metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m706-m707

catena-Poly[[[di­aqua­bis­(1H-indole-3-acetato-κO)cobalt(II)]-μ-4,4′-bi­pyridine-κ2N:N′] tetra­hydrate]

aCollege of Chemistry and Chemical Technology, Daqing Petroleum Institute, Daqing 163318, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 9 April 2008; accepted 18 April 2008; online 23 April 2008)

The 4,4′-bipyridine spacer in the title compound, [Co(C10H8NO2)2(C10H8N2)(H2O)2]·4H2O, links the diaqua­cobalt(II) dicarboxyl­ate units into a linear chain; the metal atom lies on a center of inversion in an octa­hedral environment. The coordinated and uncoordinated water mol­ecules inter­act through O—H⋯O hydrogen bonds to form a three-dimensional network.

Related literature

For examples of diaqua transition-metal dicarboxyl­ates that are linked by 4,4′-bipyridine, see: Deng et al. (2005[Deng, Z.-P., Gao, S., Huo, L.-H. & Zhao, J.-G. (2005). Acta Cryst. E61, m2550-m2552.]); Gao et al. (2006[Gao, J.-S., Hou, G.-F., Yu, Y.-H., Hou, Y.-J. & Li, G.-M. (2006). Acta Cryst. E62, m2685-m2687.]); He et al. (2003[He, H.-Y., Ma, A.-Q. & Zhu, L.-G. (2003). Acta Cryst. E59, m333-m335.]); Hou et al. (2007[Hou, Y.-J., Yu, Y.-H., Sun, Z.-Z., Li, B.-Y. & Hou, G.-F. (2007). Acta Cryst. E63, m1560.]); Li et al. (2006[Li, W., Li, C.-H., Yang, Y.-Q., Li, C.-X. & Xu, W.-J. (2006). Chin. J. Appl. Chem. 23, 794-797.]); Pedireddi & Varughese (2004[Pedireddi, V. R. & Varughese, S. (2004). Inorg. Chem. 43, 450-457.]); Yan et al. (2005[Yan, Y., Wu, C.-D., He, X., Sun, Y.-Q. & Lu, C.-Z. (2005). Cryst. Growth Des. 5, 821-827.]); Zhang et al. (1999[Zhang, Y.-S., Enright, G. D., Breeze, S. R. & Wang, S. (1999). New J. Chem. 23, 625-628.]); Zheng, Su & Feng (2006[Zheng, X.-Y., Su, H. & Feng, Y.-L. (2006). Acta Cryst. E62, m1393-m1394.]); Zheng, Tong & Chen (2006[Zheng, Y.-Z., Tong, M.-L. & Chen, X.-M. (2006). J. Mol. Struct. 796, 9-17.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C10H8NO2)2(C10H8N2)(H2O)2]·4H2O

  • Mr = 671.56

  • Monoclinic, P 21 /c

  • a = 11.5011 (3) Å

  • b = 16.0953 (4) Å

  • c = 8.8302 (2) Å

  • β = 111.784 (1)°

  • V = 1517.86 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 295 (2) K

  • 0.35 × 0.20 × 0.08 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.810, Tmax = 0.951

  • 11131 measured reflections

  • 2584 independent reflections

  • 1771 reflections with I > 2˘I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.102

  • S = 1.03

  • 2584 reflections

  • 226 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—O1 2.182 (2)
Co1—O1W 2.042 (2)
Co1—N2 2.184 (2)
O1—Co1—O1W 89.74 (7)
O1—Co1—O1Wi 90.26 (7)
O1—Co1—N2 91.58 (7)
O1—Co1—N2i 88.42 (7)
O1W—Co1—N2 91.63 (8)
O1W—Co1—N2i 88.37 (8)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O2 0.85 (3) 1.76 (3) 2.585 (2) 165 (3)
O1W—H1W2⋯O2W 0.85 (3) 1.89 (3) 2.724 (3) 171 (3)
O2W—H2W1⋯O3Wii 0.85 (3) 1.89 (3) 2.735 (3) 173 (3)
O2W—H2W2⋯O2iii 0.84 (3) 1.94 (3) 2.752 (3) 162 (3)
O3W—H3W1⋯O1 0.85 (3) 2.00 (3) 2.854 (3) 179 (3)
O3W—H3W2⋯O2Wi 0.85 (3) 2.03 (3) 2.872 (3) 168 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

There are many crystallographic examples of transition metal di(carboxylates) that are linked by the 4,4'-bipyridine spacer ligand. Among these are examples that have coordinated water; the water entities engage in hydrogen bonding that consolidates the structure.

The title diaquadi(indole-3-carboxylato)cobalt–4,4'-bipyridine tetrahydrate (Scheme I) exists as a chain. The metal atom is coordinated by two unidentate carboxylate groups, two water molecules and two 4,4'-bipyridine ligands in an octahedral geometry (Fig. 1). The spacer ligand links the mononuclear units into a linear chain. The chains are further linked by hydrogen bonds into a three-dimensional network (Table 2).

Related literature top

For examples of diaqua transition-metal dicarboxylates that are linked by 4,4'-bipyridine, see: Deng et al. (2005); Gao et al. (2006); He et al. (2003); Hou et al. (2007); Li et al. (2006); Pedireddi & Varughese (2004); Yan et al. (2005); Zhang et al. (1999); Zheng, Su & Feng (2006); Zheng, Tong & Chen (2006).

Experimental top

Cobalt(II) sulfate septahydrate (0.28 g, 1 mmol) and 4,4'-bipyridine (0.16 g, 1 mmol) were added to a hot aqueous solution of indole-3-acetic acid (0.12 g, 1 mmol); the pH was adjusted to 6 with 0.1M sodium hydroxide. The solution was allowed to evaporate at room temperature. Single crystals are separated from the filtered solution after several days.

Refinement top

Hydrogen atoms were treated as riding, with C–H = 0.93 to 0.97 Å and were included in the refinement with U(H) set to 1.2 times Ueq(C). The water and amino H-atoms were located in a difference Fourier map, and were refined with distance restraints of O–H = N–H = 0.85±0.01 Å and H···H 1.39±0.01 Å. Their temperature factors were tied to those of the parent atoms by a factor of 1.5

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Thermal displacement ellipsoid plot (Barbour, 2001) illustrating the coordination geometry of cobalt in Co(C10H8N2)(C10H8NO2)2(H2O)2.4H2O. Displacement ellipsoids are drawn at the 50% probability level and H atoms as spheres of arbitrary radii.
catena-Poly[[[diaquabis(1H-indole-3-acetato- κO)cobalt(II)]-µ-4,4'-bipyridine-κ2N:N'] tetrahydrate] top
Crystal data top
[Co(C10H8NO2)2(C10H8N2)(H2O)2]·4H2OF(000) = 702
Mr = 671.56Dx = 1.469 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2534 reflections
a = 11.5011 (3) Åθ = 2.3–21.7°
b = 16.0953 (4) ŵ = 0.63 mm1
c = 8.8302 (2) ÅT = 295 K
β = 111.784 (1)°Block, pink
V = 1517.86 (6) Å30.35 × 0.20 × 0.08 mm
Z = 2
Data collection top
Bruker APEXII
diffractometer
2584 independent reflections
Radiation source: fine-focus sealed tube1771 reflections with I > 2˘I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.810, Tmax = 0.951k = 1719
11131 measured reflectionsl = 109
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.1356P]
where P = (Fo2 + 2Fc2)/3
2584 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.33 e Å3
10 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Co(C10H8NO2)2(C10H8N2)(H2O)2]·4H2OV = 1517.86 (6) Å3
Mr = 671.56Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.5011 (3) ŵ = 0.63 mm1
b = 16.0953 (4) ÅT = 295 K
c = 8.8302 (2) Å0.35 × 0.20 × 0.08 mm
β = 111.784 (1)°
Data collection top
Bruker APEXII
diffractometer
2584 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1771 reflections with I > 2˘I)
Tmin = 0.810, Tmax = 0.951Rint = 0.037
11131 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04010 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.33 e Å3
2584 reflectionsΔρmin = 0.53 e Å3
226 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.50000.02917 (19)
O10.57914 (16)0.50222 (11)0.7661 (2)0.0353 (5)
O20.60753 (17)0.63848 (12)0.8108 (2)0.0454 (5)
O1W0.50557 (18)0.62679 (12)0.4969 (2)0.0423 (5)
H1W10.539 (2)0.6396 (16)0.5967 (13)0.063*
H1W20.472 (2)0.6689 (12)0.441 (3)0.063*
O2W0.4133 (2)0.77242 (13)0.3416 (3)0.0535 (6)
H2W10.387 (2)0.7955 (17)0.409 (3)0.080*
H2W20.4825 (18)0.7928 (19)0.348 (4)0.080*
O3W0.6525 (2)0.34501 (14)0.9218 (3)0.0617 (6)
H3W10.631 (3)0.3921 (10)0.877 (3)0.093*
H3W20.644 (3)0.3081 (13)0.850 (3)0.093*
N10.8052 (3)0.72774 (16)1.3063 (3)0.0603 (8)
H1N0.806 (3)0.7654 (15)1.373 (3)0.090*
N20.30936 (19)0.50106 (13)0.4973 (3)0.0335 (6)
C10.6121 (2)0.56454 (19)0.8587 (3)0.0339 (7)
C20.6562 (3)0.55025 (19)1.0415 (3)0.0443 (8)
H2A0.58340.54401.07090.053*
H2B0.70280.49851.06760.053*
C30.7364 (3)0.61775 (17)1.1427 (3)0.0374 (7)
C40.7058 (3)0.6757 (2)1.2330 (4)0.0530 (9)
H40.62850.67961.24360.064*
C50.8624 (3)0.63474 (17)1.1623 (3)0.0369 (7)
C60.9462 (3)0.5963 (2)1.1030 (4)0.0522 (8)
H60.92160.55041.03440.063*
C71.0646 (3)0.6275 (3)1.1475 (5)0.0712 (11)
H71.12080.60221.10880.085*
C81.1028 (3)0.6955 (3)1.2485 (5)0.0776 (12)
H81.18420.71491.27610.093*
C91.0246 (3)0.7352 (2)1.3093 (4)0.0656 (10)
H91.05100.78121.37710.079*
C100.9034 (3)0.70374 (18)1.2654 (3)0.0460 (8)
C110.2700 (2)0.55901 (17)0.5739 (4)0.0393 (7)
H110.32550.60110.62730.047*
C120.1515 (2)0.56060 (17)0.5789 (3)0.0401 (7)
H120.13000.60250.63620.048*
C130.0644 (2)0.50028 (16)0.4993 (3)0.0309 (6)
C140.1058 (2)0.44017 (18)0.4190 (4)0.0439 (8)
H140.05210.39770.36330.053*
C150.2258 (3)0.44290 (18)0.4212 (4)0.0439 (8)
H150.25030.40140.36590.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0262 (3)0.0343 (3)0.0289 (3)0.0001 (2)0.0124 (2)0.0008 (3)
O10.0385 (11)0.0364 (11)0.0311 (11)0.0045 (9)0.0129 (9)0.0043 (10)
O20.0620 (14)0.0377 (13)0.0338 (12)0.0019 (11)0.0146 (10)0.0007 (11)
O1W0.0498 (12)0.0364 (12)0.0347 (11)0.0023 (10)0.0088 (10)0.0033 (10)
O2W0.0640 (15)0.0449 (14)0.0537 (15)0.0024 (12)0.0243 (12)0.0021 (11)
O3W0.0847 (17)0.0520 (14)0.0557 (15)0.0017 (15)0.0343 (14)0.0021 (12)
N10.081 (2)0.0483 (19)0.0477 (19)0.0026 (17)0.0200 (17)0.0148 (15)
N20.0311 (12)0.0415 (14)0.0303 (13)0.0024 (12)0.0142 (10)0.0054 (12)
C10.0275 (14)0.045 (2)0.0317 (17)0.0034 (14)0.0144 (12)0.0003 (17)
C20.0499 (18)0.053 (2)0.0284 (17)0.0093 (16)0.0130 (14)0.0004 (16)
C30.0463 (17)0.0416 (18)0.0240 (16)0.0032 (15)0.0125 (13)0.0028 (14)
C40.051 (2)0.063 (2)0.046 (2)0.0047 (18)0.0186 (16)0.0020 (18)
C50.0443 (17)0.0373 (18)0.0297 (16)0.0010 (15)0.0145 (13)0.0031 (15)
C60.056 (2)0.054 (2)0.052 (2)0.0043 (17)0.0275 (17)0.0029 (17)
C70.059 (2)0.087 (3)0.078 (3)0.001 (2)0.037 (2)0.010 (2)
C80.053 (2)0.102 (3)0.071 (3)0.022 (2)0.015 (2)0.019 (3)
C90.073 (3)0.058 (2)0.049 (2)0.026 (2)0.0027 (19)0.0010 (19)
C100.059 (2)0.0398 (19)0.0331 (19)0.0060 (17)0.0094 (16)0.0011 (16)
C110.0318 (16)0.0437 (18)0.0445 (19)0.0071 (14)0.0166 (13)0.0130 (16)
C120.0348 (16)0.0449 (19)0.0467 (19)0.0023 (14)0.0221 (14)0.0130 (15)
C130.0266 (14)0.0405 (17)0.0276 (15)0.0003 (14)0.0125 (11)0.0003 (14)
C140.0317 (16)0.049 (2)0.054 (2)0.0066 (14)0.0191 (14)0.0151 (16)
C150.0361 (17)0.052 (2)0.049 (2)0.0035 (16)0.0225 (15)0.0193 (17)
Geometric parameters (Å, º) top
Co1—O12.182 (2)C3—C41.355 (4)
Co1—O1i2.182 (2)C3—C51.421 (3)
Co1—O1Wi2.042 (2)C4—H40.9300
Co1—O1W2.042 (2)C5—C61.400 (4)
Co1—N22.184 (2)C5—C101.402 (4)
Co1—N2i2.184 (2)C6—C71.365 (4)
O1—C11.260 (3)C6—H60.9300
O2—C11.258 (3)C7—C81.376 (5)
O1W—H1W10.85 (3)C7—H70.9300
O1W—H1W20.85 (3)C8—C91.365 (5)
O2W—H2W10.85 (3)C8—H80.9300
O2W—H2W20.84 (3)C9—C101.396 (4)
O3W—H3W10.85 (3)C9—H90.9300
O3W—H3W20.85 (3)C11—C121.380 (3)
N1—C101.364 (4)C11—H110.9300
N1—C41.371 (4)C12—C131.385 (3)
N1—H1N0.84 (1)C12—H120.9300
N2—C111.327 (3)C13—C141.384 (3)
N2—C151.331 (3)C13—C13ii1.487 (5)
C1—C21.519 (4)C14—C151.374 (3)
C2—C31.489 (4)C14—H140.9300
C2—H2A0.9700C15—H150.9300
C2—H2B0.9700
O1—Co1—O1i180.0N1—C4—H4124.9
O1—Co1—O1W89.74 (7)C6—C5—C10118.7 (3)
O1—Co1—O1Wi90.26 (7)C6—C5—C3133.0 (3)
O1—Co1—N291.58 (7)C10—C5—C3108.3 (2)
O1—Co1—N2i88.42 (7)C7—C6—C5118.8 (3)
O1W—Co1—O1Wi180.0C7—C6—H6120.6
O1W—Co1—N291.63 (8)C5—C6—H6120.6
O1W—Co1—N2i88.37 (8)C6—C7—C8121.6 (3)
N2—Co1—N2i180.0C6—C7—H7119.2
C1—O1—Co1128.05 (17)C8—C7—H7119.2
Co1—O1W—H1W1104 (2)C9—C8—C7121.9 (3)
Co1—O1W—H1W2143 (2)C9—C8—H8119.1
H1W1—O1W—H1W2111 (2)C7—C8—H8119.1
H2W1—O2W—H2W2111 (2)C8—C9—C10117.2 (3)
H3W1—O3W—H3W2110 (2)C8—C9—H9121.4
C10—N1—C4109.2 (3)C10—C9—H9121.4
C10—N1—H1N127 (3)N1—C10—C9131.6 (3)
C4—N1—H1N124 (3)N1—C10—C5106.5 (3)
C11—N2—C15115.6 (2)C9—C10—C5121.9 (3)
C11—N2—Co1122.10 (17)N2—C11—C12123.9 (2)
C15—N2—Co1122.25 (17)N2—C11—H11118.1
O2—C1—O1124.7 (3)C12—C11—H11118.1
O2—C1—C2117.2 (3)C11—C12—C13120.5 (2)
O1—C1—C2118.1 (2)C11—C12—H12119.7
C3—C2—C1114.6 (2)C13—C12—H12119.7
C3—C2—H2A108.6C14—C13—C12115.4 (2)
C1—C2—H2A108.6C14—C13—C13ii122.2 (3)
C3—C2—H2B108.6C12—C13—C13ii122.4 (3)
C1—C2—H2B108.6C15—C14—C13120.3 (3)
H2A—C2—H2B107.6C15—C14—H14119.8
C4—C3—C5105.8 (3)C13—C14—H14119.8
C4—C3—C2128.1 (3)N2—C15—C14124.2 (3)
C5—C3—C2126.1 (2)N2—C15—H15117.9
C3—C4—N1110.2 (3)C14—C15—H15117.9
C3—C4—H4124.9
O1Wi—Co1—O1—C1178.5 (2)C2—C3—C5—C10179.3 (3)
O1W—Co1—O1—C11.5 (2)C10—C5—C6—C70.1 (4)
N2—Co1—O1—C193.1 (2)C3—C5—C6—C7178.7 (3)
N2i—Co1—O1—C186.9 (2)C5—C6—C7—C80.2 (5)
O1Wi—Co1—N2—C11144.9 (2)C6—C7—C8—C90.1 (6)
O1W—Co1—N2—C1135.1 (2)C7—C8—C9—C100.2 (5)
O1—Co1—N2—C1154.6 (2)C4—N1—C10—C9179.1 (3)
O1i—Co1—N2—C11125.4 (2)C4—N1—C10—C50.4 (3)
O1Wi—Co1—N2—C1534.0 (2)C8—C9—C10—N1178.9 (3)
O1W—Co1—N2—C15146.0 (2)C8—C9—C10—C50.5 (5)
O1—Co1—N2—C15124.2 (2)C6—C5—C10—N1179.2 (3)
O1i—Co1—N2—C1555.8 (2)C3—C5—C10—N10.2 (3)
Co1—O1—C1—O22.0 (4)C6—C5—C10—C90.4 (4)
Co1—O1—C1—C2175.64 (15)C3—C5—C10—C9179.4 (3)
O2—C1—C2—C324.1 (3)C15—N2—C11—C120.7 (4)
O1—C1—C2—C3158.1 (2)Co1—N2—C11—C12178.1 (2)
C1—C2—C3—C4106.8 (3)N2—C11—C12—C131.0 (4)
C1—C2—C3—C572.4 (4)C11—C12—C13—C140.6 (4)
C5—C3—C4—N10.4 (3)C11—C12—C13—C13ii179.7 (3)
C2—C3—C4—N1179.0 (3)C12—C13—C14—C150.2 (4)
C10—N1—C4—C30.5 (4)C13ii—C13—C14—C15179.8 (3)
C4—C3—C5—C6178.7 (3)C11—N2—C15—C140.2 (4)
C2—C3—C5—C62.0 (5)Co1—N2—C15—C14178.7 (2)
C4—C3—C5—C100.1 (3)C13—C14—C15—N20.1 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O20.85 (3)1.76 (3)2.585 (2)165 (3)
O1W—H1W2···O2W0.85 (3)1.89 (3)2.724 (3)171 (3)
O2W—H2W1···O3Wiii0.85 (3)1.89 (3)2.735 (3)173 (3)
O2W—H2W2···O2iv0.84 (3)1.94 (3)2.752 (3)162 (3)
O3W—H3W1···O10.85 (3)2.00 (3)2.854 (3)179 (3)
O3W—H3W2···O2Wi0.85 (3)2.03 (3)2.872 (3)168 (3)
N1—H1N···O2v0.84 (1)2.64 (3)3.142 (3)120 (3)
Symmetry codes: (i) x+1, y+1, z+1; (iii) x+1, y+1/2, z+3/2; (iv) x, y+3/2, z1/2; (v) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C10H8NO2)2(C10H8N2)(H2O)2]·4H2O
Mr671.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)11.5011 (3), 16.0953 (4), 8.8302 (2)
β (°) 111.784 (1)
V3)1517.86 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.35 × 0.20 × 0.08
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.810, 0.951
No. of measured, independent and
observed [I > 2˘I)] reflections
11131, 2584, 1771
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.102, 1.03
No. of reflections2584
No. of parameters226
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.53

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001).

Selected geometric parameters (Å, º) top
Co1—O12.182 (2)Co1—N22.184 (2)
Co1—O1W2.042 (2)
O1—Co1—O1W89.74 (7)O1—Co1—N2i88.42 (7)
O1—Co1—O1Wi90.26 (7)O1W—Co1—N291.63 (8)
O1—Co1—N291.58 (7)O1W—Co1—N2i88.37 (8)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O20.85 (3)1.76 (3)2.585 (2)165 (3)
O1W—H1W2···O2W0.85 (3)1.89 (3)2.724 (3)171 (3)
O2W—H2W1···O3Wii0.85 (3)1.89 (3)2.735 (3)173 (3)
O2W—H2W2···O2iii0.84 (3)1.94 (3)2.752 (3)162 (3)
O3W—H3W1···O10.85 (3)2.00 (3)2.854 (3)179 (3)
O3W—H3W2···O2Wi0.85 (3)2.03 (3)2.872 (3)168 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+3/2; (iii) x, y+3/2, z1/2.
 

Acknowledgements

We thank Daqing Petroleum Institute and the University of Malaya for generously supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, Z.-P., Gao, S., Huo, L.-H. & Zhao, J.-G. (2005). Acta Cryst. E61, m2550–m2552.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGao, J.-S., Hou, G.-F., Yu, Y.-H., Hou, Y.-J. & Li, G.-M. (2006). Acta Cryst. E62, m2685–m2687.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, H.-Y., Ma, A.-Q. & Zhu, L.-G. (2003). Acta Cryst. E59, m333–m335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHou, Y.-J., Yu, Y.-H., Sun, Z.-Z., Li, B.-Y. & Hou, G.-F. (2007). Acta Cryst. E63, m1560.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, W., Li, C.-H., Yang, Y.-Q., Li, C.-X. & Xu, W.-J. (2006). Chin. J. Appl. Chem. 23, 794–797.  CAS Google Scholar
First citationPedireddi, V. R. & Varughese, S. (2004). Inorg. Chem. 43, 450–457.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, Y., Wu, C.-D., He, X., Sun, Y.-Q. & Lu, C.-Z. (2005). Cryst. Growth Des. 5, 821–827.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, Y.-S., Enright, G. D., Breeze, S. R. & Wang, S. (1999). New J. Chem. 23, 625–628.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, X.-Y., Su, H. & Feng, Y.-L. (2006). Acta Cryst. E62, m1393–m1394.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, Y.-Z., Tong, M.-L. & Chen, X.-M. (2006). J. Mol. Struct. 796, 9–17.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m706-m707
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds