metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m631-m632

Bis{μ-2,2′-[(3-aza­pentane-1,5-di­yl)bis­­(nitrilo­methyl­­idyne)]diphenolato}dicopper(II) di­methyl sulfoxide disolvate

aCentro de Química, Instituto de Ciencias, Universidad Autónoma de Puebla, Edif. 194 Complejo de Ciencias CU, San Manuel, 72570 Puebla, Pue., Mexico, bFacultad de Ciencias Químicas, Universidad Autónoma de Puebla, Edif. 179 Complejo de Ciencias CU, San Manuel, 72570 Puebla, Pue., Mexico, and cDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, NL, Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

(Received 18 March 2008; accepted 31 March 2008; online 10 April 2008)

The title compound, [Cu2(C18H19N3O2)2]·2C2H6OS or [Cu2(SalenN3H)2]·2DMSO, where SalenN3H is the multidentate Schiff base 2,2′-[(3-aza­pentane-1,5-di­yl)bis­(nitrilo­methyl­idyne)]diphenolate dianion and DMSO is dimethyl sulfoxide, is a solvated dinuclear CuII complex. The neutral complex is built from two Cu(SalenN3H) units related by an inversion center. All heteroatoms in the Schiff bases coordinate the CuII ions, which display highly distorted trigonal bipyramidal geometries. The solvent mol­ecules are located in the structural voids of the complex and are disordered over two positions with occupancies of 0.642 (15) and 0.358 (15). The previously characterized acetone disolvate of the same complex presents identical mol­ecular and crystal structures, and crystallizes with cell parameters very close to those of the DMSO disolvate reported here.

Related literature

The title compound was synthesized by direct synthesis, using metallic copper as starting material (Gutiérrez et al., 2001[Gutiérrez, R., Vázquez, J., Vázquez, R. A., Reyes, Y., Toscano, R. A., Martinez, M. & Álvarez, C. (2001). J. Coord. Chem. 54, 313-321.]; Reyes-Ortega et al., 2005[Reyes-Ortega, Y., Alcántara-Flores, J. L., Hernández-Galindo, M. C., Ramírez-Rosales, D., Bernès, S., Ramírez-García, J. C., Zamorano-Ulloa, R. & Escudero, R. (2005). J. Am. Chem. Soc. 127, 16312-16317.]). The same dinuclear CuII complex was previously characterized with acetone solvent in place of DMSO (McKenzie & Selvey, 1985[McKenzie, E. D. & Selvey, S. J. (1985). Inorg. Chim. Acta, 101, 127-133.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C18H19N3O2)2]·2C2H6OS

  • Mr = 902.06

  • Monoclinic, P 21 /c

  • a = 12.817 (3) Å

  • b = 16.783 (4) Å

  • c = 9.827 (3) Å

  • β = 106.732 (18)°

  • V = 2024.5 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.21 mm−1

  • T = 298 (1) K

  • 0.16 × 0.16 × 0.12 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: ψ scan (XSCANS; Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.803, Tmax = 0.866

  • 7380 measured reflections

  • 3599 independent reflections

  • 2191 reflections with I > 2σ(I)

  • Rint = 0.076

  • 1 standard reflections every 48 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.167

  • S = 1.05

  • 3599 reflections

  • 294 parameters

  • 30 restraints

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.82 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.932 (4)
Cu1—N1 1.948 (5)
Cu1—N2 2.319 (4)
Cu1—N3 1.969 (5)
Cu1—O2 1.978 (4)
O1—Cu1—O2 137.2 (2)
O2—Cu1—N2 90.92 (17)
N2—Cu1—O1 131.28 (19)
N1—Cu1—N3 176.4 (2)

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL-Plus; molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL-Plus.

Supporting information


Comment top

The title compound was obtained during a general study about direct synthesis in coordination chemistry, i.e. effective synthesis of complexes using zero-valent metals, neutral ligands, and polar solvents as starting materials (Gutiérrez et al., 2001). We expect that new molecular arrangements, as well as new compounds including solvent molecules as ligands, may be achieved using such reactions (Reyes-Ortega et al., 2005). We are also interested in the influence of lattice solvents on magnetic properties of paramagnetic coordination compounds.

The title compound is a dinuclear centrosymmetric CuII complex, formed through coordination of two Schiff base dianions SalenN3H to two CuII ions; the complex is solvated by two DMSO molecules (Fig. 1). In the complex, all heteroatoms of the Schiff base ligands are coordinated to the metallic centers, which present a highly distorted trigonal-bipyramidal geometry. Atoms O1, O2 and N2 form the equatorial plane, while atoms N1 and N3 occupy apical positions, with an angle N1—Cu1—N3 = 176.4 (2)°. DMSO molecules are located in the structural voids of the complex (Fig. 2), and poorly interact with the Schiff bases, as reflected in the disorder found for this molecule (Fig. 1, inset).

The whole complex presents a rigid conformation, as ten coordination bonds are formed. It may thus be expected to be a good candidate for hosting small solvent molecules with a steric volume similar to that of DMSO. This hypothesis is, at least partially, confirmed by the previous X-ray characterization of the acetone disolvate of the same complex (McKenzie & Selvey, 1985). This compound crystallizes in the same space group, with cell parameters very close to those of the title disolvate. The complex conformation is identical, regardless of the solvent inserted in voids. For example, the non-bonding Cu···Cu separation is virtually not modified: 5.7716 (18) Å in the DMSO disolvate, vs. 5.809 Å in the acetone disolvate.

Related literature top

The title compound was synthesized by direct synthesis, using metallic copper as starting material (Gutiérrez et al., 2001; Reyes-Ortega et al., 2005). The same dinuclear CuII complex was previously characterized with acetone solvent in place of DMSO (McKenzie & Selvey, 1985).

Experimental top

The title compound was prepared by direct synthesis, mixing equimolecular amounts (0.8 mmol) of elemental copper and neutral Schiff base SalenN3H3 in DMSO (2.4 ml). The mixture was heated at 353 K with magnetic stirring for 5.5 hrs, and then filtered. A crystalline compound, was collected after six days. Yield: 30%.

Refinement top

The asymmetric unit contains one DMSO molecule which is clearly disordered over two positions (Fig. 1, inset). S, O and C atoms were splitted over two sites. Refined occupancies converged to 0.642 (15) and 0.358 (15) for sites A and B, respectively. Geometry was regularized through restraints applied to bond lengths: S—O = 1.475 (20) and S—C = 1.750 (20) Å. Finally, sites in each pair of disordered atoms were restrained, with a standard deviation of 0.04 Å2, to have the same Uij components. All H atoms were placed in idealized positions, and were allowed to ride on their carrier atoms, with C—H bond lengths fixed to 0.93 (aromatic CH), 0.97 (methylene CH2) or 0.96 Å (methyl CH3), and N—H bond length fixed to 0.91 Å. Isotropic displacement parameters for H atoms were calculated as Uiso(H) = xUeq(carrier atom) where x = 1.5 for methyl groups and x = 1.2 otherwise.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-Plus (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL-Plus (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are given at the 40% probability level and all H atoms have been omitted. A single position for DMSO molecules has been retained, which corresponds to the main site occupancy factors, 0.642 (15). The inset represents the model refined for the disordered DMSO molecule. Site occupation factors are 0.642 (15) and 0.358 (15), for the blue and red molecule, respectively. In the main figure, non labelled atoms are generated with symmetry code 1 - x, 1 - y, 1 - z.
[Figure 2] Fig. 2. A spacefill model for the title compound. All atoms are represented, excepted less occupied disordered sites for DMSO molecules. Colours code: purple: Cu; green: Schiff bases; other: DMSO.
Bis{µ-2,2'-[(3-azapentane-1,5- diyl)bis(nitrilomethylidyne)]diphenolato}dicopper(II) dimethyl sulfoxide disolvate top
Crystal data top
[Cu2(C18H19N3O2)2]·2C2H6OSF(000) = 940
Mr = 902.06Dx = 1.480 Mg m3
Monoclinic, P21/cMelting point: 410 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.817 (3) ÅCell parameters from 72 reflections
b = 16.783 (4) Åθ = 4.8–10.8°
c = 9.827 (3) ŵ = 1.21 mm1
β = 106.732 (18)°T = 298 K
V = 2024.5 (8) Å3Irregular, green
Z = 20.16 × 0.16 × 0.12 mm
Data collection top
Bruker P4
diffractometer
2191 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.076
Graphite monochromatorθmax = 25.1°, θmin = 2.1°
2θ/ω scansh = 1415
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
k = 2020
Tmin = 0.803, Tmax = 0.866l = 117
7380 measured reflections1 standard reflections every 48 reflections
3599 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0556P)2 + 5.336P]
where P = (Fo2 + 2Fc2)/3
3599 reflections(Δ/σ)max < 0.001
294 parametersΔρmax = 0.47 e Å3
30 restraintsΔρmin = 0.82 e Å3
0 constraints
Crystal data top
[Cu2(C18H19N3O2)2]·2C2H6OSV = 2024.5 (8) Å3
Mr = 902.06Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.817 (3) ŵ = 1.21 mm1
b = 16.783 (4) ÅT = 298 K
c = 9.827 (3) Å0.16 × 0.16 × 0.12 mm
β = 106.732 (18)°
Data collection top
Bruker P4
diffractometer
2191 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
Rint = 0.076
Tmin = 0.803, Tmax = 0.8661 standard reflections every 48 reflections
7380 measured reflections intensity decay: 1%
3599 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06230 restraints
wR(F2) = 0.167H-atom parameters constrained
S = 1.05Δρmax = 0.47 e Å3
3599 reflectionsΔρmin = 0.82 e Å3
294 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.59573 (6)0.38379 (4)0.71636 (8)0.0438 (3)
O10.7294 (3)0.4094 (3)0.8606 (5)0.0597 (12)
O20.4577 (3)0.3281 (2)0.7063 (4)0.0487 (11)
N10.6595 (4)0.2864 (3)0.6677 (5)0.0394 (11)
N20.5491 (4)0.3917 (3)0.4705 (5)0.0391 (11)
H2B0.58980.43110.44780.047*
N30.5343 (4)0.4857 (3)0.7562 (5)0.0386 (11)
C10.8131 (5)0.3647 (4)0.9119 (6)0.0460 (15)
C20.8969 (5)0.3907 (4)1.0277 (7)0.0609 (18)
H2A0.89080.44011.06770.073*
C30.9878 (6)0.3459 (5)1.0844 (8)0.067 (2)
H3A1.04190.36551.16200.080*
C41.0014 (5)0.2734 (5)1.0301 (8)0.073 (2)
H4A1.06360.24321.07040.088*
C50.9219 (5)0.2457 (4)0.9153 (8)0.0605 (18)
H5A0.93120.19660.87630.073*
C60.8269 (5)0.2894 (4)0.8548 (6)0.0427 (14)
C70.7516 (5)0.2566 (3)0.7316 (6)0.0433 (14)
H7A0.77150.20970.69510.052*
C80.5930 (5)0.2526 (4)0.5346 (6)0.0476 (15)
H8A0.52150.23830.54200.057*
H8B0.62720.20520.51040.057*
C90.5838 (5)0.3163 (3)0.4234 (6)0.0448 (15)
H9A0.65380.32330.40560.054*
H9B0.53150.29980.33530.054*
C100.4349 (4)0.4115 (3)0.4060 (6)0.0408 (14)
H10A0.41410.45270.46240.049*
H10B0.39100.36470.40900.049*
C110.4088 (5)0.4401 (3)0.2531 (6)0.0423 (14)
H11A0.43020.39960.19590.051*
H11B0.33090.44830.21530.051*
C120.4532 (5)0.4911 (4)0.8083 (6)0.0432 (15)
H12A0.43950.54110.84010.052*
C130.3816 (4)0.4273 (4)0.8226 (6)0.0401 (14)
C140.2997 (5)0.4461 (5)0.8867 (7)0.0600 (19)
H14A0.29650.49730.92150.072*
C150.2255 (5)0.3910 (5)0.8987 (8)0.0622 (19)
H15A0.17220.40410.94220.075*
C160.2297 (6)0.3161 (5)0.8466 (8)0.065 (2)
H16A0.17960.27820.85690.078*
C170.3054 (5)0.2953 (4)0.7795 (7)0.0532 (17)
H17A0.30310.24470.74030.064*
C180.3875 (5)0.3496 (3)0.7685 (6)0.0415 (14)
S1A0.8609 (5)0.4752 (5)0.4851 (8)0.068 (2)0.642 (15)
O3A0.7492 (8)0.4440 (7)0.4334 (14)0.126 (5)0.642 (15)
C19A0.921 (3)0.449 (2)0.665 (2)0.084 (8)0.642 (15)
H19A0.92660.39260.67380.126*0.642 (15)
H19B0.87670.46930.72130.126*0.642 (15)
H19C0.99240.47270.69740.126*0.642 (15)
C20A0.845 (2)0.5781 (8)0.505 (2)0.054 (5)0.642 (15)
H20A0.81090.60140.41370.081*0.642 (15)
H20B0.91540.60210.54470.081*0.642 (15)
H20C0.80070.58710.56700.081*0.642 (15)
S1B0.8199 (9)0.4739 (10)0.4918 (19)0.082 (4)0.358 (15)
O3B0.8755 (13)0.4476 (9)0.386 (2)0.089 (7)0.358 (15)
C19B0.901 (5)0.431 (4)0.650 (6)0.12 (2)0.358 (15)
H19D0.88150.37580.65320.182*0.358 (15)
H19E0.88840.45840.72990.182*0.358 (15)
H19F0.97610.43510.65380.182*0.358 (15)
C20B0.852 (5)0.5716 (17)0.550 (5)0.107 (18)0.358 (15)
H20D0.82450.60780.47260.161*0.358 (15)
H20E0.92990.57720.58550.161*0.358 (15)
H20F0.82000.58350.62490.161*0.358 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0420 (4)0.0405 (4)0.0467 (5)0.0053 (3)0.0092 (3)0.0004 (4)
O10.050 (3)0.062 (3)0.056 (3)0.015 (2)0.003 (2)0.018 (2)
O20.047 (2)0.046 (2)0.058 (3)0.003 (2)0.023 (2)0.002 (2)
N10.042 (3)0.036 (3)0.039 (3)0.005 (2)0.010 (2)0.005 (2)
N20.046 (3)0.036 (3)0.037 (3)0.000 (2)0.014 (2)0.008 (2)
N30.038 (3)0.040 (3)0.035 (3)0.004 (2)0.007 (2)0.003 (2)
C10.045 (3)0.063 (4)0.031 (3)0.005 (3)0.012 (3)0.001 (3)
C20.056 (4)0.071 (5)0.048 (4)0.013 (4)0.004 (3)0.010 (4)
C30.058 (4)0.084 (6)0.054 (4)0.004 (4)0.007 (4)0.004 (4)
C40.048 (4)0.094 (6)0.066 (5)0.029 (4)0.001 (4)0.010 (5)
C50.050 (4)0.062 (4)0.066 (5)0.012 (3)0.012 (4)0.006 (4)
C60.041 (3)0.051 (4)0.038 (3)0.009 (3)0.015 (3)0.009 (3)
C70.047 (3)0.031 (3)0.053 (4)0.005 (3)0.017 (3)0.006 (3)
C80.045 (3)0.045 (4)0.049 (4)0.005 (3)0.007 (3)0.004 (3)
C90.048 (3)0.049 (4)0.036 (3)0.009 (3)0.010 (3)0.001 (3)
C100.040 (3)0.033 (3)0.049 (4)0.000 (2)0.011 (3)0.003 (3)
C110.044 (3)0.039 (3)0.041 (4)0.001 (3)0.007 (3)0.000 (3)
C120.053 (4)0.042 (3)0.027 (3)0.009 (3)0.001 (3)0.001 (3)
C130.034 (3)0.057 (4)0.029 (3)0.008 (3)0.008 (2)0.007 (3)
C140.051 (4)0.084 (5)0.045 (4)0.008 (4)0.014 (3)0.010 (4)
C150.050 (4)0.079 (5)0.069 (5)0.010 (4)0.035 (4)0.007 (4)
C160.055 (4)0.077 (5)0.064 (5)0.006 (4)0.020 (4)0.021 (4)
C170.050 (4)0.055 (4)0.051 (4)0.000 (3)0.010 (3)0.014 (3)
C180.046 (3)0.037 (3)0.034 (3)0.007 (3)0.001 (3)0.006 (3)
S1A0.046 (3)0.070 (3)0.085 (4)0.009 (3)0.014 (3)0.012 (2)
O3A0.057 (6)0.100 (8)0.201 (13)0.036 (6)0.005 (7)0.026 (8)
C19A0.098 (16)0.063 (14)0.105 (14)0.017 (15)0.050 (11)0.046 (11)
C20A0.056 (8)0.052 (7)0.044 (12)0.003 (6)0.002 (8)0.028 (6)
S1B0.052 (9)0.069 (5)0.128 (7)0.018 (7)0.032 (8)0.008 (4)
O3B0.113 (14)0.050 (9)0.103 (15)0.007 (9)0.029 (11)0.011 (10)
C19B0.12 (3)0.11 (4)0.16 (4)0.05 (2)0.07 (3)0.04 (3)
C20B0.11 (3)0.15 (3)0.06 (3)0.00 (2)0.02 (2)0.04 (2)
Geometric parameters (Å, º) top
Cu1—O11.932 (4)C10—H10B0.9700
Cu1—N11.948 (5)C11—N3i1.458 (7)
Cu1—N22.319 (4)C11—H11A0.9700
Cu1—N31.969 (5)C11—H11B0.9700
Cu1—O21.978 (4)C12—C131.444 (8)
Cu1—Cu1i5.7716 (18)C12—H12A0.9300
O1—C11.286 (7)C13—C141.407 (8)
O2—C181.277 (7)C13—C181.418 (8)
N1—C71.270 (7)C14—C151.357 (9)
N1—C81.455 (7)C14—H14A0.9300
N2—C101.456 (7)C15—C161.363 (10)
N2—C91.460 (7)C15—H15A0.9300
N2—H2B0.9100C16—C171.367 (9)
N3—C121.288 (7)C16—H16A0.9300
N3—C11i1.458 (7)C17—C181.418 (8)
C1—C21.392 (8)C17—H17A0.9300
C1—C61.413 (8)S1A—O3A1.471 (10)
C2—C31.363 (9)S1A—C20A1.756 (13)
C2—H2A0.9300S1A—C19A1.766 (15)
C3—C41.361 (10)C19A—H19A0.9600
C3—H3A0.9300C19A—H19B0.9600
C4—C51.366 (9)C19A—H19C0.9600
C4—H4A0.9300C20A—H20A0.9600
C5—C61.400 (8)C20A—H20B0.9600
C5—H5A0.9300C20A—H20C0.9600
C6—C71.424 (8)S1B—O3B1.483 (16)
C7—H7A0.9300S1B—C20B1.75 (2)
C8—C91.509 (8)S1B—C19B1.76 (2)
C8—H8A0.9700C19B—H19D0.9600
C8—H8B0.9700C19B—H19E0.9600
C9—H9A0.9700C19B—H19F0.9600
C9—H9B0.9700C20B—H20D0.9600
C10—C111.521 (8)C20B—H20E0.9600
C10—H10A0.9700C20B—H20F0.9600
O1—Cu1—O2137.2 (2)N2—C9—H9A109.5
O2—Cu1—N290.92 (17)C8—C9—H9A109.5
N2—Cu1—O1131.28 (19)N2—C9—H9B109.5
N1—Cu1—N3176.4 (2)C8—C9—H9B109.5
O1—Cu1—N191.16 (18)H9A—C9—H9B108.1
O1—Cu1—N388.98 (18)N2—C10—C11114.2 (5)
N1—Cu1—O291.38 (18)N2—C10—H10A108.7
N3—Cu1—O291.00 (18)C11—C10—H10A108.7
N1—Cu1—N278.03 (17)N2—C10—H10B108.7
N3—Cu1—N299.17 (17)C11—C10—H10B108.7
O1—Cu1—Cu1i119.32 (15)H10A—C10—H10B107.6
N1—Cu1—Cu1i120.37 (14)N3i—C11—C10111.1 (5)
N3—Cu1—Cu1i56.61 (13)N3i—C11—H11A109.4
O2—Cu1—Cu1i95.61 (12)C10—C11—H11A109.4
N2—Cu1—Cu1i42.83 (11)N3i—C11—H11B109.4
C1—O1—Cu1128.4 (4)C10—C11—H11B109.4
C18—O2—Cu1125.9 (4)H11A—C11—H11B108.0
C7—N1—C8120.8 (5)N3—C12—C13126.6 (5)
C7—N1—Cu1127.3 (4)N3—C12—H12A116.7
C8—N1—Cu1111.7 (3)C13—C12—H12A116.7
C10—N2—C9114.8 (4)C14—C13—C18120.1 (6)
C10—N2—Cu1113.1 (3)C14—C13—C12117.0 (6)
C9—N2—Cu1105.7 (3)C18—C13—C12122.8 (5)
C10—N2—H2B107.7C15—C14—C13121.2 (7)
C9—N2—H2B107.7C15—C14—H14A119.4
Cu1—N2—H2B107.7C13—C14—H14A119.4
C12—N3—C11i116.1 (5)C14—C15—C16119.4 (6)
C12—N3—Cu1123.7 (4)C14—C15—H15A120.3
C11i—N3—Cu1119.6 (4)C16—C15—H15A120.3
O1—C1—C2119.9 (6)C15—C16—C17121.8 (7)
O1—C1—C6123.4 (5)C15—C16—H16A119.1
C2—C1—C6116.7 (6)C17—C16—H16A119.1
C3—C2—C1121.9 (7)C16—C17—C18121.2 (7)
C3—C2—H2A119.0C16—C17—H17A119.4
C1—C2—H2A119.0C18—C17—H17A119.4
C4—C3—C2121.6 (7)O2—C18—C17119.7 (6)
C4—C3—H3A119.2O2—C18—C13124.0 (6)
C2—C3—H3A119.2C17—C18—C13116.2 (6)
C3—C4—C5118.6 (6)O3A—S1A—C20A104.8 (10)
C3—C4—H4A120.7O3A—S1A—C19A111.1 (14)
C5—C4—H4A120.7C20A—S1A—C19A99.2 (14)
C4—C5—C6121.6 (7)O3B—S1B—C20B113 (2)
C4—C5—H5A119.2O3B—S1B—C19B103 (3)
C6—C5—H5A119.2C20B—S1B—C19B94 (3)
C5—C6—C1119.5 (6)S1B—C19B—H19D109.5
C5—C6—C7116.8 (6)S1B—C19B—H19E109.5
C1—C6—C7123.5 (5)H19D—C19B—H19E109.5
N1—C7—C6125.0 (5)S1B—C19B—H19F109.5
N1—C7—H7A117.5H19D—C19B—H19F109.5
C6—C7—H7A117.5H19E—C19B—H19F109.5
N1—C8—C9106.1 (5)S1B—C20B—H20D109.5
N1—C8—H8A110.5S1B—C20B—H20E109.5
C9—C8—H8A110.5H20D—C20B—H20E109.5
N1—C8—H8B110.5S1B—C20B—H20F109.5
C9—C8—H8B110.5H20D—C20B—H20F109.5
H8A—C8—H8B108.7H20E—C20B—H20F109.5
N2—C9—C8110.6 (5)
N1—Cu1—O1—C111.8 (5)C6—C1—C2—C30.4 (10)
N3—Cu1—O1—C1171.8 (5)C1—C2—C3—C40.2 (12)
O2—Cu1—O1—C181.5 (6)C2—C3—C4—C50.6 (12)
N2—Cu1—O1—C186.8 (6)C3—C4—C5—C61.2 (11)
Cu1i—Cu1—O1—C1138.1 (5)C4—C5—C6—C11.1 (10)
O1—Cu1—O2—C1863.5 (5)C4—C5—C6—C7177.3 (6)
N1—Cu1—O2—C18156.7 (5)O1—C1—C6—C5178.3 (6)
N3—Cu1—O2—C1826.1 (5)C2—C1—C6—C50.3 (9)
N2—Cu1—O2—C18125.3 (4)O1—C1—C6—C72.4 (9)
Cu1i—Cu1—O2—C1882.6 (4)C2—C1—C6—C7176.2 (6)
O1—Cu1—N1—C76.9 (5)C8—N1—C7—C6174.0 (5)
O2—Cu1—N1—C7130.3 (5)Cu1—N1—C7—C60.6 (9)
N2—Cu1—N1—C7139.0 (5)C5—C6—C7—N1176.5 (6)
Cu1i—Cu1—N1—C7132.3 (5)C1—C6—C7—N17.4 (9)
O1—Cu1—N1—C8167.0 (4)C7—N1—C8—C9116.1 (6)
O2—Cu1—N1—C855.8 (4)Cu1—N1—C8—C958.2 (5)
N2—Cu1—N1—C834.9 (4)C10—N2—C9—C8102.8 (6)
Cu1i—Cu1—N1—C841.6 (4)Cu1—N2—C9—C822.5 (5)
O1—Cu1—N2—C10146.8 (3)N1—C8—C9—N250.9 (6)
N1—Cu1—N2—C10132.3 (4)C9—N2—C10—C1175.2 (6)
N3—Cu1—N2—C1050.0 (4)Cu1—N2—C10—C11163.4 (4)
O2—Cu1—N2—C1041.1 (4)N2—C10—C11—N3i63.2 (6)
Cu1i—Cu1—N2—C1056.2 (3)C11i—N3—C12—C13177.1 (5)
O1—Cu1—N2—C986.8 (4)Cu1—N3—C12—C1312.0 (8)
N1—Cu1—N2—C96.0 (4)N3—C12—C13—C14178.2 (5)
N3—Cu1—N2—C9176.4 (3)N3—C12—C13—C185.2 (9)
O2—Cu1—N2—C985.3 (4)C18—C13—C14—C150.2 (9)
Cu1i—Cu1—N2—C9177.5 (4)C12—C13—C14—C15176.9 (6)
O1—Cu1—N3—C12114.8 (5)C13—C14—C15—C160.6 (10)
O2—Cu1—N3—C1222.3 (5)C14—C15—C16—C171.4 (11)
N2—Cu1—N3—C12113.4 (4)C15—C16—C17—C183.8 (10)
Cu1i—Cu1—N3—C12118.4 (5)Cu1—O2—C18—C17165.4 (4)
O1—Cu1—N3—C11i55.8 (4)Cu1—O2—C18—C1318.2 (8)
O2—Cu1—N3—C11i167.0 (4)C16—C17—C18—O2179.4 (6)
N2—Cu1—N3—C11i75.9 (4)C16—C17—C18—C133.9 (9)
Cu1i—Cu1—N3—C11i71.0 (4)C14—C13—C18—O2178.5 (5)
Cu1—O1—C1—C2172.4 (5)C12—C13—C18—O22.0 (8)
Cu1—O1—C1—C69.1 (9)C14—C13—C18—C172.0 (8)
O1—C1—C2—C3179.0 (6)C12—C13—C18—C17174.6 (5)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C18H19N3O2)2]·2C2H6OS
Mr902.06
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.817 (3), 16.783 (4), 9.827 (3)
β (°) 106.732 (18)
V3)2024.5 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.21
Crystal size (mm)0.16 × 0.16 × 0.12
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ scan
(XSCANS; Siemens, 1996)
Tmin, Tmax0.803, 0.866
No. of measured, independent and
observed [I > 2σ(I)] reflections
7380, 3599, 2191
Rint0.076
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.167, 1.05
No. of reflections3599
No. of parameters294
No. of restraints30
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.82

Computer programs: XSCANS (Siemens, 1996), SHELXTL-Plus (Sheldrick, 2008), Mercury (Macrae et al., 2006).

Selected geometric parameters (Å, º) top
Cu1—O11.932 (4)Cu1—N31.969 (5)
Cu1—N11.948 (5)Cu1—O21.978 (4)
Cu1—N22.319 (4)
O1—Cu1—O2137.2 (2)N2—Cu1—O1131.28 (19)
O2—Cu1—N290.92 (17)N1—Cu1—N3176.4 (2)
 

Acknowledgements

This work was supported by Secretaría de Educación Pública (Sub-Secretaría de Educación Superior) and Vicerectoría de Investigación y Estudios de Posgrado, BUAP (project No. 09/NAT/07).

References

First citationGutiérrez, R., Vázquez, J., Vázquez, R. A., Reyes, Y., Toscano, R. A., Martinez, M. & Álvarez, C. (2001). J. Coord. Chem. 54, 313–321.  CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKenzie, E. D. & Selvey, S. J. (1985). Inorg. Chim. Acta, 101, 127–133.  CSD CrossRef CAS Web of Science Google Scholar
First citationReyes-Ortega, Y., Alcántara-Flores, J. L., Hernández-Galindo, M. C., Ramírez-Rosales, D., Bernès, S., Ramírez-García, J. C., Zamorano-Ulloa, R. & Escudero, R. (2005). J. Am. Chem. Soc. 127, 16312–16317.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m631-m632
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds