metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido(chloro­di­fluoro­acetato-κO)bis­(1,10-phenanthroline-κ2N,N′)manganese(II)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 14 April 2008; accepted 18 April 2008; online 23 April 2008)

The chloride and chloro­difluoro­acetate anions occupy cis positions in the octa­hedral coordination geometry of the title compound, [Mn(C2ClF2O2)Cl(C12H8N2)2]. The two N-heterocycles both chelate the metal atom.

Related literature

For isostructural chlorido(1,10-phenanthroline)(trichloro­acetato)manganese(II), see: Chen et al. (2006[Chen, L., Wang, X.-W., Chen, F.-P., Chen, Y. & Chen, J.-Z. (2006). Acta Cryst. E62, m1743-m1745.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C2ClF2O2)Cl(C12H8N2)2]

  • Mr = 580.27

  • Monoclinic, P 21 /c

  • a = 16.8822 (4) Å

  • b = 10.3781 (3) Å

  • c = 14.8364 (5) Å

  • β = 108.813 (2)°

  • V = 2460.5 (1) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 100 (2) K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.856, Tmax = 0.924

  • 30077 measured reflections

  • 5628 independent reflections

  • 3863 reflections with I > 2σ(I)

  • Rint = 0.104

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.165

  • S = 1.04

  • 5628 reflections

  • 334 parameters

  • H-atom parameters constrained

  • Δρmax = 1.00 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn1—O1 2.143 (2)
Mn1—N1 2.283 (3)
Mn1—N2 2.277 (3)
Mn1—N3 2.305 (3)
Mn1—N4 2.295 (3)
Mn1—Cl1 2.443 (1)
O1—Mn1—N1 110.1 (1)
O1—Mn1—N2 88.1 (1)
O1—Mn1—N3 82.9 (1)
O1—Mn1—N4 153.8 (1)
O1—Mn1—Cl1 101.1 (1)
N1—Mn1—N2 72.6 (1)
N1—Mn1—N3 159.7 (1)
N1—Mn1—N4 92.1 (1)
N1—Mn1—Cl1 90.4 (1)
N2—Mn1—N3 93.0 (1)
N2—Mn1—N4 85.2 (1)
N2—Mn1—Cl1 162.7 (1)
N3—Mn1—N4 72.2 (1)
N3—Mn1—Cl1 102.6 (1)
N4—Mn1—Cl1 92.4 (1)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Manganese dichloride typically reacts with carboxylate anions in the presence of a neutral α,α-dimine ligand (such as 1,10-phenanthroline) to furnish the expected manganese dicarboxylate as the 1:2 adduct of the N-heterocycle. In the case of the reaction with the trichloroacetate anion, only one chloride is displaced. Chlorido-bis(1,10-phenanthroline)(trichloroacetato)manganese exists as a monomeric compound; the crystal structure displays ππ interactions that appear to stabilize the structure (Chen et al., 2006). Replacing the trichloroacetate anion by the chlorodifluoroacetate anion furnishes an isostructural compound (Scheme I, Fig. 1).

Related literature top

For isostructural chlorido(1,10-phenanthroline)(trichloroacetato)manganese, see: Chen et al. (2006).

Experimental top

Manganese dichloride dihydrate (0.5 g, 3 mmol) was dissolved in ethanol and chlorodifluoroacetic acid (0.3 ml, 3 mol) was added. The mixture was heated briefly, after which 1,10-phenanthroline (1.6 g, 6 mmol) was added. The solution when allowed to cool yielded yellow crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. 70% Probability thermal ellipsoid plot (Barbour, 2001) of Mn(C12H8N2)2(C2ClF2O2)Cl. Hydrogen atoms are drawn as spheres of arbitrary radii.
Chlorido(chlorodifluoroacetato-κO)bis(1,10-phenanthroline- κ2N,N')manganese(II) top
Crystal data top
[Mn(C2ClF2O2)Cl(C12H8N2)2]F(000) = 1172
Mr = 580.27Dx = 1.566 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2908 reflections
a = 16.8822 (4) Åθ = 2.3–21.4°
b = 10.3781 (3) ŵ = 0.80 mm1
c = 14.8364 (5) ÅT = 100 K
β = 108.813 (2)°Irregular block, yellow
V = 2460.5 (1) Å30.20 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
5628 independent reflections
Radiation source: fine-focus sealed tube3863 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.104
ω scansθmax = 27.5°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2121
Tmin = 0.856, Tmax = 0.924k = 1313
30077 measured reflectionsl = 1914
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0868P)2]
where P = (Fo2 + 2Fc2)/3
5628 reflections(Δ/σ)max = 0.001
334 parametersΔρmax = 1.00 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Mn(C2ClF2O2)Cl(C12H8N2)2]V = 2460.5 (1) Å3
Mr = 580.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.8822 (4) ŵ = 0.80 mm1
b = 10.3781 (3) ÅT = 100 K
c = 14.8364 (5) Å0.20 × 0.15 × 0.10 mm
β = 108.813 (2)°
Data collection top
Bruker SMART APEX
diffractometer
5628 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3863 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 0.924Rint = 0.104
30077 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 1.04Δρmax = 1.00 e Å3
5628 reflectionsΔρmin = 0.63 e Å3
334 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.28449 (3)0.63507 (5)0.17308 (4)0.02130 (16)
Cl10.33600 (5)0.60920 (8)0.03799 (6)0.0247 (2)
Cl20.21097 (8)1.04489 (11)0.29372 (9)0.0536 (3)
F10.09738 (14)1.0724 (2)0.1347 (2)0.0545 (8)
F20.22337 (14)1.0904 (2)0.13132 (18)0.0402 (6)
O10.24710 (14)0.8334 (2)0.15829 (18)0.0264 (6)
O20.10701 (14)0.8221 (2)0.1178 (2)0.0330 (6)
N10.17254 (16)0.5061 (3)0.1004 (2)0.0240 (6)
N20.21023 (16)0.6109 (3)0.2757 (2)0.0230 (6)
N30.39971 (15)0.7160 (3)0.2897 (2)0.0219 (6)
N40.36197 (16)0.4637 (3)0.2525 (2)0.0215 (6)
C10.1249 (2)0.4714 (3)0.1547 (3)0.0239 (7)
C20.1524 (2)0.4572 (3)0.0131 (3)0.0275 (8)
H20.18570.48000.02540.033*
C30.0848 (2)0.3739 (3)0.0250 (3)0.0338 (9)
H30.07200.34320.08850.041*
C40.0376 (2)0.3369 (3)0.0295 (3)0.0312 (9)
H40.00800.27930.00490.037*
C50.0572 (2)0.3857 (3)0.1237 (3)0.0279 (8)
C60.0103 (2)0.3542 (3)0.1854 (3)0.0328 (9)
H60.03560.29630.16380.039*
C70.0297 (2)0.4050 (4)0.2738 (3)0.0313 (9)
H70.00180.38130.31400.038*
C80.0975 (2)0.4944 (3)0.3072 (3)0.0266 (8)
C90.1187 (2)0.5535 (3)0.3974 (3)0.0294 (8)
H90.08850.53320.43970.035*
C100.1829 (2)0.6399 (3)0.4236 (3)0.0316 (8)
H100.19730.68190.48360.038*
C110.2276 (2)0.6658 (3)0.3604 (3)0.0248 (7)
H110.27240.72570.37950.030*
C120.14495 (19)0.5264 (3)0.2484 (3)0.0228 (7)
C130.45711 (19)0.6274 (3)0.3381 (2)0.0217 (7)
C140.4167 (2)0.8390 (3)0.3096 (3)0.0274 (8)
H140.37660.90140.27670.033*
C150.4910 (2)0.8821 (3)0.3767 (3)0.0299 (8)
H150.50060.97160.38910.036*
C160.5496 (2)0.7935 (3)0.4243 (3)0.0282 (8)
H160.60070.82100.46960.034*
C170.5338 (2)0.6622 (3)0.4060 (3)0.0251 (8)
C180.5921 (2)0.5629 (3)0.4517 (3)0.0291 (8)
H180.64460.58610.49620.035*
C190.5738 (2)0.4374 (3)0.4329 (3)0.0280 (8)
H190.61350.37370.46430.034*
C200.4951 (2)0.3985 (3)0.3662 (3)0.0241 (7)
C210.4724 (2)0.2692 (3)0.3466 (3)0.0271 (8)
H210.50970.20250.37780.033*
C220.3961 (2)0.2393 (3)0.2822 (3)0.0284 (8)
H220.37950.15200.26890.034*
C230.3430 (2)0.3395 (3)0.2362 (3)0.0249 (8)
H230.29060.31780.19090.030*
C240.43732 (19)0.4937 (3)0.3181 (2)0.0211 (7)
C250.1748 (2)0.8752 (3)0.1456 (2)0.0234 (7)
C260.1740 (2)1.0211 (3)0.1694 (3)0.0330 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0192 (3)0.0265 (3)0.0161 (3)0.00035 (19)0.0028 (2)0.0001 (2)
Cl10.0231 (4)0.0310 (4)0.0189 (5)0.0005 (3)0.0053 (3)0.0006 (3)
Cl20.0682 (7)0.0614 (7)0.0398 (7)0.0225 (6)0.0291 (6)0.0250 (5)
F10.0351 (12)0.0376 (13)0.086 (2)0.0129 (10)0.0131 (13)0.0026 (13)
F20.0446 (13)0.0359 (12)0.0427 (16)0.0083 (10)0.0178 (11)0.0021 (11)
O10.0224 (12)0.0323 (13)0.0221 (14)0.0033 (9)0.0038 (10)0.0028 (10)
O20.0236 (12)0.0375 (14)0.0354 (17)0.0043 (10)0.0061 (12)0.0090 (12)
N10.0213 (13)0.0294 (15)0.0185 (16)0.0014 (11)0.0024 (12)0.0009 (12)
N20.0199 (13)0.0282 (15)0.0185 (16)0.0015 (11)0.0028 (12)0.0013 (12)
N30.0200 (13)0.0265 (15)0.0174 (16)0.0022 (11)0.0036 (12)0.0019 (11)
N40.0207 (13)0.0280 (15)0.0158 (16)0.0024 (11)0.0057 (12)0.0013 (11)
C10.0208 (15)0.0279 (17)0.0204 (19)0.0042 (13)0.0032 (14)0.0028 (14)
C20.0279 (17)0.0340 (19)0.017 (2)0.0003 (14)0.0022 (15)0.0027 (15)
C30.034 (2)0.037 (2)0.024 (2)0.0029 (16)0.0000 (17)0.0069 (16)
C40.0240 (17)0.0299 (19)0.032 (2)0.0014 (14)0.0015 (16)0.0027 (16)
C50.0242 (17)0.0295 (18)0.025 (2)0.0015 (14)0.0017 (15)0.0007 (15)
C60.0222 (17)0.035 (2)0.037 (2)0.0039 (14)0.0042 (17)0.0015 (17)
C70.0267 (18)0.037 (2)0.033 (2)0.0002 (15)0.0130 (17)0.0044 (17)
C80.0221 (16)0.0308 (18)0.025 (2)0.0011 (14)0.0044 (15)0.0028 (15)
C90.0291 (18)0.040 (2)0.020 (2)0.0007 (15)0.0101 (16)0.0041 (16)
C100.0336 (19)0.040 (2)0.020 (2)0.0023 (16)0.0070 (16)0.0016 (16)
C110.0225 (16)0.0343 (18)0.0140 (18)0.0009 (13)0.0009 (14)0.0014 (14)
C120.0177 (15)0.0279 (17)0.0197 (19)0.0032 (13)0.0018 (14)0.0015 (14)
C130.0211 (15)0.0271 (17)0.0172 (18)0.0006 (13)0.0067 (14)0.0018 (14)
C140.0259 (17)0.0265 (18)0.028 (2)0.0006 (13)0.0063 (16)0.0005 (15)
C150.0263 (17)0.0292 (18)0.030 (2)0.0073 (14)0.0042 (16)0.0041 (16)
C160.0240 (16)0.0343 (19)0.024 (2)0.0074 (14)0.0048 (15)0.0008 (15)
C170.0229 (16)0.0341 (19)0.0187 (19)0.0043 (14)0.0071 (15)0.0009 (15)
C180.0202 (16)0.037 (2)0.025 (2)0.0021 (14)0.0003 (15)0.0001 (16)
C190.0235 (16)0.0338 (19)0.022 (2)0.0043 (14)0.0014 (15)0.0031 (15)
C200.0209 (16)0.0340 (18)0.0159 (18)0.0020 (14)0.0042 (14)0.0017 (14)
C210.0263 (17)0.0274 (18)0.026 (2)0.0048 (14)0.0061 (15)0.0028 (15)
C220.0268 (17)0.0271 (18)0.028 (2)0.0018 (14)0.0047 (15)0.0000 (15)
C230.0213 (16)0.0295 (18)0.023 (2)0.0012 (13)0.0055 (15)0.0006 (14)
C240.0206 (15)0.0303 (17)0.0134 (17)0.0002 (13)0.0070 (13)0.0025 (13)
C250.0224 (16)0.0364 (19)0.0107 (17)0.0001 (14)0.0045 (14)0.0008 (14)
C260.0266 (17)0.037 (2)0.035 (2)0.0007 (15)0.0089 (17)0.0015 (17)
Geometric parameters (Å, º) top
Mn1—O12.143 (2)C7—C81.432 (5)
Mn1—N12.283 (3)C7—H70.9500
Mn1—N22.277 (3)C8—C121.401 (5)
Mn1—N32.305 (3)C8—C91.410 (5)
Mn1—N42.295 (3)C9—C101.363 (5)
Mn1—Cl12.443 (1)C9—H90.9500
Cl2—C261.764 (4)C10—C111.405 (5)
F1—C261.339 (4)C10—H100.9500
F2—C261.355 (4)C11—H110.9500
O1—C251.250 (4)C13—C171.407 (5)
O2—C251.217 (4)C13—C241.436 (4)
N1—C21.330 (5)C14—C151.400 (5)
N1—C11.358 (5)C14—H140.9500
N2—C111.324 (5)C15—C161.368 (5)
N2—C121.363 (4)C15—H150.9500
N3—C141.321 (4)C16—C171.398 (5)
N3—C131.361 (4)C16—H160.9500
N4—C231.331 (4)C17—C181.436 (5)
N4—C241.365 (4)C18—C191.346 (5)
C1—C51.403 (5)C18—H180.9500
C1—C121.440 (5)C19—C201.435 (5)
C2—C31.398 (5)C19—H190.9500
C2—H20.9500C20—C211.399 (5)
C3—C41.362 (6)C20—C241.410 (4)
C3—H30.9500C21—C221.369 (5)
C4—C51.422 (5)C21—H210.9500
C4—H40.9500C22—C231.398 (5)
C5—C61.428 (6)C22—H220.9500
C6—C71.353 (6)C23—H230.9500
C6—H60.9500C25—C261.556 (5)
O1—Mn1—N1110.1 (1)C9—C10—C11119.0 (4)
O1—Mn1—N288.1 (1)C9—C10—H10120.5
O1—Mn1—N382.9 (1)C11—C10—H10120.5
O1—Mn1—N4153.8 (1)N2—C11—C10123.3 (3)
O1—Mn1—Cl1101.1 (1)N2—C11—H11118.4
N1—Mn1—N272.6 (1)C10—C11—H11118.3
N1—Mn1—N3159.7 (1)N2—C12—C8122.5 (3)
N1—Mn1—N492.1 (1)N2—C12—C1117.2 (3)
N1—Mn1—Cl190.4 (1)C8—C12—C1120.2 (3)
N2—Mn1—N393.0 (1)N3—C13—C17122.6 (3)
N2—Mn1—N485.2 (1)N3—C13—C24117.8 (3)
N2—Mn1—Cl1162.7 (1)C17—C13—C24119.7 (3)
N3—Mn1—N472.2 (1)N3—C14—C15123.2 (3)
N3—Mn1—Cl1102.6 (1)N3—C14—H14118.4
N4—Mn1—Cl192.4 (1)C15—C14—H14118.4
C25—O1—Mn1126.1 (2)C16—C15—C14119.0 (3)
C2—N1—C1117.6 (3)C16—C15—H15120.5
C2—N1—Mn1126.6 (2)C14—C15—H15120.5
C1—N1—Mn1115.7 (2)C15—C16—C17119.6 (3)
C11—N2—C12117.9 (3)C15—C16—H16120.2
C11—N2—Mn1125.9 (2)C17—C16—H16120.2
C12—N2—Mn1116.0 (2)C16—C17—C13117.6 (3)
C14—N3—C13117.9 (3)C16—C17—C18123.3 (3)
C14—N3—Mn1126.2 (2)C13—C17—C18119.1 (3)
C13—N3—Mn1115.8 (2)C19—C18—C17121.3 (3)
C23—N4—C24117.7 (3)C19—C18—H18119.3
C23—N4—Mn1126.4 (2)C17—C18—H18119.3
C24—N4—Mn1115.8 (2)C18—C19—C20121.0 (3)
N1—C1—C5123.3 (3)C18—C19—H19119.5
N1—C1—C12117.9 (3)C20—C19—H19119.5
C5—C1—C12118.7 (3)C21—C20—C24117.9 (3)
N1—C2—C3123.3 (4)C21—C20—C19123.0 (3)
N1—C2—H2118.4C24—C20—C19119.1 (3)
C3—C2—H2118.4C22—C21—C20119.7 (3)
C4—C3—C2119.5 (4)C22—C21—H21120.2
C4—C3—H3120.3C20—C21—H21120.2
C2—C3—H3120.3C21—C22—C23118.9 (3)
C3—C4—C5119.2 (3)C21—C22—H22120.6
C3—C4—H4120.4C23—C22—H22120.6
C5—C4—H4120.4N4—C23—C22123.5 (3)
C1—C5—C4117.0 (3)N4—C23—H23118.2
C1—C5—C6119.8 (4)C22—C23—H23118.2
C4—C5—C6123.1 (3)N4—C24—C20122.3 (3)
C7—C6—C5121.4 (3)N4—C24—C13117.9 (3)
C7—C6—H6119.3C20—C24—C13119.8 (3)
C5—C6—H6119.3O2—C25—O1131.3 (3)
C6—C7—C8120.3 (4)O2—C25—C26116.1 (3)
C6—C7—H7119.9O1—C25—C26112.5 (3)
C8—C7—H7119.9F1—C26—F2106.1 (3)
C12—C8—C9117.8 (3)F1—C26—C25112.2 (3)
C12—C8—C7119.5 (3)F2—C26—C25111.7 (3)
C9—C8—C7122.7 (3)F1—C26—Cl2108.6 (3)
C10—C9—C8119.5 (4)F2—C26—Cl2107.7 (2)
C10—C9—H9120.3C25—C26—Cl2110.3 (3)
C8—C9—H9120.3
N2—Mn1—O1—C2545.9 (3)C12—C8—C9—C101.0 (5)
N1—Mn1—O1—C2524.8 (3)C7—C8—C9—C10178.5 (3)
N4—Mn1—O1—C25121.0 (3)C8—C9—C10—C111.4 (5)
N3—Mn1—O1—C25139.1 (3)C12—N2—C11—C100.9 (5)
Cl1—Mn1—O1—C25119.4 (3)Mn1—N2—C11—C10175.2 (2)
O1—Mn1—N1—C296.7 (3)C9—C10—C11—N20.4 (5)
N2—Mn1—N1—C2178.0 (3)C11—N2—C12—C81.3 (5)
N4—Mn1—N1—C297.7 (3)Mn1—N2—C12—C8175.2 (2)
N3—Mn1—N1—C2135.8 (3)C11—N2—C12—C1177.6 (3)
Cl1—Mn1—N1—C25.3 (3)Mn1—N2—C12—C15.9 (4)
O1—Mn1—N1—C187.0 (2)C9—C8—C12—N20.4 (5)
N2—Mn1—N1—C15.7 (2)C7—C8—C12—N2179.9 (3)
N4—Mn1—N1—C178.7 (2)C9—C8—C12—C1178.5 (3)
N3—Mn1—N1—C140.5 (4)C7—C8—C12—C11.0 (5)
Cl1—Mn1—N1—C1171.1 (2)N1—C1—C12—N20.7 (4)
O1—Mn1—N2—C1166.0 (3)C5—C1—C12—N2179.0 (3)
N1—Mn1—N2—C11177.7 (3)N1—C1—C12—C8179.7 (3)
N4—Mn1—N2—C1188.6 (3)C5—C1—C12—C80.0 (5)
N3—Mn1—N2—C1116.7 (3)C14—N3—C13—C171.5 (5)
Cl1—Mn1—N2—C11171.2 (2)Mn1—N3—C13—C17174.8 (3)
O1—Mn1—N2—C12117.8 (2)C14—N3—C13—C24178.3 (3)
N1—Mn1—N2—C126.1 (2)Mn1—N3—C13—C245.3 (4)
N4—Mn1—N2—C1287.6 (2)C13—N3—C14—C150.8 (5)
N3—Mn1—N2—C12159.4 (2)Mn1—N3—C14—C15175.1 (3)
Cl1—Mn1—N2—C125.0 (4)N3—C14—C15—C160.3 (6)
O1—Mn1—N3—C146.1 (3)C14—C15—C16—C170.8 (6)
N2—Mn1—N3—C1493.8 (3)C15—C16—C17—C130.1 (5)
N1—Mn1—N3—C14137.4 (3)C15—C16—C17—C18179.2 (4)
N4—Mn1—N3—C14177.8 (3)N3—C13—C17—C161.1 (5)
Cl1—Mn1—N3—C1493.7 (3)C24—C13—C17—C16178.8 (3)
O1—Mn1—N3—C13177.9 (2)N3—C13—C17—C18178.1 (3)
N2—Mn1—N3—C1390.2 (2)C24—C13—C17—C182.1 (5)
N1—Mn1—N3—C1346.6 (4)C16—C17—C18—C19179.0 (4)
N4—Mn1—N3—C136.1 (2)C13—C17—C18—C191.9 (6)
Cl1—Mn1—N3—C1382.3 (2)C17—C18—C19—C200.0 (6)
O1—Mn1—N4—C23159.6 (3)C18—C19—C20—C21178.0 (4)
N2—Mn1—N4—C2383.7 (3)C18—C19—C20—C241.7 (5)
N1—Mn1—N4—C2311.4 (3)C24—C20—C21—C220.2 (5)
N3—Mn1—N4—C23178.4 (3)C19—C20—C21—C22179.9 (4)
Cl1—Mn1—N4—C2379.1 (3)C20—C21—C22—C231.0 (6)
O1—Mn1—N4—C2425.2 (4)C24—N4—C23—C220.3 (5)
N2—Mn1—N4—C24101.0 (2)Mn1—N4—C23—C22174.8 (3)
N1—Mn1—N4—C24173.4 (2)C21—C22—C23—N41.0 (6)
N3—Mn1—N4—C246.4 (2)C23—N4—C24—C201.6 (5)
Cl1—Mn1—N4—C2496.1 (2)Mn1—N4—C24—C20174.1 (3)
C2—N1—C1—C51.2 (5)C23—N4—C24—C13178.2 (3)
Mn1—N1—C1—C5175.5 (2)Mn1—N4—C24—C136.1 (4)
C2—N1—C1—C12178.5 (3)C21—C20—C24—N41.5 (5)
Mn1—N1—C1—C124.8 (4)C19—C20—C24—N4178.8 (3)
C1—N1—C2—C30.7 (5)C21—C20—C24—C13178.3 (3)
Mn1—N1—C2—C3176.9 (3)C19—C20—C24—C131.4 (5)
N1—C2—C3—C41.8 (5)N3—C13—C24—N40.5 (5)
C2—C3—C4—C51.0 (5)C17—C13—C24—N4179.3 (3)
N1—C1—C5—C41.8 (5)N3—C13—C24—C20179.7 (3)
C12—C1—C5—C4177.9 (3)C17—C13—C24—C200.5 (5)
N1—C1—C5—C6180.0 (3)Mn1—O1—C25—O218.7 (6)
C12—C1—C5—C60.3 (5)Mn1—O1—C25—C26161.9 (2)
C3—C4—C5—C10.7 (5)O2—C25—C26—F114.5 (5)
C3—C4—C5—C6178.8 (3)O1—C25—C26—F1164.9 (3)
C1—C5—C6—C70.2 (5)O2—C25—C26—F2133.6 (3)
C4—C5—C6—C7178.3 (3)O1—C25—C26—F245.9 (4)
C5—C6—C7—C81.2 (5)O2—C25—C26—Cl2106.7 (3)
C6—C7—C8—C121.6 (5)O1—C25—C26—Cl273.8 (3)
C6—C7—C8—C9177.9 (3)

Experimental details

Crystal data
Chemical formula[Mn(C2ClF2O2)Cl(C12H8N2)2]
Mr580.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)16.8822 (4), 10.3781 (3), 14.8364 (5)
β (°) 108.813 (2)
V3)2460.5 (1)
Z4
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.856, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
30077, 5628, 3863
Rint0.104
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.165, 1.04
No. of reflections5628
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.00, 0.63

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Selected geometric parameters (Å, º) top
Mn1—O12.143 (2)Mn1—N32.305 (3)
Mn1—N12.283 (3)Mn1—N42.295 (3)
Mn1—N22.277 (3)Mn1—Cl12.443 (1)
O1—Mn1—N1110.1 (1)N1—Mn1—Cl190.4 (1)
O1—Mn1—N288.1 (1)N2—Mn1—N393.0 (1)
O1—Mn1—N382.9 (1)N2—Mn1—N485.2 (1)
O1—Mn1—N4153.8 (1)N2—Mn1—Cl1162.7 (1)
O1—Mn1—Cl1101.1 (1)N3—Mn1—N472.2 (1)
N1—Mn1—N272.6 (1)N3—Mn1—Cl1102.6 (1)
N1—Mn1—N3159.7 (1)N4—Mn1—Cl192.4 (1)
N1—Mn1—N492.1 (1)
 

Acknowledgements

The authors thank the University of Malaya for funding this study (grant No. SF022155/2007A) and also for the purchase of the diffractometer.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, L., Wang, X.-W., Chen, F.-P., Chen, Y. & Chen, J.-Z. (2006). Acta Cryst. E62, m1743–m1745.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds