metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-amino­pyrimidine-κN1)di­bromidozinc(II)

aHuazhong Agricultural University, Department of Chemistry, College of Basic Sciences, Wuhan 430070, People's Republic of China, and bSchool of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430073, People's Republic of China
*Correspondence e-mail: doctor-qu@126.com

(Received 5 November 2007; accepted 7 March 2008; online 30 April 2008)

The title compound, [ZnBr2(C4H5N3)2], is a mononuclear complex in which the ZnII ions have distorted tetra­hedral coordination geometry. The ZnII ion binds to two N atoms from two different 2-amino­pyrimidine ligands and two bromide ions. N—H⋯N hydrogen bonds link the mol­ecules to form a one-dimensional supra­molecular structure. The supra­molecular chains are parallel to each other and N—H⋯Br hydrogen bonds link them into a two-dimensional network in the ac plane. Additionally, there are strong ππ inter­actions [centroid–centroid distance = 3.403 (3) Å].

Related literature

For related literature, see: Bourne et al. (2001[Bourne, S. A., Kilkenny, M. & Nassimbeni, L. R. (2001). Dalton Trans. pp. 1176-1179.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Lin & Zeng (2007[Lin, Z.-D. & Zeng, W. (2007). Acta Cryst. E63, m1597.]); Pon et al. (1997[Pon, G., Willett, R. D., Prince, B. A. & Robinson, W. T. (1997). Inorg. Chim. Acta, 255, 325-334.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnBr2(C4H5N3)2]

  • Mr = 415.41

  • Triclinic, [P \overline 1]

  • a = 6.7912 (11) Å

  • b = 7.2197 (12) Å

  • c = 15.512 (3) Å

  • α = 81.060 (3)°

  • β = 83.823 (3)°

  • γ = 63.132 (2)°

  • V = 669.61 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.79 mm−1

  • T = 292 (2) K

  • 0.20 × 0.16 × 0.14 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.305, Tmax = 0.408 (expected range = 0.251–0.336)

  • 5351 measured reflections

  • 2342 independent reflections

  • 1878 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.110

  • S = 1.02

  • 2342 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Selected bond lengths (Å)

Br1—Zn1 2.3528 (9)
Br2—Zn1 2.3593 (8)
N1—Zn1 2.060 (4)
N4—Zn1 2.056 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯Br2i 0.93 2.87 3.651 (5) 142
N6—H6B⋯N5ii 0.89 2.47 2.996 (6) 119
N3—H3A⋯Br2 0.75 2.74 3.480 (5) 170
Symmetry codes: (i) x-1, y+1, z; (ii) -x, -y, -z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, the design of molecular architecture with pyrimidine and bipyrimidine has aroused interest in the fields of coordination, bioinorganic and magnetochemistry (Pon et al., 1997).

In our laboratory, analogous crystals have been obtained from the interaction of zinc(lI) chloride with 2-aminopyrimidine (Lin & Zeng, 2007). As an extension of this work, we report the crystal structure of the title compound, (I), bis(2-aminopyrimidine)-zinc(II) bromide. Compound I contains discrete L2CuBr2 molecules (L: 2-aminopyrimidine). The ZnII ion is coordinated by two N atoms from two different 2-aminopyrimidine ligands and two Br anions, giving distorted tetrahedral coordination geometry [mean Zn—N = 2.058 (8) Å and mean Zn—Br = 2.356 (4) Å]. The bond lengths and angles of Zn—N and Zn—Br (Table 1) are within the expected ranges (Bourne et al., 2001).

In the crystal structure, N—H···N hydrogen bonds and N—H···Br hydrogen bonds (Table 2) help to establish the crystal packing. The 2-aminopyrimidine molecules form N—H···N hydrogen bonds, resulting in eight membered ring graph-set motif, [R22(8)] (Etter et al., 1990). The N—H···N hydrogen bonds bind the neighboring 2-aminopyrimidine molecules to form a zigzag one-dimensional ribbon structure. The supramolecular ribbons are parallel to each other and N—H···Br hydrogen bonds link them into a two-dimensional network. The close distance, 3.403 (3) Å, between the centroids of two rings (N4,N5,C5,C6,C7,C8 and its symmetry equivalent at -x,1 - y,1 - z) indicates that there are also strong π -π interactions.

Related literature top

For related literature, see: Bourne et al. (2001); Etter et al. (1990); Lin & Zeng (2007); Pon et al. (1997).

Experimental top

10 ml e thanol solution containing ZnBr2 (0.5 mmol) and 2-aminopyrimidine (1.0 mmol) was stirred at room temperature for 12 h and then filtered. The filtrate was kept at room temperature in the dark for two weeks to give white crystals of (I). The crystals were isolated and washed three times with ethanol and dried in a vacuum desiccator using anhydrous CaCl2. Analysis calculated for C8N6H10 Zn Br2: C 23.13, N 20.23, H 2.43%; found: C 23.19, N 20.46,H 2.61%.

Refinement top

The H atoms bonded to C atoms were placed in calculated positions, and were allowed to ride on their parent C atoms, with a distance of 0.93 Å for aromatic H atoms and Uiso(H) = 1.2 times its parent atom. The H atoms of –NH2 were found from residue peaks in the difference map. The H atoms of the NH2 group were placed in geometrically calculated positions and the N—H distance restrained to 0.86 (2) Å. The isotropic displacement parameters were set equal to 1.5Ueq(parent N atom) for amino H atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular components of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of (I) viewed along the a axis. The O–H···N and Br—H···N hydrogen bonding interactions are shown as dashed lines.
Bis(2-aminopyrimidine-κN1)dibromidozinc(II) top
Crystal data top
[ZnBr2(C4H5N3)2]Z = 2
Mr = 415.41F(000) = 400
Triclinic, P1Dx = 2.060 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7912 (11) ÅCell parameters from 2800 reflections
b = 7.2197 (12) Åθ = 2.1–28.7°
c = 15.512 (3) ŵ = 7.79 mm1
α = 81.060 (3)°T = 292 K
β = 83.823 (3)°Block, white
γ = 63.132 (2)°0.20 × 0.16 × 0.14 mm
V = 669.61 (19) Å3
Data collection top
Siemens SMART CCD area-detector
diffractometer
2342 independent reflections
Radiation source: fine-focus sealed tube1878 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ϕ and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 87
Tmin = 0.305, Tmax = 0.409k = 88
5351 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0639P)2]
where P = (Fo2 + 2Fc2)/3
2342 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
[ZnBr2(C4H5N3)2]γ = 63.132 (2)°
Mr = 415.41V = 669.61 (19) Å3
Triclinic, P1Z = 2
a = 6.7912 (11) ÅMo Kα radiation
b = 7.2197 (12) ŵ = 7.79 mm1
c = 15.512 (3) ÅT = 292 K
α = 81.060 (3)°0.20 × 0.16 × 0.14 mm
β = 83.823 (3)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2342 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1878 reflections with I > 2σ(I)
Tmin = 0.305, Tmax = 0.409Rint = 0.074
5351 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.02Δρmax = 0.80 e Å3
2342 reflectionsΔρmin = 0.69 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.19184 (13)0.75744 (9)0.20800 (4)0.0660 (2)
