organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages o919-o920

1H-Indole-3-carbaldehyde thio­semi­carbazone

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 22 January 2008; accepted 20 April 2008; online 26 April 2008)

The mol­ecules of the title compound, C10H10N4S, are linked by N—Hindole⋯S hydrogen bonds to form a linear hydrogen-bonded chain. There are two independent mol­ecules in the asymmetric unit.

Related literature

For the synthesis and bateriostatic activity of indole-3-carbaldehyde semithio­carbazone, see: Doyle et al. (1956[Doyle, F. P., Ferrier, W., Holland, D. O., Mehta, M. D. & Nayler, J. H. C. (1956). J. Chem. Soc. pp. 2853-2857.]); Fujikawa et al. (1966[Fujikawa, F., Yamashita, I., Seno, T., Sasaki, M., Naito, M. & Tsukuma, S. (1966). Yakugaku Zasshi, 86, 801-814.]); Libermann et al. (1953[Libermann, D., Moyeux, M., Rouaix, A., Maillard, J., Hengl, L. & Himbert, J. (1953). Bull. Soc. Chim. Fr. pp. 957-962.]); Weller et al. (1954[Weller, L. E., Sell, H. M. & Gottshall, R. Y. (1954). J. Am. Chem. Soc. 76, 1959-???.]). For metal complexes of the compound, see: Bhardwaj & Singh (1994[Bhardwaj, N. C. & Singh, R. V. (1994). Proc. Ind. Acad. Sci. Chem. Sci. 106, 15-22.]); Dalvi et al. (2004[Dalvi, K., Pal, M., Garje, S. & Shivram, S. (2004). Indian J. Chem. 43A, 1667-1671.]); Garg & Tandon (1988[Garg, A. & Tandon, J. P. (1988). Syn. React. Inorg. Met.-Org. Chem. 18, 705-715.]); Kanoongo et al. (1988[Kanoongo, N., Singh, R. V. & Tandon, J. P. (1988). J. Prakt. Chem. (Leipzig), 330, 479-483.], 1990[Kanoongo, N., Singh, R. V. & Tandon, J. P. (1990). J. Prakt. Chem. (Leipzig), 332, 815-819.]); Kiran et al. (1986[Kiran, R. V., Singh, J. P. & Tandon, J. P. (1986). Syn. React. Inorg. Met.-Org. Chem. 16, 1341-1350.]); Kumari et al. (1992a[Kumari, A., Sharma, N., Singh, R. V. & Tandon, J. P. (1992a). Phosphorus, Sulfur Silicon Rel. Elem. 71, 225-229.],b[Kumari, A., Singh, R. V. & Tandon, J. P. (1992b). Phosphorus, Sulfur Silicon Rel. Elem. 66, 195-200.]; 1993a[Kumari, A., Singh, D., Singh, R. V. & Tandon, J. P. (1993a). Syn. React. Inorg. Met.-Org. Chem. 23, 575-587.],b[Kumari, A., Singh, D., Singh, R. V. & Tandon, J. P. (1993b). Phosphorus, Sulfur Silicon Rel. Elem. 80, 117-125.]); Rodriguez-Argueelles et al. (2005[Rodriguez-Argueelles, M. C., Lopez-Silva, E., Sanmartin, J., Pelagatti, P. & Zani, F. (2005). J. Inorg. Biochem. 99, 2231-2239.]); Saxena & Singh (1994[Saxena, C. & Singh, R. V. (1994). Appl. Organomet. Chem. 9, 267-276.]); Saxena et al. (1993[Saxena, C., Bhardwaj, N. C., Singh, D. & Singh, R. (1993). Syn. React. Inorg. Met.-Org. Chem. 23, 1391-1405.], 1994[Saxena, C., Singh, R. V. & Singh, S. (1994). Syn. React. Inorg. Met.-Org. Chem. 24, 1311-1124.]); Singh & Singh (1990[Singh, D. & Singh, R. V. (1990). Main Group Met. Chem. 13, 19-27.]); Singh et al. (1987[Singh, K., Singh, R. V. & Tandon, J. P. (1987). Syn. React. Inorg. Met.-Org. Chem. 17, 385-398.], 1988[Singh, K., Singh, R. V. & Tandon, J. P. (1988). Polyhedron, 7, 151-154.]); Varshney & Tandon (1989[Varshney, A. K. & Tandon, J. P. (1989). Egypt. J. Chem. 32, 109-114.]); Varshney et al. (1989[Varshney, A. K., Verma, P. S. & Varshney, S. (1989). Main Group Met. Chem. 12, 249-257.], 1996[Varshney, S., Singh, H. & Varshney, A. K. (1996). ACGC Chem. Res. Commun. 4, 26-29.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N4S

  • Mr = 218.28

  • Triclinic, [P \overline 1]

  • a = 7.1893 (1) Å

  • b = 11.1654 (2) Å

  • c = 13.5373 (3) Å

  • α = 68.887 (1)°

  • β = 85.048 (1)°

  • γ = 82.467 (1)°

  • V = 1004.07 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 123 (2) K

  • 0.44 × 0.24 × 0.04 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.857, Tmax = 0.988

  • 9295 measured reflections

  • 4527 independent reflections

  • 3142 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.161

  • S = 1.10

  • 4527 reflections

  • 303 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4n⋯S1i 0.89 (1) 2.56 (2) 3.383 (3) 156 (3)
N8—H8n⋯S2i 0.88 (3) 2.49 (2) 3.325 (2) 157 (3)
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The bacteriostatic activity of indole-3-carboxaldehyde thiosemicarbazone is known for a long time (Doyle et al., 1956; Fujikawa et al., 1966; Libermann et al., 1953; Weller et al., 1954). The compound yields complexes with main group as well as transition metal ions.

Related literature top

For the synthesis and bateriostatic activity of indole-3-carbaldehyde semithiocarbazone, see: Doyle et al. (1956); Fujikawa et al. (1966); Libermann et al. (1953); Weller et al. (1954). For metal complexes of the compound, see: Bhardwaj & Singh (1994); Dalvi et al. (2004); Garg & Tandon (1988); Kanoongo et al. (1988, 1990); Kiran et al. (1986); Kumari et al. (1992a,b; 1993a,b); Rodriguez-Argueelles et al. (2005); Saxena & Singh (1994); Saxena et al. (1993, 1994); Singh & Singh (1990); Singh et al. (1987, 1988); Varshney & Tandon (1989); Varshney et al. (1989, 1996); Varshney, Verma & Varshney (1989).

Experimental top

Thiosemicarbazide (0.3 g, 3.3 mmol) and indole-3-carboxaldehyde (0.5 g, 3.3 mmol) were refluxed in ethanol (50 ml) for 2 h. The solvent was removed to give the product Schiff base, and crystals were obtained upon recrystallization from ethanol.

Refinement top

The carbon-bound H atoms were placed at calculated positions (C–H 0.95 Å), and were included in the refinement in the riding model approximation with U(H) set to 1.2Ueq(C). The amino H atoms were located in a difference Fouier map, and were refined with a distance restraint of N–H 0.88±0.01 Å.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the two independent molecules of the title compound. Displacement ellipsoids are drawn at the 70% probability level, and H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. Chain structure of the title compound. Intermolecular H bonds are shown as dashed lines.
1H-Indole-3-carbaldehyde thiosemicarbazone top
Crystal data top
C10H10N4SZ = 4
Mr = 218.28F(000) = 456
Triclinic, P1Dx = 1.444 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1893 (1) ÅCell parameters from 4065 reflections
b = 11.1654 (2) Åθ = 3.6–30.8°
c = 13.5373 (3) ŵ = 0.29 mm1
α = 68.887 (1)°T = 123 K
β = 85.048 (1)°Wedge, colorless
γ = 82.467 (1)°0.44 × 0.24 × 0.04 mm
V = 1004.07 (3) Å3
Data collection top
Bruker APEXII
diffractometer
4527 independent reflections
Radiation source: medium-focus sealed tube3142 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 89
Tmin = 0.857, Tmax = 0.988k = 1414
9295 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0864P)2 + 0.0582P]
where P = (Fo2 + 2Fc2)/3
4527 reflections(Δ/σ)max = 0.001
303 parametersΔρmax = 0.45 e Å3
8 restraintsΔρmin = 0.45 e Å3
Crystal data top
C10H10N4Sγ = 82.467 (1)°
Mr = 218.28V = 1004.07 (3) Å3
Triclinic, P1Z = 4
a = 7.1893 (1) ÅMo Kα radiation
b = 11.1654 (2) ŵ = 0.29 mm1
c = 13.5373 (3) ÅT = 123 K
α = 68.887 (1)°0.44 × 0.24 × 0.04 mm
β = 85.048 (1)°
Data collection top
Bruker APEXII
diffractometer
4527 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3142 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 0.988Rint = 0.036
9295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0448 restraints
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.45 e Å3
4527 reflectionsΔρmin = 0.45 e Å3
303 parameters
Special details top

Experimental. A medium-focus collimator of 0.8 mm diameter was used on the diffractometer to measure the somewhat large crystal.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.61344 (11)0.11515 (7)0.35357 (6)0.0218 (2)
S20.81997 (11)0.34262 (7)0.04922 (6)0.0250 (2)
N10.7013 (4)0.1337 (3)0.5349 (2)0.0272 (6)
H1N10.721 (5)0.173 (3)0.577 (2)0.044 (11)*
H1N20.680 (6)0.0521 (16)0.568 (3)0.053 (13)*
N20.6604 (3)0.3220 (2)0.39282 (18)0.0179 (5)
H2N0.642 (5)0.354 (3)0.3237 (10)0.042 (11)*
N30.7031 (3)0.3921 (2)0.45314 (18)0.0171 (5)
N40.7758 (4)0.7985 (2)0.45494 (19)0.0208 (5)
H4N0.762 (5)0.8832 (11)0.440 (3)0.040 (11)*
N50.5325 (4)0.4371 (3)0.1469 (2)0.0239 (6)
H5N10.450 (4)0.502 (2)0.147 (3)0.037 (10)*
H5N20.487 (5)0.365 (2)0.154 (3)0.037 (10)*
N60.7531 (4)0.5739 (2)0.0624 (2)0.0223 (5)
H6N0.855 (3)0.590 (4)0.021 (3)0.047 (11)*
N70.6520 (3)0.6664 (2)0.09750 (19)0.0199 (5)
N80.6103 (3)1.0744 (2)0.11636 (19)0.0210 (5)
H8N0.640 (5)1.1508 (18)0.111 (3)0.037 (10)*
C10.6607 (4)0.1932 (3)0.4337 (2)0.0173 (6)
C20.6936 (4)0.5146 (3)0.4011 (2)0.0175 (6)
H20.65790.54590.32960.021*
C30.7347 (4)0.6064 (3)0.4466 (2)0.0161 (6)
C40.7238 (4)0.7375 (3)0.3922 (2)0.0196 (6)
H40.68570.77940.32130.024*
C50.7953 (4)0.5851 (3)0.5511 (2)0.0148 (5)
C60.8287 (4)0.4758 (3)0.6422 (2)0.0188 (6)
H60.81360.39240.64260.023*
C70.8843 (4)0.4918 (3)0.7319 (2)0.0230 (6)
H70.90670.41840.79440.028*
C80.9078 (4)0.6146 (3)0.7319 (2)0.0237 (7)
H80.94640.62270.79430.028*
C90.8759 (4)0.7244 (3)0.6426 (2)0.0211 (6)
H90.89250.80740.64260.025*
C100.8183 (4)0.7082 (3)0.5529 (2)0.0174 (6)
C110.6925 (4)0.4572 (3)0.0883 (2)0.0192 (6)
C120.7333 (4)0.7692 (3)0.0773 (2)0.0189 (6)
H120.85480.77380.04340.023*
C130.6459 (4)0.8771 (3)0.1045 (2)0.0164 (6)
C140.7289 (4)0.9880 (3)0.0867 (2)0.0191 (6)
H140.85271.00170.05760.023*
C150.4594 (4)0.8983 (3)0.1488 (2)0.0156 (6)
C160.3047 (4)0.8256 (3)0.1817 (2)0.0210 (6)
H160.31220.74120.17900.025*
C170.1416 (4)0.8801 (3)0.2180 (2)0.0247 (7)
H170.03720.83120.24140.030*
C180.1256 (4)1.0053 (3)0.2214 (2)0.0245 (7)
H180.01061.04030.24530.029*
C190.2771 (4)1.0783 (3)0.1898 (2)0.0231 (6)
H190.26821.16290.19220.028*
C200.4422 (4)1.0232 (3)0.1547 (2)0.0185 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0312 (4)0.0162 (4)0.0216 (4)0.0052 (3)0.0014 (3)0.0101 (3)
S20.0274 (4)0.0203 (4)0.0321 (4)0.0073 (3)0.0061 (3)0.0150 (3)
N10.0433 (17)0.0196 (14)0.0201 (13)0.0059 (13)0.0052 (12)0.0070 (11)
N20.0242 (13)0.0160 (12)0.0171 (12)0.0055 (10)0.0017 (10)0.0089 (10)
N30.0168 (12)0.0196 (13)0.0199 (12)0.0058 (10)0.0008 (9)0.0120 (10)
N40.0269 (13)0.0135 (13)0.0233 (13)0.0045 (11)0.0012 (10)0.0072 (10)
N50.0218 (13)0.0207 (14)0.0303 (14)0.0038 (11)0.0041 (11)0.0108 (12)
N60.0231 (13)0.0180 (13)0.0280 (14)0.0031 (11)0.0032 (11)0.0114 (11)
N70.0221 (12)0.0150 (12)0.0232 (12)0.0008 (10)0.0018 (10)0.0081 (10)
N80.0269 (14)0.0162 (13)0.0244 (13)0.0094 (11)0.0015 (10)0.0105 (10)
C10.0165 (13)0.0175 (14)0.0188 (14)0.0034 (11)0.0013 (11)0.0074 (11)
C20.0157 (13)0.0213 (15)0.0173 (13)0.0058 (12)0.0007 (10)0.0079 (11)
C30.0144 (13)0.0178 (14)0.0177 (13)0.0029 (11)0.0015 (10)0.0081 (11)
C40.0223 (15)0.0182 (15)0.0188 (14)0.0035 (12)0.0005 (11)0.0069 (12)
C50.0110 (12)0.0163 (14)0.0194 (13)0.0042 (11)0.0029 (10)0.0089 (11)
C60.0176 (14)0.0181 (15)0.0220 (14)0.0036 (12)0.0004 (11)0.0080 (12)
C70.0224 (15)0.0254 (16)0.0189 (14)0.0020 (13)0.0019 (12)0.0051 (12)
C80.0193 (14)0.0349 (18)0.0221 (15)0.0027 (13)0.0025 (12)0.0159 (13)
C90.0171 (14)0.0239 (16)0.0279 (15)0.0020 (12)0.0003 (12)0.0163 (13)
C100.0138 (13)0.0175 (15)0.0225 (14)0.0024 (11)0.0023 (11)0.0096 (12)
C110.0210 (15)0.0170 (15)0.0215 (14)0.0031 (12)0.0030 (11)0.0083 (12)
C120.0204 (14)0.0175 (15)0.0176 (13)0.0009 (12)0.0011 (11)0.0053 (11)
C130.0206 (14)0.0125 (14)0.0152 (13)0.0041 (11)0.0022 (11)0.0025 (11)
C140.0199 (14)0.0208 (15)0.0177 (13)0.0047 (12)0.0003 (11)0.0072 (12)
C150.0175 (13)0.0149 (14)0.0133 (13)0.0013 (11)0.0039 (10)0.0030 (11)
C160.0237 (15)0.0165 (15)0.0216 (14)0.0060 (12)0.0035 (12)0.0032 (12)
C170.0172 (14)0.0294 (17)0.0258 (15)0.0066 (13)0.0009 (12)0.0065 (13)
C180.0201 (15)0.0312 (18)0.0223 (15)0.0027 (13)0.0005 (12)0.0114 (13)
C190.0299 (16)0.0206 (16)0.0207 (14)0.0018 (13)0.0057 (12)0.0101 (12)
C200.0237 (15)0.0180 (14)0.0161 (13)0.0040 (12)0.0050 (11)0.0072 (11)
Geometric parameters (Å, º) top
S1—C11.696 (3)C4—H40.9500
S2—C111.689 (3)C5—C61.399 (4)
N1—C11.329 (4)C5—C101.415 (4)
N1—H1N10.87 (3)C6—C71.388 (4)
N1—H1N20.89 (3)C6—H60.9500
N2—C11.341 (4)C7—C81.403 (4)
N2—N31.393 (3)C7—H70.9500
N2—H2N0.887 (10)C8—C91.386 (4)
N3—C21.289 (4)C8—H80.9500
N4—C41.365 (3)C9—C101.395 (4)
N4—C101.376 (4)C9—H90.9500
N4—H4N0.886 (10)C12—C131.436 (4)
N5—C111.335 (4)C12—H120.9500
N5—H5N10.88 (3)C13—C141.379 (4)
N5—H5N20.88 (3)C13—C151.446 (4)
N6—C111.344 (4)C14—H140.9500
N6—N71.385 (3)C15—C161.409 (4)
N6—H6N0.88 (3)C15—C201.414 (4)
N7—C121.287 (4)C16—C171.384 (4)
N8—C141.350 (4)C16—H160.9500
N8—C201.384 (4)C17—C181.405 (4)
N8—H8N0.88 (3)C17—H170.9500
C2—C31.443 (4)C18—C191.391 (4)
C2—H20.9500C18—H180.9500
C3—C41.376 (4)C19—C201.391 (4)
C3—C51.443 (4)C19—H190.9500
C1—N1—H1N1124 (3)C8—C7—H7119.5
C1—N1—H1N2120 (3)C9—C8—C7121.4 (3)
H1N1—N1—H1N2114 (4)C9—C8—H8119.3
C1—N2—N3121.7 (2)C7—C8—H8119.3
C1—N2—H2N113 (2)C8—C9—C10117.4 (3)
N3—N2—H2N125 (2)C8—C9—H9121.3
C2—N3—N2113.1 (2)C10—C9—H9121.3
C4—N4—C10109.1 (2)N4—C10—C9129.9 (3)
C4—N4—H4N125 (2)N4—C10—C5108.0 (2)
C10—N4—H4N125 (2)C9—C10—C5122.1 (3)
C11—N5—H5N1121 (2)N5—C11—N6117.1 (3)
C11—N5—H5N2115 (2)N5—C11—S2123.0 (2)
H5N1—N5—H5N2116 (3)N6—C11—S2119.9 (2)
C11—N6—N7120.0 (2)N7—C12—C13122.0 (3)
C11—N6—H6N118 (3)N7—C12—H12119.0
N7—N6—H6N122 (3)C13—C12—H12119.0
C12—N7—N6114.4 (2)C14—C13—C12124.2 (3)
C14—N8—C20109.3 (2)C14—C13—C15105.9 (2)
C14—N8—H8N123 (2)C12—C13—C15129.9 (2)
C20—N8—H8N127 (2)N8—C14—C13110.7 (3)
N1—C1—N2117.8 (2)N8—C14—H14124.6
N1—C1—S1123.6 (2)C13—C14—H14124.6
N2—C1—S1118.6 (2)C16—C15—C20118.8 (3)
N3—C2—C3123.1 (3)C16—C15—C13134.5 (3)
N3—C2—H2118.5C20—C15—C13106.7 (2)
C3—C2—H2118.5C17—C16—C15118.4 (3)
C4—C3—C2123.6 (3)C17—C16—H16120.8
C4—C3—C5106.6 (2)C15—C16—H16120.8
C2—C3—C5129.8 (3)C16—C17—C18122.0 (3)
N4—C4—C3110.1 (3)C16—C17—H17119.0
N4—C4—H4125.0C18—C17—H17119.0
C3—C4—H4125.0C19—C18—C17120.4 (3)
C6—C5—C10119.4 (2)C19—C18—H18119.8
C6—C5—C3134.3 (2)C17—C18—H18119.8
C10—C5—C3106.3 (2)C20—C19—C18117.7 (3)
C7—C6—C5118.6 (3)C20—C19—H19121.2
C7—C6—H6120.7C18—C19—H19121.2
C5—C6—H6120.7N8—C20—C19129.9 (3)
C6—C7—C8121.1 (3)N8—C20—C15107.4 (2)
C6—C7—H7119.5C19—C20—C15122.6 (3)
C1—N2—N3—C2179.2 (2)C3—C5—C10—C9179.8 (2)
C11—N6—N7—C12173.1 (3)N7—N6—C11—N50.9 (4)
N3—N2—C1—N10.7 (4)N7—N6—C11—S2177.8 (2)
N3—N2—C1—S1178.20 (19)N6—N7—C12—C13177.7 (2)
N2—N3—C2—C3179.0 (2)N7—C12—C13—C14178.5 (3)
N3—C2—C3—C4179.5 (3)N7—C12—C13—C154.9 (5)
N3—C2—C3—C51.5 (5)C20—N8—C14—C130.3 (3)
C10—N4—C4—C31.2 (3)C12—C13—C14—N8177.4 (2)
C2—C3—C4—N4178.3 (3)C15—C13—C14—N80.1 (3)
C5—C3—C4—N40.9 (3)C14—C13—C15—C16178.4 (3)
C4—C3—C5—C6178.6 (3)C12—C13—C15—C161.3 (5)
C2—C3—C5—C62.3 (5)C14—C13—C15—C200.1 (3)
C4—C3—C5—C100.2 (3)C12—C13—C15—C20177.0 (3)
C2—C3—C5—C10178.9 (3)C20—C15—C16—C170.3 (4)
C10—C5—C6—C70.2 (4)C13—C15—C16—C17177.8 (3)
C3—C5—C6—C7178.8 (3)C15—C16—C17—C181.0 (4)
C5—C6—C7—C80.3 (4)C16—C17—C18—C191.4 (4)
C6—C7—C8—C90.3 (4)C17—C18—C19—C200.4 (4)
C7—C8—C9—C100.4 (4)C14—N8—C20—C19177.0 (3)
C4—N4—C10—C9179.3 (3)C14—N8—C20—C150.4 (3)
C4—N4—C10—C51.0 (3)C18—C19—C20—N8178.0 (3)
C8—C9—C10—N4179.5 (3)C18—C19—C20—C150.9 (4)
C8—C9—C10—C50.9 (4)C16—C15—C20—N8178.9 (2)
C6—C5—C10—N4179.5 (2)C13—C15—C20—N80.3 (3)
C3—C5—C10—N40.5 (3)C16—C15—C20—C191.3 (4)
C6—C5—C10—C90.8 (4)C13—C15—C20—C19177.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4n···S1i0.89 (1)2.56 (2)3.383 (3)156 (3)
N8—H8n···S2i0.88 (3)2.49 (2)3.325 (2)157 (3)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H10N4S
Mr218.28
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)7.1893 (1), 11.1654 (2), 13.5373 (3)
α, β, γ (°)68.887 (1), 85.048 (1), 82.467 (1)
V3)1004.07 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.44 × 0.24 × 0.04
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.857, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
9295, 4527, 3142
Rint0.036
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.161, 1.10
No. of reflections4527
No. of parameters303
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.45

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4n···S1i0.89 (1)2.56 (2)3.383 (3)156 (3)
N8—H8n···S2i0.88 (3)2.49 (2)3.325 (2)157 (3)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors thank the University of Canterbury, New Zealand, for the diffraction measurements, and the Science Fund (12–02-03–2031) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBhardwaj, N. C. & Singh, R. V. (1994). Proc. Ind. Acad. Sci. Chem. Sci. 106, 15–22.  CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDalvi, K., Pal, M., Garje, S. & Shivram, S. (2004). Indian J. Chem. 43A, 1667–1671.  CAS Google Scholar
First citationDoyle, F. P., Ferrier, W., Holland, D. O., Mehta, M. D. & Nayler, J. H. C. (1956). J. Chem. Soc. pp. 2853–2857.  CrossRef Web of Science Google Scholar
First citationFujikawa, F., Yamashita, I., Seno, T., Sasaki, M., Naito, M. & Tsukuma, S. (1966). Yakugaku Zasshi, 86, 801–814.  CAS Google Scholar
First citationGarg, A. & Tandon, J. P. (1988). Syn. React. Inorg. Met.-Org. Chem. 18, 705–715.  CrossRef CAS Web of Science Google Scholar
First citationKanoongo, N., Singh, R. V. & Tandon, J. P. (1988). J. Prakt. Chem. (Leipzig), 330, 479–483.  CrossRef CAS Google Scholar
First citationKanoongo, N., Singh, R. V. & Tandon, J. P. (1990). J. Prakt. Chem. (Leipzig), 332, 815–819.  CrossRef CAS Web of Science Google Scholar
First citationKiran, R. V., Singh, J. P. & Tandon, J. P. (1986). Syn. React. Inorg. Met.-Org. Chem. 16, 1341–1350.  CrossRef CAS Google Scholar
First citationKumari, A., Sharma, N., Singh, R. V. & Tandon, J. P. (1992a). Phosphorus, Sulfur Silicon Rel. Elem. 71, 225–229.  Google Scholar
First citationKumari, A., Singh, D., Singh, R. V. & Tandon, J. P. (1993a). Syn. React. Inorg. Met.-Org. Chem. 23, 575–587.  CrossRef CAS Web of Science Google Scholar
First citationKumari, A., Singh, D., Singh, R. V. & Tandon, J. P. (1993b). Phosphorus, Sulfur Silicon Rel. Elem. 80, 117–125.  Google Scholar
First citationKumari, A., Singh, R. V. & Tandon, J. P. (1992b). Phosphorus, Sulfur Silicon Rel. Elem. 66, 195–200.  Google Scholar
First citationLibermann, D., Moyeux, M., Rouaix, A., Maillard, J., Hengl, L. & Himbert, J. (1953). Bull. Soc. Chim. Fr. pp. 957–962.  Google Scholar
First citationRodriguez-Argueelles, M. C., Lopez-Silva, E., Sanmartin, J., Pelagatti, P. & Zani, F. (2005). J. Inorg. Biochem. 99, 2231–2239.  Web of Science PubMed CAS Google Scholar
First citationSaxena, C., Bhardwaj, N. C., Singh, D. & Singh, R. (1993). Syn. React. Inorg. Met.-Org. Chem. 23, 1391–1405.  CrossRef CAS Web of Science Google Scholar
First citationSaxena, C. & Singh, R. V. (1994). Appl. Organomet. Chem. 9, 267–276.  CrossRef Web of Science Google Scholar
First citationSaxena, C., Singh, R. V. & Singh, S. (1994). Syn. React. Inorg. Met.-Org. Chem. 24, 1311–1124.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, D. & Singh, R. V. (1990). Main Group Met. Chem. 13, 19–27.  CAS Google Scholar
First citationSingh, K., Singh, R. V. & Tandon, J. P. (1987). Syn. React. Inorg. Met.-Org. Chem. 17, 385–398.  CrossRef CAS Web of Science Google Scholar
First citationSingh, K., Singh, R. V. & Tandon, J. P. (1988). Polyhedron, 7, 151–154.  CrossRef CAS Web of Science Google Scholar
First citationVarshney, S., Singh, H. & Varshney, A. K. (1996). ACGC Chem. Res. Commun. 4, 26–29.  CAS Google Scholar
First citationVarshney, A. K. & Tandon, J. P. (1989). Egypt. J. Chem. 32, 109–114.  CAS Google Scholar
First citationVarshney, A. K., Verma, P. S. & Varshney, S. (1989). Main Group Met. Chem. 12, 249–257.  CAS Google Scholar
First citationWeller, L. E., Sell, H. M. & Gottshall, R. Y. (1954). J. Am. Chem. Soc. 76, 1959–???Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages o919-o920
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds