organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-N-[(3-methyl-2-pyrid­yl)carbamo­thio­yl]benzamide

aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM 43500 Bangi Selangor, Malaysia, bHEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and cDepartment of Chemistry, Universiti Malaysia Terengganu, Manngabang Telipot, Terengganu, Malaysia
*Correspondence e-mail: sammer_yousuf@yahoo.com

(Received 25 March 2008; accepted 7 April 2008; online 10 April 2008)

In the title compound, C15H15N3OS, the thio­urea group is stabilized by an intra­molecular hydrogen bond between the carbonyl O atom and the thio­amide group. A C—H⋯N intramolecular hydrogen bond is also present. Mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯S hydrogen bonds.

Related literature

For the crystal structure of N-(3-iodo­phen­yl)-N′-(2-methyl­benzo­yl)thio­urea, see: Yusof et al. (2007[Yusof, M. S. M., Ahmad Mushtari, N. & Yamin, B. M. (2007). Acta Cryst. E63, o4709.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15N3OS

  • Mr = 285.36

  • Monoclinic, P 21 /n

  • a = 7.955 (3) Å

  • b = 7.811 (3) Å

  • c = 23.414 (8) Å

  • β = 90.827 (6)°

  • V = 1454.6 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 298 (2) K

  • 0.49 × 0.46 × 0.17 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.899, Tmax = 0.963

  • 7524 measured reflections

  • 2710 independent reflections

  • 2099 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.112

  • S = 1.02

  • 2710 reflections

  • 191 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 (2) 2.04 (2) 2.697 (2) 132.2 (18)
C15—H15A⋯N2 0.96 2.56 2.961 105
N2—H2⋯O1i 0.86 (2) 2.30 (2) 3.021 (2) 142 (2)
C13—H13⋯S1ii 0.93 2.85 3.700 154
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The title compound, (I), is analogous to N-(3-iodophenyl)-N'-(2-methylbenzoyl) thiourea (II), (Yusof et al., 2007) except that the iodophenyl group is replaced by the 3-methylpyridine group (Fig.1). The bond lengths and angles are in normal range (Allen et al., 1987). The central thiourea moiety, S1/N1/N2/C9, pyridine, N3/(C10—C14), and benzene,(C1—C6) rings are each planar with maximum deviation of 0.033 (2)Å for N2 atom from the least square plane. The central thiourea moiety makes dihedral angle with the pyridine and benzene rings of 64.58 (8) and 62.03 (8)° respectively. The dihedral angle between the pyridine and benzene rings (4.03 (10)°) is smaller compared to that in (II) of 31.88 (9)°. The molecule maintains the trans-cis geometry of the thiourea moiety which is stabilized by the intrahydrogen bond between the carbonyl oxygen atom O1 and the thioamide hydrogen atom, H15A. In the crystal structure, the molecules are linked by the N2—H2···O1 and C13—H13···S1 intermolecular hydrogen bonds (symmtery codes as in Table 2).

Related literature top

For the crystal structure of N-(3-iodophenyl)-N'-(2-methylbenzoyl) thiourea, see: Yusof et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

The mixture of 2-methylbenzoyl chloride (9.720 g, 0.025mole) with the equimolar amount of ammonium thiocyanate (1.903 g, 0.025 mol) and 2-amino-3-methyl pyridine,(2.703 g, 0.025 mol) in 40 ml dry acetone was refluxed with stirring for 4 h. The solution was filtered and left to evaporate at room temperature. The colourless crystals obtained after a few days, was found suitable for X-ray investigations. The yield was 85% and the melting point is 412.3–413.8 K.

Refinement top

H atoms on the C of methyl, phenyl and pyridine were positioned geomatrically with C—H=0.96 Å and 0.93 Å respectively and constrained to ride on their parent atoms with Uiso(H)= 1.2Ueq(CH) and 1.5Ueq(CH3). The hydrogen atoms attached to the amino nitrogen atoms were located from the difference Fourier map and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular Structure of (1) with displacement ellipsoids drawn at 50% probability level.The dashed lines indicates the intramolecular hydrogen bonds.
[Figure 2] Fig. 2. A packing diagram of (1). Hydrogen bonds are shown by dashed lines.
2-Methyl-N-[(3-methyl-2-pyridyl)carbamothioyl]benzamide top
Crystal data top
C15H15N3OSF(000) = 600
Mr = 285.36Dx = 1.303 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2292 reflections
a = 7.955 (3) Åθ = 1.7–25.5°
b = 7.811 (3) ŵ = 0.22 mm1
c = 23.414 (8) ÅT = 298 K
β = 90.827 (6)°Block, colourless
V = 1454.6 (9) Å30.49 × 0.46 × 0.17 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2710 independent reflections
Radiation source: fine-focus sealed tube2099 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 83.66 pixels mm-1θmax = 25.5°, θmin = 1.7°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 99
Tmin = 0.899, Tmax = 0.963l = 1628
7524 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0591P)2 + 0.3029P]
where P = (Fo2 + 2Fc2)/3
2710 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.24 e Å3
1 restraintΔρmin = 0.13 e Å3
Crystal data top
C15H15N3OSV = 1454.6 (9) Å3
Mr = 285.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.955 (3) ŵ = 0.22 mm1
b = 7.811 (3) ÅT = 298 K
c = 23.414 (8) Å0.49 × 0.46 × 0.17 mm
β = 90.827 (6)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2710 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2099 reflections with I > 2σ(I)
Tmin = 0.899, Tmax = 0.963Rint = 0.019
7524 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.24 e Å3
2710 reflectionsΔρmin = 0.13 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.34243 (7)0.20705 (8)0.17685 (2)0.0662 (2)
O10.40058 (17)0.34898 (19)0.00872 (5)0.0599 (4)
N10.26335 (19)0.2529 (2)0.06915 (6)0.0485 (4)
H10.1847 (19)0.183 (2)0.0784 (8)0.056 (6)*
N20.49690 (18)0.4025 (2)0.10075 (6)0.0460 (4)
H20.513 (2)0.429 (3)0.0656 (9)0.057 (6)*
N30.77881 (19)0.3995 (2)0.12320 (7)0.0579 (4)
C10.1548 (2)0.1298 (2)0.07366 (8)0.0497 (5)
C20.0123 (3)0.0935 (3)0.10668 (9)0.0641 (6)
H2A0.02380.03050.14010.077*
C30.1439 (3)0.1477 (3)0.09150 (10)0.0707 (7)
H30.23580.12390.11520.085*
C40.1669 (3)0.2364 (3)0.04197 (11)0.0675 (6)
H40.27370.27200.03160.081*
C50.0286 (2)0.2727 (3)0.00736 (9)0.0537 (5)
H50.04300.33030.02700.064*
C60.1310 (2)0.2234 (2)0.02376 (7)0.0434 (4)
C70.3230 (3)0.0627 (3)0.09092 (10)0.0759 (7)
H7A0.30910.01410.12260.114*
H7B0.37420.00280.05940.114*
H7C0.39360.15650.10180.114*
C80.2781 (2)0.2805 (2)0.01149 (7)0.0433 (4)
C90.3749 (2)0.2940 (2)0.11353 (7)0.0457 (4)
C100.6291 (2)0.4528 (2)0.13916 (7)0.0437 (4)
C110.6000 (3)0.5570 (3)0.18580 (8)0.0554 (5)
C120.7424 (3)0.5988 (3)0.21814 (9)0.0688 (6)
H120.73150.66670.25050.083*
C130.8968 (3)0.5421 (3)0.20313 (10)0.0745 (7)
H130.99140.56830.22520.089*
C140.9096 (3)0.4468 (3)0.15529 (10)0.0732 (7)
H141.01620.41230.14420.088*
C150.4302 (3)0.6260 (4)0.20004 (11)0.0852 (8)
H15A0.35810.62010.16690.128*
H15B0.44080.74300.21210.128*
H15C0.38290.55930.23030.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0669 (4)0.0892 (4)0.0423 (3)0.0180 (3)0.0071 (2)0.0199 (3)
O10.0565 (8)0.0822 (10)0.0411 (7)0.0295 (7)0.0001 (6)0.0024 (7)
N10.0422 (9)0.0642 (10)0.0390 (8)0.0158 (7)0.0032 (6)0.0087 (7)
N20.0425 (8)0.0628 (10)0.0325 (8)0.0091 (7)0.0020 (6)0.0037 (7)
N30.0422 (9)0.0730 (11)0.0585 (10)0.0011 (8)0.0012 (7)0.0153 (8)
C10.0598 (12)0.0452 (10)0.0441 (10)0.0082 (9)0.0028 (8)0.0020 (8)
C20.0840 (16)0.0569 (13)0.0508 (11)0.0154 (12)0.0169 (11)0.0021 (10)
C30.0697 (15)0.0612 (13)0.0801 (16)0.0157 (11)0.0364 (13)0.0138 (12)
C40.0452 (12)0.0651 (14)0.0919 (17)0.0024 (10)0.0117 (11)0.0112 (13)
C50.0485 (12)0.0559 (12)0.0567 (12)0.0043 (9)0.0023 (9)0.0011 (9)
C60.0455 (10)0.0432 (9)0.0413 (9)0.0070 (8)0.0044 (7)0.0061 (8)
C70.0810 (16)0.0757 (16)0.0713 (15)0.0002 (13)0.0119 (12)0.0179 (12)
C80.0434 (10)0.0456 (10)0.0408 (9)0.0068 (8)0.0005 (7)0.0018 (8)
C90.0387 (10)0.0565 (11)0.0418 (10)0.0005 (8)0.0014 (7)0.0026 (8)
C100.0435 (10)0.0508 (10)0.0367 (9)0.0025 (8)0.0028 (7)0.0003 (8)
C110.0634 (12)0.0592 (12)0.0435 (10)0.0039 (10)0.0008 (9)0.0035 (9)
C120.0903 (17)0.0698 (15)0.0459 (11)0.0074 (13)0.0106 (11)0.0148 (10)
C130.0637 (15)0.0915 (18)0.0675 (14)0.0146 (13)0.0233 (11)0.0064 (13)
C140.0435 (12)0.0973 (18)0.0785 (15)0.0010 (11)0.0096 (10)0.0162 (13)
C150.0838 (17)0.0948 (18)0.0774 (16)0.0215 (14)0.0110 (13)0.0214 (14)
Geometric parameters (Å, º) top
S1—C91.6545 (18)C4—H40.9300
O1—C81.214 (2)C5—C61.386 (3)
N1—C81.374 (2)C5—H50.9300
N1—C91.394 (2)C6—C81.490 (2)
N1—H10.860 (9)C7—H7A0.9600
N2—C91.326 (2)C7—H7B0.9600
N2—C101.429 (2)C7—H7C0.9600
N2—H20.86 (2)C10—C111.384 (3)
N3—C101.321 (2)C11—C121.392 (3)
N3—C141.327 (3)C11—C151.497 (3)
C1—C21.392 (3)C12—C131.357 (3)
C1—C61.394 (3)C12—H120.9300
C1—C71.498 (3)C13—C141.350 (3)
C2—C31.364 (3)C13—H130.9300
C2—H2A0.9300C14—H140.9300
C3—C41.366 (3)C15—H15A0.9600
C3—H30.9300C15—H15B0.9600
C4—C51.386 (3)C15—H15C0.9600
C8—N1—C9129.35 (15)H7A—C7—H7C109.5
C8—N1—H1114.8 (13)H7B—C7—H7C109.5
C9—N1—H1114.6 (13)O1—C8—N1122.17 (16)
C9—N2—C10124.63 (15)O1—C8—C6122.97 (16)
C9—N2—H2119.5 (13)N1—C8—C6114.85 (14)
C10—N2—H2114.5 (13)N2—C9—N1116.05 (15)
C10—N3—C14117.05 (18)N2—C9—S1126.06 (14)
C2—C1—C6116.94 (19)N1—C9—S1117.88 (13)
C2—C1—C7120.18 (19)N3—C10—C11124.77 (17)
C6—C1—C7122.84 (18)N3—C10—N2113.16 (15)
C3—C2—C1122.0 (2)C11—C10—N2121.92 (16)
C3—C2—H2A119.0C10—C11—C12115.06 (19)
C1—C2—H2A119.0C10—C11—C15123.32 (19)
C2—C3—C4120.8 (2)C12—C11—C15121.6 (2)
C2—C3—H3119.6C13—C12—C11121.0 (2)
C4—C3—H3119.6C13—C12—H12119.5
C3—C4—C5119.1 (2)C11—C12—H12119.5
C3—C4—H4120.5C14—C13—C12118.4 (2)
C5—C4—H4120.5C14—C13—H13120.8
C4—C5—C6120.2 (2)C12—C13—H13120.8
C4—C5—H5119.9N3—C14—C13123.7 (2)
C6—C5—H5119.9N3—C14—H14118.1
C5—C6—C1120.92 (17)C13—C14—H14118.1
C5—C6—C8118.59 (16)C11—C15—H15A109.5
C1—C6—C8120.42 (16)C11—C15—H15B109.5
C1—C7—H7A109.5H15A—C15—H15B109.5
C1—C7—H7B109.5C11—C15—H15C109.5
H7A—C7—H7B109.5H15A—C15—H15C109.5
C1—C7—H7C109.5H15B—C15—H15C109.5
C6—C1—C2—C30.5 (3)C10—N2—C9—N1176.19 (16)
C7—C1—C2—C3177.9 (2)C10—N2—C9—S14.8 (3)
C1—C2—C3—C41.8 (3)C8—N1—C9—N214.3 (3)
C2—C3—C4—C50.7 (3)C8—N1—C9—S1166.69 (16)
C3—C4—C5—C61.8 (3)C14—N3—C10—C111.6 (3)
C4—C5—C6—C13.1 (3)C14—N3—C10—N2177.29 (19)
C4—C5—C6—C8173.72 (17)C9—N2—C10—N3113.7 (2)
C2—C1—C6—C52.0 (3)C9—N2—C10—C1170.4 (3)
C7—C1—C6—C5175.40 (18)N3—C10—C11—C122.8 (3)
C2—C1—C6—C8174.81 (17)N2—C10—C11—C12178.13 (18)
C7—C1—C6—C87.8 (3)N3—C10—C11—C15175.1 (2)
C9—N1—C8—O10.3 (3)N2—C10—C11—C150.2 (3)
C9—N1—C8—C6178.45 (18)C10—C11—C12—C131.2 (3)
C5—C6—C8—O1129.5 (2)C15—C11—C12—C13176.7 (2)
C1—C6—C8—O147.3 (3)C11—C12—C13—C141.3 (4)
C5—C6—C8—N149.2 (2)C10—N3—C14—C131.3 (4)
C1—C6—C8—N1133.98 (18)C12—C13—C14—N32.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.86 (2)2.04 (2)2.697 (2)132.2 (18)
C15—H15A···N20.962.562.961105
N2—H2···O1i0.86 (2)2.30 (2)3.021 (2)142 (2)
C13—H13···S1ii0.932.853.700154
Symmetry codes: (i) x+1, y+1, z; (ii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H15N3OS
Mr285.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.955 (3), 7.811 (3), 23.414 (8)
β (°) 90.827 (6)
V3)1454.6 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.49 × 0.46 × 0.17
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.899, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
7524, 2710, 2099
Rint0.019
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.112, 1.02
No. of reflections2710
No. of parameters191
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.13

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.86 (2)2.04 (2)2.697 (2)132.2 (18)
C15—H15A···N20.962.562.961105
N2—H2···O1i0.86 (2)2.30 (2)3.021 (2)142 (2)
C13—H13···S1ii0.932.853.700154
Symmetry codes: (i) x+1, y+1, z; (ii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Ministry of Higher Education of Malaysia for Fundamental Research Grants UKM-ST-01-FRGS-0003-2006 and UMT-FRGS-59001, and Universiti Kebangsaan Malaysia and HEJ Research Institute of Chemistry, University of Karachi, for research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYusof, M. S. M., Ahmad Mushtari, N. & Yamin, B. M. (2007). Acta Cryst. E63, o4709.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds