organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1H-Tetra­zol-5-yl)benzo­nitrile

aSchool of Materials Science and Engineering, Jiangsu University of Science, and Technology, Zhenjiang, Jiangsu 212003, People's Republic of China
*Correspondence e-mail: gf552002@yahoo.com.cn

(Received 4 March 2008; accepted 25 March 2008; online 10 April 2008)

The title compound, C8H5N5, was synthesized from phthalonitrile. The benzonitrile and tetra­zole rings are inclined at a dihedral angle of 37.14 (11)°. In the crystal structure, inter­molecular N—H⋯N hydrogen bonds link the tetra­zole rings of adjacent mol­ecules, forming chains along the a axis.

Related literature

For backgound to the chemisty of tetra­zoles, see: Bekhit et al. (2004[Bekhit, A. A., El-Sayed, O. A., Aboulmagd, E. & Park, J. Y. (2004). Eur. J. Med. Chem. 39, 249-255.]); Aykut İkizler & Sancak (1992[Aykut İkizler, A. & Sancak, K. (1992). Monatsh. Chem. 123, 257-263.], 1995[Aykut İkizler, A. & Sancak, K. (1995). Collect. Czech. Chem. Commun. 60, 903-909.], 1998[Aykut İkizler, A. & Sancak, K. (1998). Rev. Roum. Chim. 43, 133-138.]); Rajasekaran & Thampi (2004[Rajasekaran, A. & Thampi, P. P. (2004). Eur. J. Med. Chem. 39, 273-279.]); Satyanarayana et al. (2006[Satyanarayana, B., Sumalatha, Y., Sridhar, C., Venkatraman, S. & Reddy, P. P. (2006). Synth. Commun. 36, 2079-2086.]); Schmidt & Schieffer (2003[Schmidt, B. & Schieffer, B. (2003). J. Med. Chem. 46, 2261-2270.]); Upadhayaya et al. (2004[Upadhayaya, R. S., Jain, S., Sinha, N., Kishore, N., Chandra, R. & Arora, S. K. (2004). Eur. J. Med. Chem. 39, 579-592.]); Wexler et al. (1996[Wexler, R. R., Greenlee, W. J., Irvin, J. D., Goldberg, M. R., Prendergast, K., Smith, R. D. & Timmermans, P. B. M. W. (1996). J. Med. Chem. 39, 625-656.]).

[Scheme 1]

Experimental

Crystal data
  • C8H5N5

  • Mr = 171.17

  • Monoclinic, P 21 /n

  • a = 4.9281 (10) Å

  • b = 6.5420 (13) Å

  • c = 24.867 (5) Å

  • β = 95.27 (3)°

  • V = 798.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 (2) K

  • 0.25 × 0.07 × 0.07 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.993, Tmax = 0.996

  • 6844 measured reflections

  • 1553 independent reflections

  • 1167 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.138

  • S = 1.10

  • 1553 reflections

  • 122 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N5i 0.92 (3) 1.91 (3) 2.820 (2) 172 (2)
N2—H2⋯N4i 0.92 (3) 2.60 (3) 3.374 (2) 142 (2)
Symmetry code: (i) x-1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nitriles are close relatives of azoles and hydrazones and are parent compounds for the preparation of various functional organic materials having triazole, imidazole or tetrazole rings (Aykut İkizler & Sancak, 1992, 1995, 1998). Tetrazoles find wide application in the synthesis of medicinal products such as antihypertensive agents (Wexler et al., 1996; Schmidt & Schieffer, 2003; Satyanarayana et al., 2006), resolvents (Bekhit et al., 2004), anaesthetics (Rajasekaran & Thampi, 2004) and antifungal agents (Upadhayaya et al., 2004). We report herein the crystal structure of the title compound, 2-(1H-tetrazol-5-yl)benzonitrile, Fig 1 with its crystal packing shown in Figure 2, Table 1.

Related literature top

For backgound to the chemisty of tetrazoles, see: Bekhit et al. (2004); Aykut İkizler & Sancak, (1992, 1995, 1998); Rajasekaran & Thampi (2004); Satyanarayana et al. (2006); Schmidt & Schieffer (2003); Upadhayaya et al. (2004); Wexler et al. (1996).

Experimental top

Phthalonitrile (1.28 g, 0.01 mol), sodium azide (0.975 g, 0.015 mol), ammonium chloride (0.605 g, 0.011 mol) and DMF (15 ml) were added in a flask and reacted at 120 °C with stirring for 24 h. A mass of white solid was collected after solvents removed. The crude product was recrystallized by slowly evaporating a mixed solution of ethanol and water (2:1) to yield colorless prism-like crystals, suitable for X-ray analysis.

Refinement top

The H2 atom bound to N2 was located in a difference map and was refined freely. Other H atoms were placed in calculated positions, with C—H = 0.93 Å and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the c axis. Hydrogen bonds are drawn as dashed lines.
(I) top
Crystal data top
C8H5N5F(000) = 352
Mr = 171.17Dx = 1.424 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6584 reflections
a = 4.9281 (10) Åθ = 3.1–28.8°
b = 6.5420 (13) ŵ = 0.10 mm1
c = 24.867 (5) ÅT = 293 K
β = 95.27 (3)°Prism, colorless
V = 798.3 (3) Å30.25 × 0.07 × 0.07 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
1553 independent reflections
Radiation source: fine-focus sealed tube1167 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.2°
ω scansh = 66
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 88
Tmin = 0.993, Tmax = 0.996l = 3030
6844 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0619P)2 + 0.1285P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1553 reflectionsΔρmax = 0.21 e Å3
122 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.044 (14)
Crystal data top
C8H5N5V = 798.3 (3) Å3
Mr = 171.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.9281 (10) ŵ = 0.10 mm1
b = 6.5420 (13) ÅT = 293 K
c = 24.867 (5) Å0.25 × 0.07 × 0.07 mm
β = 95.27 (3)°
Data collection top
Rigaku SCXmini
diffractometer
1553 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1167 reflections with I > 2σ(I)
Tmin = 0.993, Tmax = 0.996Rint = 0.061
6844 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.21 e Å3
1553 reflectionsΔρmin = 0.24 e Å3
122 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5249 (4)0.5054 (3)0.13602 (8)0.0345 (5)
C20.6569 (4)0.5277 (3)0.08892 (8)0.0403 (5)
C30.6021 (5)0.6960 (4)0.05536 (10)0.0548 (7)
H30.69250.71160.02440.066*
C40.4141 (5)0.8390 (4)0.06821 (11)0.0608 (7)
H40.37620.95090.04570.073*
C50.2821 (5)0.8174 (4)0.11410 (11)0.0539 (6)
H50.15370.91400.12230.065*
C60.3384 (4)0.6532 (3)0.14819 (9)0.0441 (6)
H60.25040.64160.17960.053*
C70.5736 (4)0.3299 (3)0.17202 (8)0.0323 (5)
C80.8482 (5)0.3773 (4)0.07280 (9)0.0476 (6)
N10.9990 (5)0.2612 (4)0.05847 (9)0.0701 (7)
N20.3814 (3)0.2405 (3)0.19806 (7)0.0399 (5)
N30.4920 (3)0.0893 (3)0.22916 (8)0.0480 (5)
N40.7498 (3)0.0881 (3)0.22217 (7)0.0458 (5)
N50.8068 (3)0.2363 (3)0.18650 (7)0.0380 (5)
H20.195 (6)0.253 (4)0.1939 (10)0.072 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0263 (10)0.0405 (11)0.0363 (11)0.0019 (9)0.0016 (8)0.0010 (9)
C20.0345 (12)0.0463 (12)0.0407 (12)0.0040 (10)0.0062 (9)0.0018 (10)
C30.0598 (16)0.0595 (15)0.0473 (14)0.0110 (12)0.0171 (12)0.0137 (12)
C40.0658 (17)0.0558 (15)0.0611 (17)0.0139 (13)0.0072 (14)0.0187 (13)
C50.0491 (14)0.0480 (14)0.0642 (16)0.0144 (11)0.0041 (12)0.0003 (12)
C60.0397 (12)0.0507 (13)0.0425 (13)0.0070 (10)0.0069 (10)0.0014 (10)
C70.0221 (9)0.0434 (11)0.0319 (11)0.0004 (8)0.0055 (8)0.0021 (9)
C80.0476 (13)0.0573 (15)0.0395 (13)0.0069 (12)0.0127 (10)0.0069 (11)
N10.0705 (15)0.0809 (15)0.0623 (15)0.0288 (13)0.0242 (12)0.0062 (12)
N20.0203 (9)0.0531 (11)0.0468 (11)0.0024 (8)0.0058 (8)0.0107 (8)
N30.0306 (9)0.0600 (12)0.0540 (12)0.0029 (9)0.0074 (8)0.0166 (10)
N40.0296 (9)0.0583 (12)0.0494 (11)0.0047 (8)0.0042 (8)0.0139 (9)
N50.0238 (8)0.0510 (10)0.0400 (10)0.0035 (8)0.0065 (7)0.0070 (8)
Geometric parameters (Å, º) top
C1—C61.386 (3)C5—H50.9300
C1—C21.399 (3)C6—H60.9300
C1—C71.462 (3)C7—N51.323 (2)
C2—C31.393 (3)C7—N21.331 (2)
C2—C81.445 (3)C8—N11.142 (3)
C3—C41.375 (3)N2—N31.340 (2)
C3—H30.9300N2—H20.92 (3)
C4—C51.372 (3)N3—N41.298 (2)
C4—H40.9300N4—N51.361 (2)
C5—C61.381 (3)
C6—C1—C2118.61 (19)C6—C5—H5119.8
C6—C1—C7119.24 (18)C5—C6—C1120.5 (2)
C2—C1—C7122.13 (17)C5—C6—H6119.7
C3—C2—C1120.31 (19)C1—C6—H6119.7
C3—C2—C8117.86 (19)N5—C7—N2107.65 (17)
C1—C2—C8121.81 (19)N5—C7—C1128.31 (17)
C4—C3—C2119.7 (2)N2—C7—C1123.99 (17)
C4—C3—H3120.1N1—C8—C2177.8 (2)
C2—C3—H3120.1C7—N2—N3109.61 (16)
C5—C4—C3120.3 (2)C7—N2—H2130.9 (16)
C5—C4—H4119.9N3—N2—H2118.7 (16)
C3—C4—H4119.9N4—N3—N2106.16 (16)
C4—C5—C6120.5 (2)N3—N4—N5110.25 (16)
C4—C5—H5119.8C7—N5—N4106.33 (15)
C6—C1—C2—C30.4 (3)C6—C1—C7—N5141.7 (2)
C7—C1—C2—C3179.22 (19)C2—C1—C7—N539.5 (3)
C6—C1—C2—C8178.3 (2)C6—C1—C7—N235.6 (3)
C7—C1—C2—C80.5 (3)C2—C1—C7—N2143.2 (2)
C1—C2—C3—C41.1 (4)N5—C7—N2—N30.1 (2)
C8—C2—C3—C4177.7 (2)C1—C7—N2—N3177.85 (18)
C2—C3—C4—C50.5 (4)C7—N2—N3—N40.3 (2)
C3—C4—C5—C60.7 (4)N2—N3—N4—N50.4 (2)
C4—C5—C6—C11.3 (4)N2—C7—N5—N40.2 (2)
C2—C1—C6—C50.8 (3)C1—C7—N5—N4177.48 (19)
C7—C1—C6—C5178.05 (19)N3—N4—N5—C70.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N5i0.92 (3)1.91 (3)2.820 (2)172 (2)
N2—H2···N4i0.92 (3)2.60 (3)3.374 (2)142 (2)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC8H5N5
Mr171.17
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)4.9281 (10), 6.5420 (13), 24.867 (5)
β (°) 95.27 (3)
V3)798.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.07 × 0.07
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.993, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
6844, 1553, 1167
Rint0.061
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.138, 1.10
No. of reflections1553
No. of parameters122
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.24

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N5i0.92 (3)1.91 (3)2.820 (2)172 (2)
N2—H2···N4i0.92 (3)2.60 (3)3.374 (2)142 (2)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This project was supported by Jiangsu Education Department of China (No. 05KJB350031)

References

First citationAykut İkizler, A. & Sancak, K. (1992). Monatsh. Chem. 123, 257–263.  Google Scholar
First citationAykut İkizler, A. & Sancak, K. (1995). Collect. Czech. Chem. Commun. 60, 903–909.  Google Scholar
First citationAykut İkizler, A. & Sancak, K. (1998). Rev. Roum. Chim. 43, 133–138.  Google Scholar
First citationBekhit, A. A., El-Sayed, O. A., Aboulmagd, E. & Park, J. Y. (2004). Eur. J. Med. Chem. 39, 249–255.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRajasekaran, A. & Thampi, P. P. (2004). Eur. J. Med. Chem. 39, 273–279.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSatyanarayana, B., Sumalatha, Y., Sridhar, C., Venkatraman, S. & Reddy, P. P. (2006). Synth. Commun. 36, 2079–2086.  Web of Science CrossRef CAS Google Scholar
First citationSchmidt, B. & Schieffer, B. (2003). J. Med. Chem. 46, 2261–2270.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUpadhayaya, R. S., Jain, S., Sinha, N., Kishore, N., Chandra, R. & Arora, S. K. (2004). Eur. J. Med. Chem. 39, 579–592.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWexler, R. R., Greenlee, W. J., Irvin, J. D., Goldberg, M. R., Prendergast, K., Smith, R. D. & Timmermans, P. B. M. W. (1996). J. Med. Chem. 39, 625–656.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds