/C18/C19 (Cg), the phenyl group attached to the α–pyrazole (Fig. 2). All these interactions occur within a single layer of molecules with adjacent layers, which are related by inversion, exhibiting interactions in the opposite direction. Thus, the interactions H3 (x+1/2, y-1/2, z)···Cg (x, y, z) and H3 (x-1/2, -y+3/2, z-1/2)···Cgii (x-1, -y+1, z-1/2) are both 3.202 (2)Å.

Related literature top

For related literature, see: Astley et al. (1993); Fujisawa et al. (2004); Goodman & Bateman (2001); Ochando et al. (1997); Pettinari & Pettinari (2005); Reger et al. (2000, 2002); Riche & Pascard-Billy (1974); Declercq & Van Meerssche (1984).

Experimental top

Distilled water (20 ml) was added to a 250 ml flask containing a mixture of HpzPh,Me (6.33 g, 40 mmol) and NBu4Br (0.68 g, 2 mmol). With vigorous stirring Na2CO3 (8.5 g, 80 mmol) was added to the reaction mixture. After cooling CHCl3 (75 ml) was added and the mixture refluxed for four days yielding a dark yellow–orange emulsion. The mixture was allowed to cool to room temperature and filtered through a Buchner funnel. The organic layer was separated from the aqueous layer, washed with water (3 × 30 ml) and dried over sodium sulfate. The solution was filtered to remove the drying agent and the solvent removed on a rotary evapourator to give a yellow solid. The solid was redissolved in toluene (70 ml) and a catalytic amount of p–toluenesulfonic acid (0.1 g, 0.53 mmol) was added. The solution was refluxed for a day giving a yellow solution. The solution was then cooled to room temperature, neutralized with a 5% aqueous Na2CO3 solution and washed with distilled water (3 × 15 ml). The solution was then dried over sodium sulfate, filtered and the solvent removed on a rotary evapourator resulting in a light brown solid. The solid was dissolved in CH2Cl2 (20 ml) and chromatographed on a silica gel column that was packed with a CH2Cl2:toluene (1:1) solution. The fractions containing the desired product were combined and the solvent removed by rotary evapouration to give an off–white solid (1.83 g, 29%). Analysis calculated for C31H28N6: C 76.8, H 5.8, N 17.3%; found: C 76.7, H 5.8, N 17.0%. ESI+ MS: (m/z) Anal. Calc. 484.60; found: [MH]+ 485.65. 1H–NMR (CDCl3) δ 8.42 (s, 1H, CH), 7.77–7.72 [m, 6H, o–H (Ph)], 7.38–7.33 [m, 6H, m–H (Ph)], 7.30–7.28 [m, 3H, p–H, (Ph)], 6.47 [s, 3H, 4–H (pz)] and 2.22 (s, 9H, CH3). It should be noted that I (see Fig. 3) was previously reported as a by–product in the synthesis of more complex tris–(pyrazolyl)methanes (Goodman & Bateman, 2001). However, it was not isolated and the above represents the first designed synthesis of I.

Refinement top

H atoms were placed geometrically and refined with a riding model (including torsional freedom for methyl groups) and with Uĩso~ constrained to be 1.2 (1.5 for CH~3~ groups) times U~eq~ of the carrier atom.

The two restraints are generated automatically to prevent the whole structure from wandering in the a– and c–directions. The 1950 Friedel pairs were merged.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom–labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a spheres of arbitrary radius.
[Figure 2] Fig. 2. The molecular packing showing the C—H···π interactions in two adjacent chains. Only selected H atoms are shown and labelled for clarity. Symmetry codes: (i) x+1/2, y-1/2, z; (ii) x-1, -y+1, z-1/2; (iii) x-1/2, -y+3/2, z-1/2.
[Figure 3] Fig. 3. A schematic diagram of formation title compound.
Tris(5-methyl-3-phenyl-1H-pyrazol-1-yl)methane top
Crystal data top
C31H28N6F(000) = 1024
Mr = 484.59Dx = 1.249 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 879 reflections
a = 6.678 (3) Åθ = 4.6–46.9°
b = 21.730 (9) ŵ = 0.08 mm1
c = 17.831 (7) ÅT = 150 K
β = 94.922 (7)°Block, colourless
V = 2578.2 (19) Å30.38 × 0.34 × 0.21 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2932 independent reflections
Radiation source: Fine-focus sealed tube2129 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 100 pixels mm-1θmax = 27.6°, θmin = 1.9°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
k = 2725
Tmin = 0.972, Tmax = 0.984l = 1922
9586 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0288P)2]
where P = (Fo2 + 2Fc2)/3
2932 reflections(Δ/σ)max < 0.001
337 parametersΔρmax = 0.12 e Å3
2 restraintsΔρmin = 0.14 e Å3
Crystal data top
C31H28N6V = 2578.2 (19) Å3
Mr = 484.59Z = 4
Monoclinic, CcMo Kα radiation
a = 6.678 (3) ŵ = 0.08 mm1
b = 21.730 (9) ÅT = 150 K
c = 17.831 (7) Å0.38 × 0.34 × 0.21 mm
β = 94.922 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2932 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2129 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.984Rint = 0.039
9586 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0412 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 0.98Δρmax = 0.12 e Å3
2932 reflectionsΔρmin = 0.14 e Å3
337 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8396 (3)0.83570 (9)0.68651 (11)0.0408 (5)
N20.6619 (3)0.85821 (9)0.65488 (11)0.0414 (5)
N30.8952 (3)0.73399 (9)0.73501 (11)0.0401 (5)
N41.0565 (3)0.69625 (9)0.75166 (11)0.0399 (5)
N50.7907 (3)0.74998 (8)0.60399 (11)0.0396 (5)
N60.6231 (3)0.71502 (9)0.61064 (11)0.0398 (5)
C10.9043 (4)0.77355 (10)0.67027 (14)0.0420 (6)
H1A1.04820.77590.65890.050*
C20.9315 (4)0.87441 (12)0.73918 (14)0.0460 (6)
C30.8081 (4)0.92398 (12)0.74119 (15)0.0493 (7)
H3A0.82890.95920.77240.059*
C40.6429 (4)0.91297 (11)0.68788 (15)0.0410 (6)
C50.4662 (4)0.95123 (10)0.66896 (14)0.0424 (6)
C60.3172 (4)0.93283 (12)0.61469 (16)0.0551 (7)
H6A0.33210.89550.58800.066*
C70.1474 (5)0.96829 (13)0.59919 (17)0.0646 (8)
H7A0.04550.95460.56250.077*
C80.1229 (5)1.02323 (13)0.63600 (19)0.0625 (8)
H8A0.00651.04770.62440.075*
C90.2681 (5)1.04169 (12)0.68914 (18)0.0609 (8)
H9A0.25281.07940.71490.073*
C100.4385 (4)1.00619 (12)0.70633 (16)0.0548 (7)
H10A0.53751.01970.74420.066*
C110.7515 (3)0.72783 (11)0.78425 (14)0.0399 (6)
C120.8255 (3)0.68485 (11)0.83497 (14)0.0407 (6)
H12A0.76220.67040.87730.049*
C131.0131 (3)0.66587 (11)0.81285 (13)0.0372 (6)
C141.1513 (4)0.61970 (11)0.84821 (14)0.0396 (6)
C151.0996 (4)0.58720 (12)0.91093 (15)0.0502 (7)
H15A0.97660.59600.93180.060*
C161.2253 (5)0.54219 (12)0.94321 (17)0.0597 (8)
H16A1.18820.52040.98610.072*
C171.4041 (5)0.52873 (12)0.91364 (17)0.0582 (8)
H17A1.48900.49720.93530.070*
C181.4588 (4)0.56126 (12)0.85242 (16)0.0520 (7)
H18A1.58360.55280.83270.062*
C191.3338 (4)0.60609 (11)0.81947 (15)0.0443 (6)
H19A1.37260.62780.77680.053*
C200.8150 (4)0.76617 (11)0.53141 (14)0.0404 (6)
C210.6590 (4)0.73918 (10)0.48918 (14)0.0412 (6)
H21A0.63260.74120.43600.049*
C220.5452 (4)0.70774 (10)0.53982 (13)0.0377 (6)
C230.3596 (4)0.67181 (10)0.52414 (14)0.0394 (6)
C240.2386 (4)0.65752 (11)0.58115 (15)0.0471 (7)
H24A0.27840.66990.63130.057*
C250.0610 (4)0.62552 (12)0.56614 (18)0.0548 (7)
H25A0.02090.61650.60580.066*
C260.0024 (4)0.60663 (12)0.49386 (19)0.0565 (8)
H26A0.11950.58440.48370.068*
C270.1197 (4)0.61980 (12)0.43680 (18)0.0589 (8)
H27A0.07920.60670.38700.071*
C280.2975 (4)0.65226 (12)0.45144 (16)0.0521 (7)
H28A0.37800.66130.41140.063*
C291.1317 (4)0.86029 (13)0.77999 (16)0.0595 (8)
H29A1.23240.85560.74350.089*
H29B1.12260.82200.80850.089*
H29C1.17110.89400.81460.089*
C300.5591 (3)0.76287 (12)0.78100 (15)0.0480 (7)
H30A0.47670.74750.81990.072*
H30B0.48640.75750.73130.072*
H30C0.58790.80660.78970.072*
C310.9840 (4)0.80561 (11)0.51083 (16)0.0507 (7)
H31A1.11150.78410.52310.076*
H31B0.98390.84430.53910.076*
H31C0.96780.81440.45670.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0423 (12)0.0441 (11)0.0359 (12)0.0008 (10)0.0025 (9)0.0004 (10)
N20.0439 (12)0.0417 (11)0.0386 (13)0.0028 (10)0.0028 (10)0.0013 (9)
N30.0347 (11)0.0516 (12)0.0345 (12)0.0015 (10)0.0054 (10)0.0045 (10)
N40.0364 (12)0.0466 (12)0.0365 (13)0.0008 (10)0.0019 (9)0.0010 (10)
N50.0442 (12)0.0422 (11)0.0328 (12)0.0058 (10)0.0060 (9)0.0017 (10)
N60.0423 (12)0.0414 (11)0.0369 (13)0.0030 (10)0.0107 (10)0.0002 (9)
C10.0382 (14)0.0485 (14)0.0396 (15)0.0011 (12)0.0062 (11)0.0061 (12)
C20.0451 (15)0.0576 (17)0.0359 (15)0.0132 (13)0.0060 (12)0.0006 (12)
C30.0578 (17)0.0462 (15)0.0442 (17)0.0088 (14)0.0069 (14)0.0074 (12)
C40.0465 (16)0.0419 (14)0.0361 (15)0.0053 (12)0.0126 (12)0.0019 (12)
C50.0493 (15)0.0375 (13)0.0416 (16)0.0019 (12)0.0107 (13)0.0032 (12)
C60.0687 (19)0.0474 (15)0.0473 (18)0.0085 (15)0.0057 (15)0.0020 (13)
C70.068 (2)0.0641 (19)0.060 (2)0.0108 (17)0.0085 (16)0.0016 (16)
C80.0616 (19)0.0496 (17)0.078 (2)0.0107 (15)0.0150 (17)0.0142 (16)
C90.0630 (19)0.0450 (16)0.078 (2)0.0001 (15)0.0269 (17)0.0077 (15)
C100.0533 (18)0.0496 (16)0.063 (2)0.0092 (14)0.0164 (15)0.0113 (14)
C110.0350 (14)0.0517 (15)0.0334 (14)0.0044 (12)0.0053 (11)0.0031 (12)
C120.0401 (15)0.0504 (15)0.0322 (15)0.0063 (12)0.0075 (12)0.0014 (12)
C130.0401 (15)0.0416 (13)0.0294 (14)0.0063 (11)0.0001 (11)0.0031 (11)
C140.0452 (16)0.0396 (13)0.0332 (15)0.0083 (11)0.0006 (12)0.0033 (11)
C150.0564 (16)0.0508 (16)0.0432 (17)0.0055 (14)0.0030 (14)0.0046 (14)
C160.077 (2)0.0524 (17)0.0489 (19)0.0083 (16)0.0014 (17)0.0121 (14)
C170.076 (2)0.0380 (15)0.058 (2)0.0083 (15)0.0095 (17)0.0016 (14)
C180.0573 (17)0.0461 (15)0.0511 (18)0.0056 (14)0.0031 (14)0.0081 (14)
C190.0487 (15)0.0450 (14)0.0385 (15)0.0038 (12)0.0000 (12)0.0035 (12)
C200.0498 (15)0.0391 (13)0.0336 (15)0.0142 (12)0.0100 (12)0.0057 (11)
C210.0550 (16)0.0388 (13)0.0300 (14)0.0104 (12)0.0052 (12)0.0031 (11)
C220.0464 (15)0.0364 (13)0.0306 (15)0.0123 (11)0.0058 (12)0.0000 (11)
C230.0469 (15)0.0329 (12)0.0392 (15)0.0096 (11)0.0071 (12)0.0007 (11)
C240.0551 (18)0.0460 (15)0.0415 (17)0.0071 (13)0.0109 (13)0.0008 (13)
C250.0552 (18)0.0478 (15)0.063 (2)0.0039 (14)0.0157 (16)0.0076 (15)
C260.0553 (17)0.0434 (15)0.071 (2)0.0035 (13)0.0063 (17)0.0008 (15)
C270.067 (2)0.0563 (17)0.052 (2)0.0106 (16)0.0026 (16)0.0054 (14)
C280.0645 (19)0.0527 (16)0.0399 (16)0.0016 (14)0.0089 (13)0.0022 (13)
C290.0482 (17)0.0744 (19)0.0541 (19)0.0096 (15)0.0048 (14)0.0007 (15)
C300.0402 (15)0.0602 (17)0.0444 (16)0.0039 (13)0.0087 (12)0.0032 (13)
C310.0552 (17)0.0533 (16)0.0447 (17)0.0041 (14)0.0098 (13)0.0089 (13)
Geometric parameters (Å, º) top
N1—N21.360 (3)C14—C191.394 (4)
N1—C21.367 (3)C15—C161.382 (4)
N1—C11.455 (3)C15—H15A0.9500
N2—C41.338 (3)C16—C171.378 (4)
N3—C111.361 (3)C16—H16A0.9500
N3—N41.366 (3)C17—C181.376 (4)
N3—C11.445 (3)C17—H17A0.9500
N4—C131.328 (3)C18—C191.381 (3)
N5—C201.364 (3)C18—H18A0.9500
N5—N61.366 (3)C19—H19A0.9500
N5—C11.443 (3)C20—C211.364 (3)
N6—C221.334 (3)C20—C311.488 (3)
C1—H1A1.0000C21—C221.406 (3)
C2—C31.358 (4)C21—H21A0.9500
C2—C291.498 (4)C22—C231.471 (3)
C3—C41.414 (3)C23—C241.387 (3)
C3—H3A0.9500C23—C281.393 (4)
C4—C51.459 (3)C24—C251.381 (4)
C5—C61.386 (3)C24—H24A0.9500
C5—C101.388 (3)C25—C261.377 (4)
C6—C71.379 (4)C25—H25A0.9500
C6—H6A0.9500C26—C271.366 (4)
C7—C81.379 (4)C26—H26A0.9500
C7—H7A0.9500C27—C281.387 (4)
C8—C91.357 (4)C27—H27A0.9500
C8—H8A0.9500C28—H28A0.9500
C9—C101.387 (4)C29—H29A0.9800
C9—H9A0.9500C29—H29B0.9800
C10—H10A0.9500C29—H29C0.9800
C11—C121.363 (3)C30—H30A0.9800
C11—C301.490 (3)C30—H30B0.9800
C12—C131.407 (3)C30—H30C0.9800
C12—H12A0.9500C31—H31A0.9800
C13—C141.468 (3)C31—H31B0.9800
C14—C151.391 (3)C31—H31C0.9800
N2—N1—C2112.83 (19)C14—C15—H15A119.6
N2—N1—C1120.99 (19)C17—C16—C15120.4 (3)
C2—N1—C1125.8 (2)C17—C16—H16A119.8
C4—N2—N1104.46 (19)C15—C16—H16A119.8
C11—N3—N4112.77 (19)C18—C17—C16119.5 (3)
C11—N3—C1130.86 (19)C18—C17—H17A120.2
N4—N3—C1116.37 (19)C16—C17—H17A120.2
C13—N4—N3104.67 (19)C17—C18—C19120.5 (3)
C20—N5—N6113.01 (19)C17—C18—H18A119.7
C20—N5—C1126.1 (2)C19—C18—H18A119.7
N6—N5—C1120.23 (19)C18—C19—C14120.6 (3)
C22—N6—N5103.87 (19)C18—C19—H19A119.7
N5—C1—N3112.83 (19)C14—C19—H19A119.7
N5—C1—N1110.38 (18)N5—C20—C21105.4 (2)
N3—C1—N1111.1 (2)N5—C20—C31122.5 (2)
N5—C1—H1A107.4C21—C20—C31132.1 (2)
N3—C1—H1A107.4C20—C21—C22106.5 (2)
N1—C1—H1A107.4C20—C21—H21A126.8
C3—C2—N1105.6 (2)C22—C21—H21A126.8
C3—C2—C29131.9 (3)N6—C22—C21111.2 (2)
N1—C2—C29122.5 (3)N6—C22—C23119.8 (2)
C2—C3—C4106.8 (2)C21—C22—C23129.0 (2)
C2—C3—H3A126.6C24—C23—C28117.9 (2)
C4—C3—H3A126.6C24—C23—C22120.9 (2)
N2—C4—C3110.4 (2)C28—C23—C22121.1 (2)
N2—C4—C5120.7 (2)C25—C24—C23121.0 (3)
C3—C4—C5128.9 (2)C25—C24—H24A119.5
C6—C5—C10117.8 (3)C23—C24—H24A119.5
C6—C5—C4121.0 (2)C26—C25—C24120.1 (3)
C10—C5—C4121.2 (2)C26—C25—H25A119.9
C7—C6—C5120.5 (3)C24—C25—H25A119.9
C7—C6—H6A119.7C27—C26—C25120.0 (3)
C5—C6—H6A119.7C27—C26—H26A120.0
C6—C7—C8121.1 (3)C25—C26—H26A120.0
C6—C7—H7A119.4C26—C27—C28120.2 (3)
C8—C7—H7A119.4C26—C27—H27A119.9
C9—C8—C7118.8 (3)C28—C27—H27A119.9
C9—C8—H8A120.6C27—C28—C23120.8 (3)
C7—C8—H8A120.6C27—C28—H28A119.6
C8—C9—C10120.9 (3)C23—C28—H28A119.6
C8—C9—H9A119.6C2—C29—H29A109.5
C10—C9—H9A119.6C2—C29—H29B109.5
C9—C10—C5120.9 (3)H29A—C29—H29B109.5
C9—C10—H10A119.6C2—C29—H29C109.5
C5—C10—H10A119.6H29A—C29—H29C109.5
N3—C11—C12105.1 (2)H29B—C29—H29C109.5
N3—C11—C30125.3 (2)C11—C30—H30A109.5
C12—C11—C30129.6 (2)C11—C30—H30B109.5
C11—C12—C13107.2 (2)H30A—C30—H30B109.5
C11—C12—H12A126.4C11—C30—H30C109.5
C13—C12—H12A126.4H30A—C30—H30C109.5
N4—C13—C12110.3 (2)H30B—C30—H30C109.5
N4—C13—C14121.3 (2)C20—C31—H31A109.5
C12—C13—C14128.4 (2)C20—C31—H31B109.5
C15—C14—C19118.2 (2)H31A—C31—H31B109.5
C15—C14—C13120.2 (2)C20—C31—H31C109.5
C19—C14—C13121.6 (2)H31A—C31—H31C109.5
C16—C15—C14120.7 (3)H31B—C31—H31C109.5
C16—C15—H15A119.6

Experimental details

Crystal data
Chemical formulaC31H28N6
Mr484.59
Crystal system, space groupMonoclinic, Cc
Temperature (K)150
a, b, c (Å)6.678 (3), 21.730 (9), 17.831 (7)
β (°) 94.922 (7)
V3)2578.2 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.38 × 0.34 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.972, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
9586, 2932, 2129
Rint0.039
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.071, 0.98
No. of reflections2932
No. of parameters337
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.14

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors gratefully acknowledge the Institute for Research and Development, Walailak University for supporting this work (grant No. 5/2550).

References

First citationAstley, T., Gulbis, J. M., Hitchman, M. A. & Tiekink, E. R. T. (1993). J. Chem. Soc. Dalton Trans. pp. 509–515.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeclercq, J.-P. & Van Meerssche, M. (1984). Acta Cryst. C40, 1098–1101.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFujisawa, K., Ono, T., Aoki, H., Ishikawa, Y., Miyashita, Y., Okamoto, K., Nakazawa, H. & Higashimura, H. (2004). Inorg. Chem. Commun. 7, 330–332.  Web of Science CSD CrossRef CAS Google Scholar
First citationGoodman, M. S. & Bateman, M. A. (2001). Tetrahedron Lett. 42, 5–7.  Web of Science CrossRef CAS Google Scholar
First citationOchando, L. E., Rius, J., Louër, D., Claramunt, R. M., Lopez, C., Elguero, J. & Amigó, J. M. (1997). Acta Cryst. B53, 939–944.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPettinari, C. & Pettinari, R. (2005). Coord. Chem. Rev. 249, 525–543.  CAS Google Scholar
First citationReger, D. L., Grattan, T. C., Brown, K. J., Little, C. A., Lamba, J. J. S., Rhiengold, A. L. & Sommer, R. D. (2000). J. Organomet. Chem. 607, 120–128.  Web of Science CrossRef CAS Google Scholar
First citationReger, D. L., Little, C. A., Smith, M. D. & Long, G. J. (2002). Inorg. Chem. 41, 4453–4460.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRiche, C. & Pascard-Billy, C. (1974). Acta Cryst. B30, 1874–1876.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds