metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­[N-(1-naphth­yl)acetamido-κN]bis­­[2-(2-pyrid­yl)phenyl-κ2N,C1]iridium(III) ethyl­ene glycol hemisolvate

aSchool of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province, People's Republic of China, and bSchool of Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province, People's Republic of China
*Correspondence e-mail: yding@jiangnan.edu.cn

(Received 31 March 2008; accepted 12 April 2008; online 30 April 2008)

In the title compound, [Ir(C11H8N)2(C12H10NO)(H2O)]·0.5C2H6O2, the iridium center is coordinated by two N atoms and two C atoms from two 2-(2-pyrid­yl)phenyl (ppy) ligands, one N atom from the N-(1-naphth­yl)acetamide ligand and one water O atom, forming a distorted octa­hedral environment. Mol­ecules are linked by inter­molecular O—H⋯O hydrogen bonds formed by the coordinated water mol­ecule and the amide O atom of the N-(1-naphth­yl)acetamide ligands.

Related literature

For related literature, see: Adachi et al. (2000[Adachi, C., Baldo, M. A., Forrest, S. R. & Thompson, M. E. (2000). Appl. Phys. Lett. 77, 904-906.]); Lamansky et al. (2001[Lamansky, S., Djurovich, P., Murphy, D. & Abdel-Razzaq, F. (2001). J. Am. Chem. Soc. 123, 4304-4312.]); Beeby et al. (2003[Beeby, A., Bettington, S., Samuel, I. D. W. & Wang, Z. (2003). J. Mater. Chem. 13, 80-83.]); You & Park (2005[You, Y. & Park, S. Y. (2005). J. Am. Chem. Soc. 127, 12438-12439.]); Baldo et al. (1998[Baldo, M. A., O'Brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E. & Forrest, S. R. (1998). Nature (London), 395, 151-154.]).

[Scheme 1]

Experimental

Crystal data
  • [Ir(C11H8N)2(C12H10NO)(H2O)]·0.5C2H6O2

  • Mr = 733.83

  • Triclinic, [P \overline 1]

  • a = 10.097 (4) Å

  • b = 10.888 (4) Å

  • c = 14.453 (5) Å

  • α = 95.580 (7)°

  • β = 92.940 (7)°

  • γ = 107.423 (6)°

  • V = 1503.4 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.48 mm−1

  • T = 273 (2) K

  • 0.12 × 0.10 × 0.06 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.615, Tmax = 0.775

  • 7940 measured reflections

  • 5269 independent reflections

  • 4451 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.093

  • S = 1.00

  • 5269 reflections

  • 381 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.91 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ir1—C23 1.982 (7)
Ir1—C34 1.993 (7)
Ir1—N1 2.217 (5)
Ir1—N2 2.035 (6)
Ir1—N3 2.052 (6)
Ir1—O2 2.219 (4)
C23—Ir1—C34 90.5 (2)
C23—Ir1—N2 81.7 (3)
C34—Ir1—N3 80.7 (3)
N1—Ir1—O2 86.04 (19)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H36⋯O1i 0.85 1.98 2.756 (7) 150
O2—H36⋯O1i 0.85 1.98 2.756 (7) 150
Symmetry code: (i) -x, -y+2, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Since the initial work by Thompson and Forrest (Baldo et al., 1998), there have been considerable attention focused on designing homoleptic Ir triscyclometalates (CÑ)3Ir and heteroleptic Ir complexes (CÑ)2Ir(LX) for their application in organic light emitting diodes (OLEDs), where CÑ is a general abbreviation used hereafter for a cyclometalating ligand and LX is an ancillary ligand. (CÑ)2Ir(LX) complexes, containing cyclometalating ligands 2-pyridylphenyl, have already been incorporated with different kinds of ancillary ligands, such as β-diketonate, 2-picolinic acid, to exploit their potential application in OLEDs. (Adachi et al., 2000; Lamansky et al., 2001; Beeby et al., 2003; You & Park, 2005). However, among all the ancillary lignads used in (CÑ)2Ir(LX) complexes, N-(1-naphthyl)acetamide has never been studied..

In this paper, we report the crystal structure of (CÑ)2Ir(LX) with N-(1-naphthyl)acetamide as ancillary ligand, it is a solvated neutral mononuclear [Ir(ppy)2(N-acetyl-1-naphthylamino)(H2O)] (ppy=2-pyridylphenyl) complex. The Ir atom has a distorted octahedral geometry involving two ppy ligands, one N-(1-naphthyl)acetamide ligand and one water molecule.The average bond lengthes from two N atoms and two C atoms in two ppy ligands to iridium center are Ir—Nav = 2.048Å and Ir—Cav = 1.987Å respectively, the bond lengthes from N atom in the N-acetylnaphthylamine ligand and the O atom in aqua to Ir atom are Ir—N=2.217 (5)Å and Ir—O= 2.219 (4).(Table 1).

The molecules of the title complexes are linked by O—H···O intermolecule hydrogen bonds formed by the coordinated water molecules and amido O atom of the N-acetyl-1-naphthylamino ligands.(Fig. 2.)

Related literature top

For related literature, see: Adachi et al. (2000); Lamansky et al. (2001); Beeby et al. (2003); You & Park (2005); Baldo et al. (1998).

Experimental top

0.107 g [(ppy)2IrCl]2 (1 eq.) and 0.047 g (2.5 eq.) N-(1-naphthyl)acetamide were dissolved in dichlomethane, 0.054 g sodium methanol(10eq.) then added to the mixture to neutralize the hydrochloric acid that produced in the reaction. The reaction was stirred at room temperature for 24 h. After the reaction, the solvent was removed and the residua was washed with hot water and ether. The crude product was separated by chromatography on silica gel with dichloromethane as eluent to give a yellow solid. Single crystals suitable for X-ray diffraction were grown by slow diffusion of ethylene glycol solution.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93 (aromatic), 0.97 Å (methylene), and refined using a riding model with Uiso(H) = 1.2Ueq(C,N). Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.82 Å and H···H = 1.29 Å, each within a standard deviation of 0.01 Å; and with Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of (1) showing the atomic numbering scheme and octahedral coordination of Ir(III). Non-H atoms are shown with the 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of (1).The intermolecluar hydrogen bonds are shown as dashed lines.
Aqua[N-(1-naphthyl)acetamido-λN]bis[2-(2-pyridyl)phenyl-κ2N,C1]iridium(III) ethylene glycol hemisolvate top
Crystal data top
[Ir(C11H8N)2(C12H10NO)(H2O)]·0.5C2H6O2Z = 2
Mr = 733.83F(000) = 726
Triclinic, P1Dx = 1.621 Mg m3
a = 10.097 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.888 (4) ÅCell parameters from 2801 reflections
c = 14.453 (5) Åθ = 2.3–22.3°
α = 95.580 (7)°µ = 4.48 mm1
β = 92.940 (7)°T = 273 K
γ = 107.423 (6)°Block, green
V = 1503.4 (10) Å30.12 × 0.10 × 0.06 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5269 independent reflections
Radiation source: fine-focus sealed tube4451 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1112
Tmin = 0.615, Tmax = 0.775k = 1212
7940 measured reflectionsl = 178
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.05P)2 + 0.001P]
5269 reflections(Δ/σ)max = 0.004
381 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.91 e Å3
Crystal data top
[Ir(C11H8N)2(C12H10NO)(H2O)]·0.5C2H6O2γ = 107.423 (6)°
Mr = 733.83V = 1503.4 (10) Å3
Triclinic, P1Z = 2
a = 10.097 (4) ÅMo Kα radiation
b = 10.888 (4) ŵ = 4.48 mm1
c = 14.453 (5) ÅT = 273 K
α = 95.580 (7)°0.12 × 0.10 × 0.06 mm
β = 92.940 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5269 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4451 reflections with I > 2σ(I)
Tmin = 0.615, Tmax = 0.775Rint = 0.027
7940 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.00Δρmax = 0.74 e Å3
5269 reflectionsΔρmin = 0.91 e Å3
381 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.13408 (3)0.89887 (2)0.175881 (18)0.03749 (11)
O10.1828 (5)1.1138 (5)0.0220 (4)0.0639 (15)
O20.0027 (5)1.0120 (4)0.1312 (3)0.0525 (12)
H370.05501.03510.09060.063*
H360.07670.96410.09980.063*
O30.9250 (19)0.519 (2)0.6241 (11)0.287 (10)
H30.99130.51730.65860.431*
N10.3081 (5)1.0563 (5)0.1332 (4)0.0443 (14)
N20.1680 (6)0.9878 (5)0.3092 (4)0.0425 (13)
N30.0900 (6)0.7881 (5)0.0484 (4)0.0461 (14)
C10.4217 (8)1.2363 (8)0.0431 (6)0.068 (2)
H1A0.40891.24990.02100.102*
H1B0.50471.21180.05250.102*
H1C0.43031.31490.08260.102*
C20.2964 (7)1.1287 (6)0.0672 (5)0.0473 (17)
C30.4419 (8)1.0810 (8)0.1841 (6)0.059 (2)
C40.5249 (8)1.0024 (8)0.1629 (6)0.068 (2)
H40.49750.94130.11040.082*
C50.6484 (9)1.0104 (12)0.2166 (9)0.096 (4)
H50.70110.95570.20100.116*
C60.6883 (11)1.1041 (14)0.2944 (9)0.106 (5)
H60.76891.11160.33160.127*
C70.6075 (9)1.1888 (10)0.3179 (6)0.073 (3)
C80.4834 (8)1.1748 (8)0.2611 (5)0.059 (2)
C90.4042 (10)1.2587 (8)0.2848 (6)0.068 (2)
H90.32251.25300.24960.081*
C100.4520 (13)1.3486 (10)0.3613 (7)0.104 (4)
H100.40201.40520.37820.125*
C110.5746 (15)1.3572 (13)0.4147 (8)0.115 (5)
H110.60391.41910.46670.138*
C120.6483 (12)1.2812 (13)0.3937 (8)0.099 (4)
H120.72951.28940.43050.119*
C130.1079 (8)1.0713 (7)0.3443 (5)0.0556 (19)
H130.04781.09680.30490.067*
C140.1302 (10)1.1234 (8)0.4373 (6)0.071 (2)
H140.08541.18220.45950.085*
C150.2177 (10)1.0875 (9)0.4957 (6)0.074 (3)
H150.23481.12180.55820.089*
C160.2797 (9)1.0009 (9)0.4610 (6)0.069 (2)
H160.34010.97580.50030.082*
C170.2551 (7)0.9484 (7)0.3676 (5)0.0512 (19)
C180.3088 (7)0.8496 (7)0.3221 (5)0.0519 (19)
C190.4038 (8)0.7965 (9)0.3665 (6)0.066 (2)
H190.43680.82490.42850.079*
C200.4466 (9)0.7041 (9)0.3180 (8)0.081 (3)
H200.51000.67020.34690.097*
C210.3967 (9)0.6599 (8)0.2261 (7)0.074 (3)
H210.42550.59540.19400.089*
C220.3047 (8)0.7107 (7)0.1820 (6)0.0573 (19)
H220.27240.67940.12020.069*
C230.2586 (7)0.8065 (6)0.2264 (5)0.0430 (16)
C240.1684 (8)0.8064 (7)0.0248 (5)0.0557 (19)
H240.24910.87680.01920.067*
C250.1343 (11)0.7259 (8)0.1069 (6)0.073 (3)
H250.19240.73960.15530.088*
C260.0123 (12)0.6241 (8)0.1167 (7)0.085 (3)
H260.01400.56830.17200.102*
C270.0684 (10)0.6070 (8)0.0442 (6)0.074 (3)
H270.15160.53930.05080.089*
C280.0306 (8)0.6881 (7)0.0407 (5)0.0534 (19)
C290.1027 (7)0.6709 (6)0.1252 (5)0.0500 (18)
C300.2245 (8)0.5705 (7)0.1320 (7)0.062 (2)
H300.26960.51510.07920.074*
C310.2773 (8)0.5542 (8)0.2165 (7)0.072 (3)
H310.35830.48710.22120.087*
C320.2111 (8)0.6368 (8)0.2951 (7)0.070 (2)
H320.24680.62400.35270.083*
C330.0919 (8)0.7385 (7)0.2885 (6)0.059 (2)
H330.05010.79470.34180.071*
C340.0326 (6)0.7588 (6)0.2036 (5)0.0426 (16)
C350.9687 (19)0.537 (2)0.5300 (13)0.197 (10)
H35A0.88600.53900.49360.237*
H35B1.03220.62490.53570.237*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.03596 (15)0.03611 (15)0.03817 (16)0.00916 (10)0.00124 (10)0.00195 (10)
O10.057 (3)0.066 (3)0.067 (4)0.013 (3)0.012 (3)0.025 (3)
O20.048 (3)0.057 (3)0.057 (3)0.024 (2)0.001 (2)0.004 (2)
O30.33 (2)0.33 (2)0.175 (13)0.053 (18)0.046 (15)0.122 (15)
N10.039 (3)0.044 (3)0.046 (3)0.009 (2)0.004 (3)0.004 (3)
N20.042 (3)0.038 (3)0.043 (3)0.007 (2)0.004 (3)0.000 (3)
N30.048 (3)0.039 (3)0.048 (4)0.012 (3)0.007 (3)0.001 (3)
C10.068 (5)0.064 (5)0.062 (5)0.001 (4)0.003 (4)0.018 (4)
C20.047 (4)0.040 (4)0.051 (4)0.009 (3)0.007 (3)0.002 (3)
C30.048 (4)0.060 (5)0.058 (5)0.001 (4)0.000 (4)0.016 (4)
C40.056 (5)0.071 (6)0.084 (6)0.021 (4)0.022 (5)0.023 (5)
C50.048 (5)0.131 (10)0.125 (10)0.031 (6)0.018 (6)0.069 (8)
C60.057 (6)0.158 (12)0.088 (8)0.007 (7)0.003 (6)0.069 (8)
C70.047 (5)0.094 (7)0.059 (6)0.013 (5)0.006 (4)0.029 (5)
C80.051 (4)0.068 (5)0.044 (5)0.007 (4)0.001 (4)0.019 (4)
C90.075 (6)0.055 (5)0.057 (5)0.002 (4)0.014 (4)0.000 (4)
C100.129 (9)0.087 (7)0.056 (6)0.025 (7)0.005 (6)0.001 (5)
C110.131 (12)0.105 (10)0.056 (7)0.035 (8)0.007 (7)0.000 (6)
C120.086 (8)0.115 (10)0.067 (8)0.009 (7)0.010 (6)0.015 (7)
C130.052 (4)0.053 (4)0.055 (5)0.007 (4)0.008 (4)0.000 (4)
C140.082 (6)0.064 (5)0.059 (6)0.014 (5)0.022 (5)0.006 (4)
C150.086 (7)0.073 (6)0.051 (5)0.009 (5)0.011 (5)0.007 (5)
C160.070 (6)0.081 (6)0.041 (5)0.003 (5)0.006 (4)0.002 (4)
C170.045 (4)0.055 (4)0.045 (4)0.000 (3)0.000 (3)0.012 (4)
C180.041 (4)0.056 (4)0.053 (5)0.004 (3)0.003 (3)0.013 (4)
C190.052 (5)0.080 (6)0.062 (5)0.012 (4)0.009 (4)0.030 (5)
C200.067 (6)0.083 (7)0.108 (8)0.041 (5)0.004 (6)0.034 (6)
C210.075 (6)0.060 (5)0.099 (8)0.034 (5)0.002 (5)0.020 (5)
C220.058 (5)0.056 (5)0.061 (5)0.022 (4)0.005 (4)0.006 (4)
C230.036 (3)0.033 (3)0.054 (4)0.001 (3)0.001 (3)0.005 (3)
C240.069 (5)0.055 (5)0.042 (4)0.017 (4)0.009 (4)0.004 (4)
C250.122 (8)0.061 (5)0.044 (5)0.037 (5)0.011 (5)0.006 (4)
C260.140 (10)0.052 (5)0.058 (6)0.028 (6)0.011 (6)0.008 (4)
C270.087 (6)0.061 (5)0.061 (6)0.009 (5)0.015 (5)0.005 (4)
C280.062 (5)0.044 (4)0.050 (5)0.015 (4)0.013 (4)0.000 (3)
C290.043 (4)0.040 (4)0.063 (5)0.008 (3)0.000 (4)0.000 (3)
C300.045 (4)0.051 (5)0.081 (6)0.004 (4)0.004 (4)0.003 (4)
C310.050 (5)0.051 (5)0.107 (8)0.002 (4)0.019 (5)0.021 (5)
C320.055 (5)0.070 (6)0.087 (7)0.016 (4)0.029 (5)0.022 (5)
C330.049 (4)0.052 (4)0.074 (6)0.012 (4)0.016 (4)0.000 (4)
C340.031 (3)0.049 (4)0.054 (4)0.022 (3)0.006 (3)0.007 (3)
C350.17 (2)0.18 (2)0.23 (3)0.073 (13)0.10 (2)0.035 (17)
Geometric parameters (Å, º) top
Ir1—C231.982 (7)C13—H130.9300
Ir1—C341.993 (7)C14—C151.356 (12)
Ir1—N12.217 (5)C14—H140.9300
Ir1—N22.035 (6)C15—C161.351 (12)
Ir1—N32.052 (6)C15—H150.9300
Ir1—O22.219 (4)C16—C171.393 (10)
O1—C21.249 (8)C16—H160.9300
O2—H370.8500C17—C181.459 (11)
O2—H360.8500C18—C191.417 (10)
O3—C351.47 (2)C18—C231.432 (10)
O3—H30.8200C19—C201.358 (12)
N1—C21.318 (8)C19—H190.9300
N1—C31.443 (9)C20—C211.381 (13)
N2—C131.313 (9)C20—H200.9300
N2—C171.374 (9)C21—C221.375 (10)
N3—C241.348 (9)C21—H210.9300
N3—C281.360 (9)C22—C231.382 (10)
C1—C21.527 (10)C22—H220.9300
C1—H1A0.9600C24—C251.368 (10)
C1—H1B0.9600C24—H240.9300
C1—H1C0.9600C25—C261.378 (13)
C3—C81.389 (11)C25—H250.9300
C3—C41.390 (11)C26—C271.354 (13)
C4—C51.411 (12)C26—H260.9300
C4—H40.9300C27—C281.403 (11)
C5—C61.397 (16)C27—H270.9300
C5—H50.9300C28—C291.453 (11)
C6—C71.432 (16)C29—C301.394 (10)
C6—H60.9300C29—C341.415 (9)
C7—C121.368 (14)C30—C311.363 (12)
C7—C81.423 (11)C30—H300.9300
C8—C91.413 (12)C31—C321.382 (12)
C9—C101.365 (12)C31—H310.9300
C9—H90.9300C32—C331.386 (10)
C10—C111.399 (16)C32—H320.9300
C10—H100.9300C33—C341.401 (10)
C11—C121.293 (16)C33—H330.9300
C11—H110.9300C35—C35i1.426 (18)
C12—H120.9300C35—H35A0.9700
C13—C141.388 (11)C35—H35B0.9700
C23—Ir1—C3490.5 (2)C15—C14—C13119.3 (9)
C23—Ir1—N281.7 (3)C15—C14—H14120.3
C34—Ir1—N293.3 (3)C13—C14—H14120.3
C23—Ir1—N394.7 (3)C16—C15—C14118.5 (8)
C34—Ir1—N380.7 (3)C16—C15—H15120.8
N2—Ir1—N3172.9 (2)C14—C15—H15120.8
C23—Ir1—N193.8 (2)C15—C16—C17121.5 (8)
C34—Ir1—N1174.7 (2)C15—C16—H16119.2
N2—Ir1—N190.5 (2)C17—C16—H16119.2
N3—Ir1—N195.8 (2)N2—C17—C16119.1 (8)
C23—Ir1—O2175.1 (2)N2—C17—C18113.6 (6)
C34—Ir1—O289.9 (2)C16—C17—C18127.3 (7)
N2—Ir1—O293.5 (2)C19—C18—C23120.1 (8)
N3—Ir1—O290.2 (2)C19—C18—C17124.4 (7)
N1—Ir1—O286.04 (19)C23—C18—C17115.5 (6)
Ir1—O2—H3785.0C20—C19—C18119.8 (8)
Ir1—O2—H36112.0C20—C19—H19120.1
H37—O2—H36104.4C18—C19—H19120.1
C35—O3—H3109.5C19—C20—C21120.6 (8)
C2—N1—C3118.9 (6)C19—C20—H20119.7
C2—N1—Ir1124.8 (4)C21—C20—H20119.7
C3—N1—Ir1116.3 (4)C22—C21—C20120.3 (9)
C13—N2—C17118.6 (6)C22—C21—H21119.8
C13—N2—Ir1125.8 (5)C20—C21—H21119.8
C17—N2—Ir1115.4 (5)C21—C22—C23122.3 (8)
C24—N3—C28119.5 (6)C21—C22—H22118.9
C24—N3—Ir1126.1 (5)C23—C22—H22118.9
C28—N3—Ir1114.3 (5)C22—C23—C18116.9 (6)
C2—C1—H1A109.5C22—C23—Ir1129.3 (6)
C2—C1—H1B109.5C18—C23—Ir1113.8 (5)
H1A—C1—H1B109.5N3—C24—C25122.8 (8)
C2—C1—H1C109.5N3—C24—H24118.6
H1A—C1—H1C109.5C25—C24—H24118.6
H1B—C1—H1C109.5C24—C25—C26118.8 (9)
O1—C2—N1121.9 (6)C24—C25—H25120.6
O1—C2—C1116.8 (6)C26—C25—H25120.6
N1—C2—C1121.3 (6)C27—C26—C25118.6 (9)
C8—C3—C4118.9 (8)C27—C26—H26120.7
C8—C3—N1120.5 (8)C25—C26—H26120.7
C4—C3—N1120.4 (7)C26—C27—C28122.1 (8)
C3—C4—C5123.5 (10)C26—C27—H27118.9
C3—C4—H4118.2C28—C27—H27118.9
C5—C4—H4118.2N3—C28—C27118.1 (8)
C6—C5—C4117.1 (11)N3—C28—C29115.4 (6)
C6—C5—H5121.4C27—C28—C29126.3 (7)
C4—C5—H5121.4C30—C29—C34121.9 (7)
C5—C6—C7121.3 (10)C30—C29—C28123.7 (7)
C5—C6—H6119.4C34—C29—C28114.2 (6)
C7—C6—H6119.4C31—C30—C29119.7 (8)
C12—C7—C8120.5 (11)C31—C30—H30120.2
C12—C7—C6120.8 (10)C29—C30—H30120.2
C8—C7—C6118.6 (10)C30—C31—C32120.4 (7)
C3—C8—C9121.2 (7)C30—C31—H31119.8
C3—C8—C7120.5 (9)C32—C31—H31119.8
C9—C8—C7118.3 (9)C31—C32—C33120.2 (8)
C10—C9—C8117.7 (10)C31—C32—H32119.9
C10—C9—H9121.2C33—C32—H32119.9
C8—C9—H9121.2C32—C33—C34121.6 (8)
C9—C10—C11121.4 (13)C32—C33—H33119.2
C9—C10—H10119.3C34—C33—H33119.2
C11—C10—H10119.3C33—C34—C29116.2 (6)
C12—C11—C10121.7 (12)C33—C34—Ir1129.1 (5)
C12—C11—H11119.2C29—C34—Ir1114.7 (5)
C10—C11—H11119.2C35i—C35—O3130 (3)
C11—C12—C7120.5 (12)C35i—C35—H35A104.8
C11—C12—H12119.8O3—C35—H35A104.8
C7—C12—H12119.8C35i—C35—H35B104.8
N2—C13—C14122.9 (8)O3—C35—H35B104.8
N2—C13—H13118.5H35A—C35—H35B105.8
C14—C13—H13118.5
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H36···O1ii0.851.982.756 (7)150
O2—H36···O1ii0.851.982.756 (7)150
Symmetry code: (ii) x, y+2, z.

Experimental details

Crystal data
Chemical formula[Ir(C11H8N)2(C12H10NO)(H2O)]·0.5C2H6O2
Mr733.83
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)10.097 (4), 10.888 (4), 14.453 (5)
α, β, γ (°)95.580 (7), 92.940 (7), 107.423 (6)
V3)1503.4 (10)
Z2
Radiation typeMo Kα
µ (mm1)4.48
Crystal size (mm)0.12 × 0.10 × 0.06
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.615, 0.775
No. of measured, independent and
observed [I > 2σ(I)] reflections
7940, 5269, 4451
Rint0.027
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.093, 1.00
No. of reflections5269
No. of parameters381
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.91

Computer programs: APEX2 (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Ir1—C231.982 (7)Ir1—N22.035 (6)
Ir1—C341.993 (7)Ir1—N32.052 (6)
Ir1—N12.217 (5)Ir1—O22.219 (4)
C23—Ir1—C3490.5 (2)C34—Ir1—N380.7 (3)
C23—Ir1—N281.7 (3)N1—Ir1—O286.04 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H36···O1i0.851.982.756 (7)150.4
O2—H36···O1i0.851.982.756 (7)150.4
Symmetry code: (i) x, y+2, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20571033) and by the Program for New Century Excellent Talents in Universities (NCET-06–0483).

References

First citationAdachi, C., Baldo, M. A., Forrest, S. R. & Thompson, M. E. (2000). Appl. Phys. Lett. 77, 904–906.  Web of Science CrossRef CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBaldo, M. A., O'Brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E. & Forrest, S. R. (1998). Nature (London), 395, 151–154.  CAS Google Scholar
First citationBeeby, A., Bettington, S., Samuel, I. D. W. & Wang, Z. (2003). J. Mater. Chem. 13, 80–83.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLamansky, S., Djurovich, P., Murphy, D. & Abdel-Razzaq, F. (2001). J. Am. Chem. Soc. 123, 4304–4312.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYou, Y. & Park, S. Y. (2005). J. Am. Chem. Soc. 127, 12438–12439.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds