organic compounds
Methyl 4-methylbenzoate
aDepartment of Chemistry, Quaid-i-Azam University Islamabad, Pakistan, and bDepartment Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany
*Correspondence e-mail: aamersaeed@yahoo.com
The structure of the title compound, C9H10O2, is related to that of 4-methylphenyl 4-methylbenzoate and ethylene di-4-methylbenzoate showing similar bond parameters. The molecule is planar, the dihedral angle between the aromatic ring and the –COOMe group being 0.95 (6)°. The cystal structure exhibits intermolecular C—H⋯O contacts that link molecules into infinite chains extended in the [001] direction.
Related literature
For related literature, see: Deguire & Brisse (1988); Gowda et al. (2007; Gray & Whalley (1971); Harris & Mantle (2001); Saeed & Rama (1994); Simpson (1978).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808008738/sg2231sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808008738/sg2231Isup2.hkl
The title ester was prepared from commercial p-toluic acid according to standard procedure.
Hydrogen atoms were located in difference syntheses, refined at idealized positions riding on the carbon or nitrogen atoms (C–H = 0.88–0.99 Å) with isotropic displacement parameters Uiso(H) = 1.2U(Ceq).
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C9H10O2 | F(000) = 320 |
Mr = 150.17 | Dx = 1.280 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 806 reflections |
a = 5.9134 (11) Å | θ = 2.4–27.8° |
b = 7.6048 (14) Å | µ = 0.09 mm−1 |
c = 17.484 (3) Å | T = 120 K |
β = 97.783 (4)° | Block, colourless |
V = 779.0 (2) Å3 | 0.45 × 0.43 × 0.39 mm |
Z = 4 |
Bruker SMART APEX diffractometer | 1855 independent reflections |
Radiation source: sealed tube | 1482 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
ϕ and ω scans | θmax = 27.9°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −7→7 |
Tmin = 0.961, Tmax = 0.967 | k = −10→9 |
6617 measured reflections | l = −23→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.124 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0752P)2 + 0.0208P] where P = (Fo2 + 2Fc2)/3 |
1855 reflections | (Δ/σ)max < 0.001 |
102 parameters | Δρmax = 0.31 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C9H10O2 | V = 779.0 (2) Å3 |
Mr = 150.17 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 5.9134 (11) Å | µ = 0.09 mm−1 |
b = 7.6048 (14) Å | T = 120 K |
c = 17.484 (3) Å | 0.45 × 0.43 × 0.39 mm |
β = 97.783 (4)° |
Bruker SMART APEX diffractometer | 1855 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 1482 reflections with I > 2σ(I) |
Tmin = 0.961, Tmax = 0.967 | Rint = 0.039 |
6617 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.124 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.31 e Å−3 |
1855 reflections | Δρmin = −0.20 e Å−3 |
102 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.39091 (14) | 0.28701 (11) | 0.44793 (5) | 0.0280 (2) | |
O2 | 0.68910 (15) | 0.15425 (13) | 0.51751 (5) | 0.0325 (3) | |
C1 | 0.2956 (2) | 0.31740 (17) | 0.51874 (7) | 0.0320 (3) | |
H1A | 0.2793 | 0.2050 | 0.5448 | 0.048* | |
H1B | 0.1456 | 0.3732 | 0.5068 | 0.048* | |
H1C | 0.3974 | 0.3946 | 0.5526 | 0.048* | |
C2 | 0.59091 (19) | 0.20144 (15) | 0.45593 (6) | 0.0234 (3) | |
C3 | 0.67753 (18) | 0.17434 (15) | 0.38071 (6) | 0.0223 (3) | |
C4 | 0.55841 (19) | 0.23124 (15) | 0.31083 (7) | 0.0247 (3) | |
H4A | 0.4154 | 0.2888 | 0.3098 | 0.030* | |
C5 | 0.6496 (2) | 0.20350 (15) | 0.24261 (7) | 0.0262 (3) | |
H5A | 0.5675 | 0.2426 | 0.1952 | 0.031* | |
C6 | 0.8588 (2) | 0.11953 (15) | 0.24239 (7) | 0.0244 (3) | |
C7 | 0.97615 (19) | 0.06389 (15) | 0.31291 (7) | 0.0253 (3) | |
H7A | 1.1195 | 0.0068 | 0.3140 | 0.030* | |
C8 | 0.88716 (19) | 0.09050 (15) | 0.38126 (7) | 0.0242 (3) | |
H8A | 0.9693 | 0.0515 | 0.4287 | 0.029* | |
C9 | 0.9593 (2) | 0.08897 (17) | 0.16858 (7) | 0.0312 (3) | |
H9A | 1.1213 | 0.1213 | 0.1764 | 0.047* | |
H9B | 0.8782 | 0.1613 | 0.1273 | 0.047* | |
H9C | 0.9438 | −0.0355 | 0.1542 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0268 (5) | 0.0322 (5) | 0.0260 (4) | 0.0042 (3) | 0.0071 (3) | 0.0018 (3) |
O2 | 0.0343 (5) | 0.0389 (5) | 0.0234 (5) | 0.0042 (4) | 0.0004 (4) | 0.0016 (3) |
C1 | 0.0340 (7) | 0.0342 (7) | 0.0299 (7) | 0.0024 (5) | 0.0121 (5) | −0.0009 (5) |
C2 | 0.0249 (6) | 0.0201 (6) | 0.0248 (6) | −0.0033 (4) | 0.0022 (5) | 0.0003 (4) |
C3 | 0.0236 (6) | 0.0203 (6) | 0.0232 (6) | −0.0031 (4) | 0.0031 (4) | 0.0006 (4) |
C4 | 0.0214 (5) | 0.0252 (6) | 0.0271 (6) | 0.0008 (4) | 0.0022 (4) | 0.0024 (4) |
C5 | 0.0271 (6) | 0.0281 (6) | 0.0222 (6) | −0.0019 (5) | −0.0006 (5) | 0.0029 (4) |
C6 | 0.0275 (6) | 0.0210 (6) | 0.0251 (6) | −0.0058 (4) | 0.0049 (4) | −0.0010 (4) |
C7 | 0.0231 (6) | 0.0215 (6) | 0.0316 (6) | 0.0008 (4) | 0.0042 (5) | 0.0002 (4) |
C8 | 0.0245 (6) | 0.0221 (6) | 0.0251 (6) | −0.0017 (4) | 0.0000 (4) | 0.0032 (4) |
C9 | 0.0355 (7) | 0.0320 (7) | 0.0271 (6) | −0.0005 (5) | 0.0079 (5) | −0.0018 (5) |
O1—C2 | 1.3405 (14) | C5—C6 | 1.3927 (17) |
O1—C1 | 1.4468 (14) | C5—H5A | 0.9500 |
O2—C2 | 1.2065 (14) | C6—C7 | 1.3962 (17) |
C1—H1A | 0.9800 | C6—C9 | 1.5101 (16) |
C1—H1B | 0.9800 | C7—C8 | 1.3843 (16) |
C1—H1C | 0.9800 | C7—H7A | 0.9500 |
C2—C3 | 1.4890 (16) | C8—H8A | 0.9500 |
C3—C8 | 1.3929 (16) | C9—H9A | 0.9800 |
C3—C4 | 1.3940 (16) | C9—H9B | 0.9800 |
C4—C5 | 1.3899 (16) | C9—H9C | 0.9800 |
C4—H4A | 0.9500 | ||
C2—O1—C1 | 115.38 (9) | C4—C5—H5A | 119.3 |
O1—C1—H1A | 109.5 | C6—C5—H5A | 119.3 |
O1—C1—H1B | 109.5 | C5—C6—C7 | 118.16 (10) |
H1A—C1—H1B | 109.5 | C5—C6—C9 | 121.71 (11) |
O1—C1—H1C | 109.5 | C7—C6—C9 | 120.13 (11) |
H1A—C1—H1C | 109.5 | C8—C7—C6 | 121.10 (10) |
H1B—C1—H1C | 109.5 | C8—C7—H7A | 119.5 |
O2—C2—O1 | 123.28 (10) | C6—C7—H7A | 119.5 |
O2—C2—C3 | 124.43 (11) | C7—C8—C3 | 120.20 (10) |
O1—C2—C3 | 112.28 (9) | C7—C8—H8A | 119.9 |
C8—C3—C4 | 119.46 (10) | C3—C8—H8A | 119.9 |
C8—C3—C2 | 118.00 (10) | C6—C9—H9A | 109.5 |
C4—C3—C2 | 122.54 (10) | C6—C9—H9B | 109.5 |
C5—C4—C3 | 119.76 (11) | H9A—C9—H9B | 109.5 |
C5—C4—H4A | 120.1 | C6—C9—H9C | 109.5 |
C3—C4—H4A | 120.1 | H9A—C9—H9C | 109.5 |
C4—C5—C6 | 121.33 (10) | H9B—C9—H9C | 109.5 |
C1—O1—C2—O2 | −1.07 (16) | C3—C4—C5—C6 | 0.00 (17) |
C1—O1—C2—C3 | 179.72 (9) | C4—C5—C6—C7 | −0.20 (17) |
O2—C2—C3—C8 | −0.70 (18) | C4—C5—C6—C9 | −179.94 (10) |
O1—C2—C3—C8 | 178.50 (10) | C5—C6—C7—C8 | 0.28 (17) |
O2—C2—C3—C4 | −179.94 (11) | C9—C6—C7—C8 | −179.98 (10) |
O1—C2—C3—C4 | −0.74 (16) | C6—C7—C8—C3 | −0.16 (17) |
C8—C3—C4—C5 | 0.12 (17) | C4—C3—C8—C7 | −0.05 (17) |
C2—C3—C4—C5 | 179.36 (10) | C2—C3—C8—C7 | −179.32 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9B···O2i | 0.98 | 2.51 | 3.4930 (16) | 177 |
Symmetry code: (i) x, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C9H10O2 |
Mr | 150.17 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 120 |
a, b, c (Å) | 5.9134 (11), 7.6048 (14), 17.484 (3) |
β (°) | 97.783 (4) |
V (Å3) | 779.0 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.45 × 0.43 × 0.39 |
Data collection | |
Diffractometer | Bruker SMART APEX diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.961, 0.967 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6617, 1855, 1482 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.658 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.124, 1.06 |
No. of reflections | 1855 |
No. of parameters | 102 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.31, −0.20 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
O1—C2 | 1.3405 (14) | C2—C3 | 1.4890 (16) |
O1—C1 | 1.4468 (14) | C6—C9 | 1.5101 (16) |
O2—C2 | 1.2065 (14) | ||
C2—O1—C1 | 115.38 (9) | O2—C2—C3 | 124.43 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9B···O2i | 0.98 | 2.51 | 3.4930 (16) | 176.8 |
Symmetry code: (i) x, −y+1/2, z−1/2. |
Acknowledgements
AS gratefully acknowledges a research grant from Quaid-I-Azam University, Islamabad.
References
Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Deguire, S. & Brisse, F. (1988). Can. J. Chem. 66, 2545–2552. CrossRef CAS Web of Science Google Scholar
Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007). Acta Cryst. E63, o3867. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gray, R. W. & Whalley, W. B. (1971). J. Chem. Soc. C, pp. 3575–3577. Google Scholar
Harris, J. P. & Mantle, P. G. (2001). Phytochemistry, 58, 709–716. Web of Science CrossRef PubMed CAS Google Scholar
Saeed, A. & Rama, N. H. (1994). J. Sci. I. R. Iran, 5, 173–175. CAS Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Simpson, T. J. (1978). J. Chem. Soc. Chem. Commun. pp. 627–628. CrossRef Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title ester is an important intermediate in the synthesis of a variety of natural products. These include the sclerotiorin group of fungal metabolites (Gray & Whalley, 1971), isochromans related to sclerotiorin pigments (Saeed & Rama, 1994) and isocoumarins like the 7-methylmellein (Harris & Mantle, 2001) and stellatin (Simpson, 1978).