Br20.57558 (9)0.19239 (9)0.31136 (4)0.0528 (2)
C10.2693 (11)0.1954 (8)0.0989 (3)0.0472 (14)
C20.0153 (14)0.2437 (10)0.0194 (4)0.0631 (18)
H20.06640.22300.02980.076*
C30.1718 (12)0.3635 (10)0.0799 (4)0.0613 (17)
H30.32310.41710.07370.074*
C40.0852 (11)0.3955 (9)0.1486 (4)0.0527 (15)
H40.18150.47670.19010.063*
C50.0098 (7)0.2696 (8)0.4074 (3)0.0322 (10)
C60.2637 (9)0.4775 (9)0.5028 (3)0.0470 (14)
H60.34390.49250.55590.056*
C70.2909 (8)0.6530 (9)0.4488 (4)0.0481 (14)
H70.39320.78480.46220.058*
C80.1607 (8)0.6272 (8)0.3737 (3)0.0452 (13)
H80.17380.74490.33570.054*
N10.1338 (8)0.3141 (7)0.1588 (2)0.0412 (10)
N20.1963 (11)0.1600 (8)0.0279 (3)0.0594 (14)
N30.4858 (9)0.1121 (9)0.1065 (3)0.0674 (16)
H3A0.51010.11350.15240.101*
H3B0.55060.15970.06070.101*
N40.0134 (6)0.4360 (6)0.3530 (2)0.0356 (9)
N50.1293 (7)0.2848 (7)0.4844 (3)0.0414 (10)
N60.1223 (8)0.0761 (7)0.3887 (3)0.0477 (11)
H6A0.16460.08020.34210.071*
H6B0.04490.00260.39500.071*
Zn10.22458 (9)0.41974 (8)0.25651 (3)0.0358 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1151 (6)0.0446 (4)0.0495 (4)0.0468 (4)0.0003 (3)0.0032 (3)
Br20.0431 (4)0.0522 (4)0.0541 (4)0.0125 (3)0.0026 (3)0.0125 (3)
C10.082 (5)0.042 (3)0.033 (3)0.042 (3)0.011 (3)0.011 (2)
C20.115 (6)0.062 (4)0.037 (3)0.061 (4)0.013 (3)0.002 (3)
C30.086 (5)0.067 (4)0.051 (4)0.051 (4)0.017 (3)0.005 (3)
C40.081 (5)0.050 (3)0.040 (3)0.040 (3)0.002 (3)0.005 (3)
C50.027 (2)0.041 (3)0.027 (2)0.014 (2)0.0021 (18)0.007 (2)
C60.042 (3)0.068 (4)0.038 (3)0.028 (3)0.009 (2)0.024 (3)
C70.032 (3)0.050 (3)0.058 (3)0.010 (3)0.009 (2)0.024 (3)
C80.041 (3)0.037 (3)0.045 (3)0.006 (2)0.001 (2)0.007 (2)
N10.063 (3)0.049 (3)0.027 (2)0.037 (2)0.0078 (19)0.0118 (19)
N20.109 (5)0.058 (3)0.036 (3)0.056 (3)0.004 (3)0.015 (2)
N30.081 (4)0.090 (4)0.049 (3)0.049 (3)0.023 (3)0.041 (3)
N40.036 (2)0.038 (2)0.030 (2)0.0123 (18)0.0025 (16)0.0095 (18)
N50.040 (2)0.056 (3)0.030 (2)0.023 (2)0.0061 (18)0.011 (2)
N60.056 (3)0.044 (3)0.042 (3)0.022 (2)0.014 (2)0.011 (2)
Zn10.0478 (4)0.0332 (3)0.0277 (3)0.0190 (3)0.0045 (2)0.0081 (2)
Geometric parameters (Å, º) top
Br1—Zn12.3528 (9)C5—N51.360 (6)
Br2—Zn12.3593 (8)C6—N51.330 (7)
C1—N31.324 (8)C6—C71.354 (8)
C1—N11.340 (7)C6—H60.9300
C1—N21.358 (7)C7—C81.368 (8)
C2—N21.295 (9)C7—H70.9300
C2—C31.401 (10)C8—N41.353 (6)
C2—H20.9300C8—H80.9300
C3—C41.368 (8)N1—Zn12.060 (4)
C3—H30.9300N3—H3A0.7500
C4—N11.347 (8)N3—H3B0.9006
C4—H40.9300N4—Zn12.056 (4)
C5—N61.333 (6)N6—H6A0.7500
C5—N41.348 (6)N6—H6B0.8901
N3—C1—N1119.5 (5)N4—C8—H8119.0
N3—C1—N2117.2 (5)C7—C8—H8119.0
N1—C1—N2123.2 (6)C1—N1—C4117.6 (5)
N2—C2—C3124.1 (6)C1—N1—Zn1126.4 (4)
N2—C2—H2118.0C4—N1—Zn1115.4 (3)
C3—C2—H2118.0C2—N2—C1117.5 (6)
C4—C3—C2114.9 (7)C1—N3—H3A109.5
C4—C3—H3122.5C1—N3—H3B111.2
C2—C3—H3122.5H3A—N3—H3B120.6
N1—C4—C3122.7 (6)C5—N4—C8116.8 (4)
N1—C4—H4118.6C5—N4—Zn1124.1 (3)
C3—C4—H4118.6C8—N4—Zn1118.1 (4)
N6—C5—N4120.2 (4)C6—N5—C5116.2 (5)
N6—C5—N5116.0 (5)C5—N6—H6A109.5
N4—C5—N5123.8 (4)C5—N6—H6B109.0
N5—C6—C7123.9 (5)H6A—N6—H6B108.2
N5—C6—H6118.0N4—Zn1—N1101.97 (16)
C7—C6—H6118.0N4—Zn1—Br1109.63 (11)
C6—C7—C8116.9 (5)N1—Zn1—Br1109.06 (12)
C6—C7—H7121.6N4—Zn1—Br2108.97 (11)
C8—C7—H7121.6N1—Zn1—Br2114.70 (13)
N4—C8—C7122.1 (5)Br1—Zn1—Br2112.00 (3)
N2—C2—C3—C42.8 (9)C7—C8—N4—C53.9 (7)
C2—C3—C4—N11.5 (9)C7—C8—N4—Zn1164.7 (4)
N5—C6—C7—C84.1 (8)C7—C6—N5—C52.0 (7)
C6—C7—C8—N41.0 (8)N6—C5—N5—C6179.1 (4)
N3—C1—N1—C4179.8 (5)N4—C5—N5—C63.5 (7)
N2—C1—N1—C42.2 (8)C5—N4—Zn1—N179.9 (4)
N3—C1—N1—Zn19.2 (7)C8—N4—Zn1—N1112.3 (4)
N2—C1—N1—Zn1168.8 (4)C5—N4—Zn1—Br1164.6 (3)
C3—C4—N1—C10.8 (8)C8—N4—Zn1—Br13.2 (4)
C3—C4—N1—Zn1171.2 (5)C5—N4—Zn1—Br241.7 (4)
C3—C2—N2—C11.5 (9)C8—N4—Zn1—Br2126.0 (3)
N3—C1—N2—C2179.1 (5)C1—N1—Zn1—N4149.6 (4)
N1—C1—N2—C21.1 (8)C4—N1—Zn1—N439.2 (4)
N6—C5—N4—C8176.3 (4)C1—N1—Zn1—Br194.5 (4)
N5—C5—N4—C86.3 (7)C4—N1—Zn1—Br176.7 (4)
N6—C5—N4—Zn115.8 (6)C1—N1—Zn1—Br232.1 (5)
N5—C5—N4—Zn1161.6 (3)C4—N1—Zn1—Br2156.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···Br2i0.932.873.651 (5)142
N6—H6B···N5ii0.892.472.996 (6)119
N3—H3A···Br20.752.743.480 (5)170
Symmetry codes: (i) x1, y+1, z; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[ZnBr2(C4H5N3)2]
Mr415.41
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)6.7912 (11), 7.2197 (12), 15.512 (3)
α, β, γ (°)81.060 (3), 83.823 (3), 63.132 (2)
V3)669.61 (19)
Z2
Radiation typeMo Kα
µ (mm1)7.79
Crystal size (mm)0.20 × 0.16 × 0.14
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.305, 0.409
No. of measured, independent and
observed [I > 2σ(I)] reflections
5351, 2342, 1878
Rint0.074
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.110, 1.02
No. of reflections2342
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.69

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Br1—Zn12.3528 (9)N1—Zn12.060 (4)
Br2—Zn12.3593 (8)N4—Zn12.056 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···Br2i0.932.873.651 (5)141.8
N6—H6B···N5ii0.892.472.996 (6)118.6
N3—H3A···Br20.752.743.480 (5)169.9
Symmetry codes: (i) x1, y+1, z; (ii) x, y, z+1.
 

Acknowledgements

The authors are grateful for financial support from the Bureau of Science and Technology of Wuhan City, Hubei Province, People's Republic of China (grant No. 20055003059-28).

References

First citationBourne, S. A., Kilkenny, M. & Nassimbeni, L. R. (2001). Dalton Trans. pp. 1176–1179.  CrossRef Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLin, Z.-D. & Zeng, W. (2007). Acta Cryst. E63, m1597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPon, G., Willett, R. D., Prince, B. A. & Robinson, W. T. (1997). Inorg. Chim. Acta, 255, 325–334.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds