metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m626-m627

The cocrystal aqua­chlorido{6,6′-di-tert-butyl-2,2′-[1,2-phenyl­enebis(nitrilo­methyl­­idyne)]diphenolato-κ4O,N,N′,O′}­manganese(III)–chlorido{6,6′-di-tert-butyl-2,2′-[1,2-phenyl­enebis(nitrilo­methyl­­idyne)]diphenolato-κ4O,N,N′,O′}(methanol-κO)manganese(III) (1/1)

aSchool of Chemical Science, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 9 March 2008; accepted 11 March 2008; online 4 April 2008)

The asymmetric unit of the title complex, [Mn(C28H30N2O2)Cl(H2O)][Mn(C28H30N2O2)Cl(CH3OH)], contains two discrete MnIII complexes of a Schiff base ligand, with an N2O2 donor set. Both MnIII centers are in a distorted octa­hedral geometry with the N2O2 donor atoms of the tetra­dentate Schiff base dianion in the equatorial plane. The axial positions in the coordination environment of one MnIII complex are occupied by a chloride ion and a water mol­ecule, but a methanol mol­ecule replaces the water mol­ecule in the other complex. The coordinated water mol­ecule takes part in an O—H⋯Cl hydrogen bond between the two MnIII complexes. In the crystal structure, O—H⋯Cl hydrogen bonds link the mol­ecules into infinite one-dimensional chains along the [100] direction. The crystal structure is stabilized by O—H⋯Cl hydrogen bonds together with weak C—H⋯O and C—H⋯Cl inter­actions. A C—H⋯π inter­action is also observed in the crystal structure.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For related structures, see for example: Eltayeb et al. (2007[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, m3193-m3194.], 2008[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, m124-m125.]); Habibi et al. (2007[Habibi, M. H., Askari, E., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, m2905-m2906.]); Mitra et al. (2006[Mitra, K., Biswas, S., Lucas, C. R. & Adhikary, B. (2006). Inorg. Chim. Acta, 359, 1997-2003.]). For background to applications of manganese complexes, see for example: Dixit & Srinivasan (1988[Dixit, P. S. & Srinivasan, K. (1988). Inorg. Chem. 27, 4507-4509.]); Glatzel et al. (2004[Glatzel, P., Bergmann, U., Yano, J., Visser, H., Robblee, J. H., Gu, W., de Groot, F. M. F., Christou, G., Pecoraro, V. L., Cramer, S. P. & Yachandra, V. K. (2004). J. Am. Chem. Soc. 126, 9946-9959.]); Lu et al. (2006[Lu, Z., Yuan, M., Pan, F., Gao, S., Zhang, D. & Zhu, D. (2006). Inorg. Chem. 45, 3538-3548.]); Stallings et al. (1985[Stallings, W. C., Pattridge, K. A., Strong, R. K. & Ludwig, M. L. (1985). J. Biol. Chem. 260, 16424-16432.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C28H30N2O2)Cl(H2O)][Mn(C28H30N2O2)Cl(CH4O)]

  • Mr = 1083.92

  • Triclinic, [P \overline 1]

  • a = 13.1080 (3) Å

  • b = 13.8794 (3) Å

  • c = 14.6085 (3) Å

  • α = 95.177 (1)°

  • β = 99.996 (1)°

  • γ = 95.639 (1)°

  • V = 2589.08 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.65 mm−1

  • T = 100.0 (1) K

  • 0.38 × 0.33 × 0.03 mm

Data collection
  • Bruker SMART APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.791, Tmax = 0.981

  • 37620 measured reflections

  • 10108 independent reflections

  • 6163 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.147

  • S = 1.03

  • 10108 reflections

  • 653 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1WA—H2WA⋯Cl1B 0.85 2.28 3.113 (3) 167
O3B—H1O3⋯Cl1Ai 1.00 2.06 3.026 (3) 163
C5A—H5AA⋯O1WAii 0.93 2.55 3.463 (5) 169
C4B—H4BA⋯Cl1Aii 0.93 2.79 3.528 (4) 137
C12B—H12B⋯Cl1Aiii 0.93 2.73 3.646 (4) 170
C23A—H23C⋯O1A 0.96 2.34 2.984 (6) 124
C23B—H23E⋯O1B 0.96 2.35 2.983 (5) 123
C24A—H24C⋯O1A 0.96 2.34 2.975 (5) 123
C24B—H24E⋯O1B 0.96 2.36 3.010 (5) 124
C26A—H26A⋯O2A 0.96 2.45 3.041 (5) 119
C26B—H26E⋯O2B 0.96 2.35 2.998 (5) 124
C28A—H28A⋯O2A 0.96 2.34 2.977 (5) 124
C28B—H28F⋯O2B 0.96 2.34 2.968 (5) 122
C14B—H14BCg1iv 0.93 3.23 3.690 (4) 113
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z; (iii) -x+1, -y, -z; (iv) -x+2, -y, -z. Cg1 is the centroid of the C8B–C13B benzene ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Manganese complexes with Schiff base ligands have been of interest due to the variety of their applications in coordination chemistry, physics, catalysis and biological replication. They have been used as models for the oxygen-evolving complex of photosystem II (Glatzel et al., 2004), in catalysis (Dixit & Srinivasan, 1988), as single-molecule magnets (Lu et al., 2006) and serve as models for the active sites of manganese-containing metal enzymes (Stallings et al., 1985). We have previously reported the crystal structure of manganese complexes with Schiff base ligands containing oxygen and imine nitrogen atoms (Eltayeb et al., 2007; 2008). In this paper, we report the crystal structure of a Mn(III) complex of the closely related ligand {6,6'-di-tert-butyl-2,2'-[1,2-phenylenebis(nitrilomethylidene)]diphenolate.

The asymmetric unit of the title complex molecule (Fig. 1) contains two MnIII complexes (A and B) with the same Schiff base ligand. Coordination spheres around MnIII in both A and B are slightly distorted octahedra, with the coordination plane of each MnIII formed by the N2O2 donor atoms of the Schiff base. The axial positions in A are occupied by a Cl- ion and a water molecule whereas in B, these positions are occupied by a Cl- ion and a CH3OH molecule. The in-plane Mn—O distances are in the range 1.863 (2)–1.882 (2) Å with Mn—N distances 1.978 (3)–1.997 (3) Å, which fall in the range observed for six other MnIII coordination complexes of Schiff base ligands (Eltayeb et al., 2007; 2008; Habibi et al., 2007; Mitra et al., 2006). The elongation of the Mn—O and Mn—Cl axial bonds [2.402 (3) and 2.5420 (12) Å in A and 2.293 (3) and 2.5416 (11) Å in B] clearly indicate the usual Jahn Teller distortion of the MnIII oxidation state as has been found previously (Eltayeb et al., 2007; 2008; Habibi et al., 2007; Mitra et al., 2006). The basal bond angles O–Mn–O and O–Mn–N are close to 90° whereas the N–Mn–N angles are less than 90° [N1A–Mn1A–N2A = 82.19 (12)° and N1B–Mn1B–N2B = 81.67 (12)°]. The axial bond angle Cl–Mn–O is also less than the ideal value of 180° [170.55 (7)° in A and 171.74 (8)° in B]. Other bond lengths and angles observed in the structure are also normal (Allen et al., 1987). The coordinated water molecule of molecule A forms an O—H···Cl hydrogen bond with the coordinated Cl- ion of molecule B (Fig. 1). The dihedral angles between the two outer phenolate rings [(C1–C6) and C15–C20) of the tetradentate Schiff base ligand is 22.21 (19)° in A and 18.81 (19)° in B°. The central benzene ring (C8–C13) makes dihedral angles of 13.43 (19)° and 8.79 (19)° with the two outer phenolate rings in A [10.94° and 10.37 (19)° in B].

In the crystal structure (Fig. 2), O—H···Cl hydrogen bonds [O1WA—H2WA···Cl1B; symmetry code x, y, z and O3B—H1O3—Cl1A; symmetry code 1 + x, y, z) (Table 1)] link the MnIII complex molecules into infinite one-dimensional chains along the [1 0 0] direction. The crystal is stabilized by these O—H···Cl hydrogen bonds, together with weak C—H···O and C—H···Cl interactions and further stabilized by C—H···π interactions (Table 1); Cg1 is the centroid of the C8B–C13B benzene ring.

Related literature top

For bond-length data, see: Allen et al. (1987). For related structures, see for example: Eltayeb et al. (2007, 2008); Habibi et al. (2007); Mitra et al. (2006). For background to applications of manganese complexes, see for example: Dixit & Srinivasan (1988); Glatzel et al. (2004); Lu et al. (2006); Stallings et al. (1985). Cg1 is the centroid of the C8B–C13B benzene ring.

Experimental top

The title compound was synthesized by adding 3-tert-butyl-2-hydroxybenzaldehyde (0.72 ml, 4 mmol) to a solution of o-phenylenediamine (0.216 g, 2 mmol) in ethanol 95% (30 ml). The mixture was refluxed with stirring for half an hour. Manganese chloride tetrahydrate (0.394 g, 2 mmol) in ethanol (10 ml) was then added, followed by triethylamine (0.5 ml, 3.6 mmol). The mixture was refluxed at room temperature for three hours. A brown precipitate was obtained, washed with about 5 ml e thanol, dried, and then washed with copious quantities of diethylether. Brown single crystals of the title compound suitable for x-ray structure determination were recrystallized from methanol/acetone (2:1 v/v) by slow evaporation of the solvent at room temperature after three weeks.

Refinement top

All H atoms were placed in calculated positions with d(O—H) = 0.85 Å, Uiso=1.2Ueq, d(C—H) = 0.93 Å, Uiso=1.2Ueq(C) for CH and aromatic, 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 1.00 Å from Mn1B and the deepest hole is located at 0.85 Å from Mn1A.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering. H atoms of the Schiff base ligand were omitted for clarify. The O—H···Cl hydrogen bond is drawn as a dashed line.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the c axis showing the chains running along the [1 0 0] direction. Hydrogen bonds are drawn as dashed lines.
aquachlorido{6,6'-di-tert-butyl-2,2'-[1,2- phenylenebis(nitrilomethylidyne)]diphenolato- κ4O,N,N',O'}manganese(III)–chlorido{6,6'-di- tert-butyl-2,2'-[1,2-phenylenebis(nitrilomethylidyne)]diphenolato- κ4O,N,N',O'}(methanol-κO)manganese(III) (1/1) top
Crystal data top
[Mn(C28H30N2O2)Cl(H2O)][Mn(C28H30N2O2)Cl(CH4O)]Z = 2
Mr = 1083.92F(000) = 1136
Triclinic, P1Dx = 1.390 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 13.1080 (3) ÅCell parameters from 10108 reflections
b = 13.8794 (3) Åθ = 1.6–26.0°
c = 14.6085 (3) ŵ = 0.65 mm1
α = 95.177 (1)°T = 100 K
β = 99.996 (1)°Plate, brown
γ = 95.639 (1)°0.38 × 0.33 × 0.03 mm
V = 2589.08 (10) Å3
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
10108 independent reflections
Radiation source: fine-focus sealed tube6163 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
Detector resolution: 8.33 pixels mm-1θmax = 26.0°, θmin = 1.6°
ω scansh = 1615
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1717
Tmin = 0.791, Tmax = 0.981l = 1818
37620 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.069P)2 + 0.4229P]
where P = (Fo2 + 2Fc2)/3
10108 reflections(Δ/σ)max < 0.001
653 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Mn(C28H30N2O2)Cl(H2O)][Mn(C28H30N2O2)Cl(CH4O)]γ = 95.639 (1)°
Mr = 1083.92V = 2589.08 (10) Å3
Triclinic, P1Z = 2
a = 13.1080 (3) ÅMo Kα radiation
b = 13.8794 (3) ŵ = 0.65 mm1
c = 14.6085 (3) ÅT = 100 K
α = 95.177 (1)°0.38 × 0.33 × 0.03 mm
β = 99.996 (1)°
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
10108 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6163 reflections with I > 2σ(I)
Tmin = 0.791, Tmax = 0.981Rint = 0.076
37620 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.03Δρmax = 0.57 e Å3
10108 reflectionsΔρmin = 0.52 e Å3
653 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn1A0.34120 (5)0.29619 (4)0.11581 (4)0.01967 (16)
Cl1A0.14711 (8)0.25826 (7)0.05064 (6)0.0277 (2)
O1A0.3338 (2)0.41678 (17)0.18009 (16)0.0239 (6)
O2A0.3473 (2)0.23461 (17)0.22530 (16)0.0221 (6)
O1WA0.5284 (2)0.32040 (19)0.15261 (17)0.0298 (7)
H1WA0.57480.36290.18520.045*
H2WA0.55690.26910.14240.045*
N1A0.3597 (2)0.3558 (2)0.0007 (2)0.0202 (7)
N2A0.3661 (2)0.1774 (2)0.0413 (2)0.0205 (7)
C1A0.3384 (3)0.5060 (3)0.1543 (2)0.0201 (8)
C2A0.3191 (3)0.5846 (3)0.2162 (3)0.0229 (9)
C3A0.3332 (3)0.6771 (3)0.1890 (3)0.0255 (9)
H3AA0.32410.72950.23000.031*
C4A0.3601 (3)0.6964 (3)0.1044 (3)0.0262 (9)
H4AA0.36880.76010.08960.031*
C5A0.3735 (3)0.6213 (3)0.0433 (3)0.0235 (9)
H5AA0.39010.63360.01420.028*
C6A0.3624 (3)0.5244 (2)0.0661 (2)0.0194 (8)
C7A0.3706 (3)0.4493 (3)0.0049 (2)0.0211 (8)
H7AA0.38510.46910.06090.025*
C8A0.3653 (3)0.2870 (3)0.0760 (2)0.0206 (8)
C9A0.3658 (3)0.3080 (3)0.1665 (3)0.0263 (9)
H9AA0.36110.37130.18160.032*
C10A0.3733 (3)0.2344 (3)0.2347 (3)0.0288 (10)
H10A0.37370.24830.29570.035*
C11A0.3802 (3)0.1400 (3)0.2124 (3)0.0287 (10)
H11A0.38600.09120.25850.034*
C12A0.3787 (3)0.1177 (3)0.1231 (3)0.0248 (9)
H12A0.38300.05410.10900.030*
C13A0.3707 (3)0.1906 (3)0.0536 (3)0.0220 (9)
C14A0.3772 (3)0.0939 (3)0.0743 (3)0.0231 (9)
H14A0.38290.04150.03170.028*
C15A0.3814 (3)0.0753 (3)0.1691 (3)0.0224 (9)
C16A0.3978 (3)0.0201 (3)0.1902 (3)0.0253 (9)
H16A0.40050.06810.14230.030*
C17A0.4095 (3)0.0422 (3)0.2800 (3)0.0272 (9)
H17A0.41690.10570.29330.033*
C18A0.4104 (3)0.0318 (3)0.3524 (3)0.0245 (9)
H18A0.42160.01610.41370.029*
C19A0.3957 (3)0.1268 (3)0.3376 (3)0.0217 (9)
C20A0.3739 (3)0.1474 (3)0.2431 (3)0.0218 (9)
C21A0.2845 (4)0.5662 (3)0.3085 (3)0.0331 (11)
C22A0.2646 (4)0.6604 (3)0.3618 (3)0.0457 (13)
H22A0.21090.68930.32410.069*
H22B0.32750.70480.37560.069*
H22C0.24290.64610.41900.069*
C23A0.1827 (4)0.4977 (3)0.2886 (3)0.0502 (14)
H23A0.12940.52740.25120.075*
H23B0.16170.48510.34660.075*
H23C0.19300.43750.25560.075*
C24A0.3691 (4)0.5217 (3)0.3717 (3)0.0461 (13)
H24A0.34770.51270.43030.069*
H24B0.43310.56450.38260.069*
H24C0.37950.45980.34190.069*
C25A0.4097 (3)0.2082 (3)0.4191 (3)0.0285 (10)
C26A0.3079 (3)0.2515 (3)0.4249 (3)0.0389 (11)
H26A0.28850.28500.37090.058*
H26B0.31740.29650.48040.058*
H26C0.25390.20020.42700.058*
C27A0.4468 (4)0.1702 (3)0.5141 (3)0.0396 (12)
H27A0.50950.14040.51210.059*
H27B0.39360.12310.52640.059*
H27C0.46030.22360.56280.059*
C28A0.4928 (3)0.2884 (3)0.4073 (3)0.0309 (10)
H28A0.47110.31570.35000.046*
H28B0.55730.26170.40570.046*
H28C0.50220.33850.45890.046*
Mn1B0.83334 (4)0.18866 (4)0.15141 (4)0.01899 (16)
Cl1B0.64003 (7)0.14689 (6)0.08462 (6)0.0245 (2)
O1B0.8253 (2)0.31322 (17)0.21049 (16)0.0249 (6)
O2B0.83043 (19)0.12841 (17)0.26015 (16)0.0214 (6)
O3B1.0116 (2)0.2132 (2)0.19280 (19)0.0402 (8)
H1O31.04490.21990.13680.060*
N1B0.8598 (2)0.2431 (2)0.03600 (19)0.0209 (7)
N2B0.8582 (2)0.0659 (2)0.0806 (2)0.0197 (7)
C1B0.8462 (3)0.4012 (3)0.1851 (3)0.0222 (9)
C2B0.8448 (3)0.4853 (3)0.2486 (2)0.0217 (9)
C3B0.8641 (3)0.5759 (3)0.2182 (3)0.0279 (10)
H3BA0.86290.63090.25910.034*
C4B0.8853 (3)0.5891 (3)0.1302 (3)0.0297 (10)
H4BA0.89670.65140.11260.036*
C5B0.8889 (3)0.5093 (3)0.0698 (3)0.0270 (9)
H5BA0.90380.51710.01080.032*
C6B0.8703 (3)0.4152 (3)0.0963 (3)0.0248 (9)
C7B0.8741 (3)0.3358 (3)0.0270 (3)0.0228 (9)
H7BA0.88840.35230.03010.027*
C8B0.8655 (3)0.1710 (3)0.0386 (2)0.0218 (9)
C9B0.8699 (3)0.1896 (3)0.1297 (2)0.0249 (9)
H9BA0.86950.25270.14620.030*
C10B0.8751 (3)0.1127 (3)0.1958 (3)0.0277 (9)
H10B0.87840.12440.25700.033*
C11B0.8753 (3)0.0185 (3)0.1711 (3)0.0269 (9)
H11B0.87880.03260.21580.032*
C12B0.8703 (3)0.0002 (3)0.0815 (3)0.0260 (9)
H12B0.87050.06320.06560.031*
C13B0.8650 (3)0.0761 (3)0.0138 (2)0.0215 (8)
C14B0.8714 (3)0.0154 (3)0.1169 (3)0.0234 (9)
H14B0.88470.06740.07770.028*
C15B0.8675 (3)0.0319 (3)0.2107 (2)0.0203 (8)
C16B0.8852 (3)0.1259 (3)0.2357 (3)0.0254 (9)
H16B0.89780.17280.19060.030*
C17B0.8843 (3)0.1491 (3)0.3238 (3)0.0284 (10)
H17B0.89780.21070.33940.034*
C18B0.8628 (3)0.0794 (3)0.3906 (3)0.0255 (9)
H18B0.86160.09640.45060.031*
C19B0.8432 (3)0.0140 (3)0.3720 (2)0.0204 (8)
C20B0.8468 (3)0.0393 (3)0.2798 (2)0.0194 (8)
C21B0.8251 (3)0.4751 (3)0.3487 (3)0.0272 (9)
C22B0.8269 (4)0.5748 (3)0.4038 (3)0.0345 (11)
H22D0.89430.61110.40940.052*
H22E0.81280.56590.46510.052*
H22F0.77460.60990.37160.052*
C23B0.7180 (3)0.4184 (3)0.3464 (3)0.0389 (11)
H23D0.70680.41400.40920.058*
H23E0.71550.35400.31530.058*
H23F0.66450.45150.31340.058*
C24B0.9116 (4)0.4233 (3)0.3996 (3)0.0334 (10)
H24D0.97770.46130.40310.050*
H24E0.91180.36050.36630.050*
H24F0.89970.41540.46170.050*
C25B0.8180 (3)0.0874 (3)0.4473 (2)0.0252 (9)
C26B0.7086 (3)0.1171 (3)0.4154 (3)0.0377 (11)
H26D0.65770.06100.40870.057*
H26E0.70550.14320.35650.057*
H26F0.69430.16550.46120.057*
C27B0.8188 (3)0.0454 (3)0.5401 (3)0.0343 (10)
H27D0.88740.02940.56350.051*
H27E0.76990.01240.53100.051*
H27F0.79960.09260.58430.051*
C28B0.9001 (4)0.1775 (3)0.4649 (3)0.0349 (11)
H28D0.96840.15760.48150.052*
H28E0.88680.22130.51510.052*
H28F0.89640.20990.40930.052*
C29B1.0736 (4)0.2242 (4)0.2779 (4)0.0556 (14)
H29D1.14440.21870.27090.083*
H29E1.05120.17450.31410.083*
H29F1.06940.28710.30930.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn1A0.0292 (4)0.0130 (3)0.0194 (3)0.0058 (2)0.0105 (3)0.0002 (2)
Cl1A0.0274 (6)0.0307 (5)0.0277 (5)0.0065 (4)0.0099 (4)0.0058 (4)
O1A0.0405 (17)0.0142 (13)0.0208 (14)0.0083 (12)0.0123 (12)0.0027 (10)
O2A0.0324 (16)0.0143 (13)0.0245 (14)0.0098 (11)0.0134 (12)0.0053 (10)
O1WA0.0301 (17)0.0258 (15)0.0343 (16)0.0080 (13)0.0078 (13)0.0012 (12)
N1A0.0219 (18)0.0177 (16)0.0211 (17)0.0047 (14)0.0058 (14)0.0031 (13)
N2A0.0212 (18)0.0168 (16)0.0235 (18)0.0052 (14)0.0042 (14)0.0009 (13)
C1A0.025 (2)0.0156 (19)0.020 (2)0.0034 (17)0.0042 (17)0.0052 (15)
C2A0.030 (2)0.0141 (19)0.025 (2)0.0035 (17)0.0058 (18)0.0002 (15)
C3A0.030 (2)0.0161 (19)0.030 (2)0.0054 (17)0.0018 (18)0.0000 (16)
C4A0.026 (2)0.018 (2)0.033 (2)0.0007 (17)0.0018 (19)0.0044 (17)
C5A0.024 (2)0.021 (2)0.025 (2)0.0020 (17)0.0033 (17)0.0070 (16)
C6A0.021 (2)0.0137 (18)0.024 (2)0.0017 (16)0.0062 (17)0.0022 (15)
C7A0.020 (2)0.024 (2)0.021 (2)0.0033 (17)0.0069 (17)0.0048 (16)
C8A0.021 (2)0.024 (2)0.017 (2)0.0049 (17)0.0055 (16)0.0023 (15)
C9A0.028 (2)0.025 (2)0.026 (2)0.0044 (18)0.0079 (18)0.0030 (17)
C10A0.031 (3)0.039 (2)0.017 (2)0.006 (2)0.0059 (18)0.0020 (17)
C11A0.021 (2)0.034 (2)0.030 (2)0.0060 (19)0.0063 (18)0.0088 (18)
C12A0.025 (2)0.025 (2)0.025 (2)0.0049 (18)0.0060 (18)0.0009 (17)
C13A0.016 (2)0.023 (2)0.028 (2)0.0049 (17)0.0080 (17)0.0031 (16)
C14A0.022 (2)0.018 (2)0.028 (2)0.0051 (17)0.0056 (18)0.0066 (16)
C15A0.020 (2)0.0170 (19)0.031 (2)0.0039 (16)0.0075 (18)0.0004 (16)
C16A0.028 (2)0.0150 (19)0.032 (2)0.0043 (17)0.0058 (18)0.0043 (16)
C17A0.034 (3)0.0130 (19)0.038 (3)0.0083 (18)0.011 (2)0.0081 (17)
C18A0.028 (2)0.022 (2)0.029 (2)0.0087 (18)0.0106 (18)0.0116 (17)
C19A0.024 (2)0.020 (2)0.025 (2)0.0066 (17)0.0110 (17)0.0059 (16)
C20A0.022 (2)0.0182 (19)0.028 (2)0.0060 (17)0.0104 (17)0.0057 (16)
C21A0.059 (3)0.020 (2)0.025 (2)0.016 (2)0.017 (2)0.0006 (17)
C22A0.081 (4)0.029 (2)0.033 (3)0.021 (2)0.022 (2)0.0010 (19)
C23A0.075 (4)0.036 (3)0.054 (3)0.012 (3)0.046 (3)0.005 (2)
C24A0.090 (4)0.031 (2)0.020 (2)0.028 (3)0.007 (2)0.0015 (18)
C25A0.043 (3)0.025 (2)0.023 (2)0.0136 (19)0.0112 (19)0.0062 (17)
C26A0.053 (3)0.034 (2)0.040 (3)0.019 (2)0.029 (2)0.010 (2)
C27A0.071 (4)0.030 (2)0.026 (2)0.020 (2)0.020 (2)0.0065 (18)
C28A0.049 (3)0.022 (2)0.023 (2)0.011 (2)0.006 (2)0.0033 (17)
Mn1B0.0254 (4)0.0158 (3)0.0171 (3)0.0053 (2)0.0075 (3)0.0013 (2)
Cl1B0.0258 (6)0.0210 (5)0.0282 (5)0.0066 (4)0.0074 (4)0.0021 (4)
O1B0.0373 (17)0.0171 (14)0.0210 (14)0.0019 (12)0.0118 (12)0.0012 (11)
O2B0.0307 (16)0.0181 (13)0.0176 (13)0.0090 (12)0.0082 (11)0.0005 (10)
O3B0.0304 (18)0.069 (2)0.0187 (16)0.0024 (16)0.0036 (13)0.0001 (14)
N1B0.0265 (19)0.0211 (17)0.0161 (16)0.0058 (14)0.0076 (14)0.0028 (13)
N2B0.0194 (18)0.0207 (17)0.0191 (17)0.0041 (14)0.0047 (14)0.0015 (13)
C1B0.023 (2)0.019 (2)0.024 (2)0.0010 (17)0.0046 (17)0.0014 (16)
C2B0.027 (2)0.0153 (19)0.024 (2)0.0025 (16)0.0088 (17)0.0012 (15)
C3B0.037 (3)0.021 (2)0.024 (2)0.0052 (19)0.0039 (19)0.0040 (17)
C4B0.040 (3)0.016 (2)0.034 (2)0.0042 (19)0.007 (2)0.0080 (17)
C5B0.034 (3)0.026 (2)0.021 (2)0.0020 (19)0.0048 (18)0.0023 (17)
C6B0.027 (2)0.025 (2)0.020 (2)0.0010 (18)0.0014 (18)0.0003 (16)
C7B0.023 (2)0.026 (2)0.019 (2)0.0024 (18)0.0062 (17)0.0028 (16)
C8B0.021 (2)0.028 (2)0.018 (2)0.0062 (17)0.0077 (17)0.0015 (16)
C9B0.027 (2)0.029 (2)0.020 (2)0.0083 (18)0.0069 (18)0.0028 (16)
C10B0.025 (2)0.041 (3)0.018 (2)0.0084 (19)0.0049 (18)0.0017 (17)
C11B0.025 (2)0.033 (2)0.021 (2)0.0058 (18)0.0051 (18)0.0099 (17)
C12B0.026 (2)0.024 (2)0.028 (2)0.0072 (18)0.0059 (18)0.0048 (17)
C13B0.018 (2)0.028 (2)0.018 (2)0.0026 (17)0.0064 (16)0.0013 (16)
C14B0.021 (2)0.018 (2)0.031 (2)0.0064 (17)0.0071 (18)0.0023 (16)
C15B0.019 (2)0.0178 (19)0.025 (2)0.0032 (16)0.0065 (17)0.0003 (16)
C16B0.026 (2)0.017 (2)0.033 (2)0.0041 (17)0.0067 (18)0.0017 (17)
C17B0.030 (3)0.018 (2)0.038 (3)0.0049 (18)0.007 (2)0.0050 (18)
C18B0.027 (2)0.024 (2)0.027 (2)0.0041 (18)0.0073 (18)0.0035 (17)
C19B0.022 (2)0.022 (2)0.017 (2)0.0048 (17)0.0032 (16)0.0009 (15)
C20B0.018 (2)0.0187 (19)0.022 (2)0.0065 (16)0.0043 (16)0.0003 (15)
C21B0.040 (3)0.018 (2)0.023 (2)0.0020 (18)0.0077 (19)0.0047 (16)
C22B0.054 (3)0.023 (2)0.027 (2)0.004 (2)0.014 (2)0.0037 (17)
C23B0.045 (3)0.037 (3)0.036 (3)0.001 (2)0.021 (2)0.008 (2)
C24B0.052 (3)0.025 (2)0.023 (2)0.006 (2)0.007 (2)0.0022 (17)
C25B0.033 (3)0.027 (2)0.018 (2)0.0117 (18)0.0055 (18)0.0000 (16)
C26B0.045 (3)0.047 (3)0.028 (2)0.028 (2)0.012 (2)0.003 (2)
C27B0.047 (3)0.035 (2)0.024 (2)0.012 (2)0.010 (2)0.0031 (18)
C28B0.058 (3)0.022 (2)0.023 (2)0.010 (2)0.001 (2)0.0042 (17)
C29B0.049 (3)0.057 (3)0.063 (4)0.003 (3)0.021 (3)0.002 (3)
Geometric parameters (Å, º) top
Mn1A—O1A1.863 (2)Mn1B—N1B1.978 (3)
Mn1A—O2A1.874 (2)Mn1B—N2B1.997 (3)
Mn1A—N2A1.979 (3)Mn1B—O3B2.293 (3)
Mn1A—N1A1.981 (3)Mn1B—Cl1B2.5416 (11)
Mn1A—O1WA2.402 (3)O1B—C1B1.325 (4)
Mn1A—Cl1A2.5420 (12)O2B—C20B1.325 (4)
O1A—C1A1.325 (4)O3B—C29B1.349 (5)
O2A—C20A1.327 (4)O3B—H1O30.9992
O1WA—H1WA0.8500N1B—C7B1.305 (5)
O1WA—H2WA0.8500N1B—C8B1.429 (4)
N1A—C7A1.303 (4)N2B—C14B1.303 (4)
N1A—C8A1.421 (4)N2B—C13B1.416 (4)
N2A—C14A1.306 (4)C1B—C6B1.412 (5)
N2A—C13A1.425 (5)C1B—C2B1.429 (5)
C1A—C6A1.418 (5)C2B—C3B1.385 (5)
C1A—C2A1.423 (5)C2B—C21B1.544 (5)
C2A—C3A1.383 (5)C3B—C4B1.385 (5)
C2A—C21A1.531 (5)C3B—H3BA0.9300
C3A—C4A1.384 (5)C4B—C5B1.361 (5)
C3A—H3AA0.9300C4B—H4BA0.9300
C4A—C5A1.355 (5)C5B—C6B1.406 (5)
C4A—H4AA0.9300C5B—H5BA0.9300
C5A—C6A1.414 (5)C6B—C7B1.439 (5)
C5A—H5AA0.9300C7B—H7BA0.9300
C6A—C7A1.429 (5)C8B—C9B1.388 (5)
C7A—H7AA0.9300C8B—C13B1.398 (5)
C8A—C9A1.380 (5)C9B—C10B1.388 (5)
C8A—C13A1.412 (5)C9B—H9BA0.9300
C9A—C10A1.384 (5)C10B—C11B1.389 (5)
C9A—H9AA0.9300C10B—H10B0.9300
C10A—C11A1.385 (6)C11B—C12B1.367 (5)
C10A—H10A0.9300C11B—H11B0.9300
C11A—C12A1.370 (5)C12B—C13B1.394 (5)
C11A—H11A0.9300C12B—H12B0.9300
C12A—C13A1.391 (5)C14B—C15B1.418 (5)
C12A—H12A0.9300C14B—H14B0.9300
C14A—C15A1.426 (5)C15B—C16B1.416 (5)
C14A—H14A0.9300C15B—C20B1.427 (5)
C15A—C16A1.414 (5)C16B—C17B1.356 (5)
C15A—C20A1.428 (5)C16B—H16B0.9300
C16A—C17A1.361 (5)C17B—C18B1.395 (5)
C16A—H16A0.9300C17B—H17B0.9300
C17A—C18A1.405 (5)C18B—C19B1.387 (5)
C17A—H17A0.9300C18B—H18B0.9300
C18A—C19A1.382 (5)C19B—C20B1.430 (5)
C18A—H18A0.9300C19B—C25B1.531 (5)
C19A—C20A1.421 (5)C21B—C24B1.524 (6)
C19A—C25A1.540 (5)C21B—C22B1.533 (5)
C21A—C23A1.528 (6)C21B—C23B1.535 (6)
C21A—C22A1.528 (5)C22B—H22D0.9600
C21A—C24A1.532 (6)C22B—H22E0.9600
C22A—H22A0.9600C22B—H22F0.9600
C22A—H22B0.9600C23B—H23D0.9600
C22A—H22C0.9600C23B—H23E0.9600
C23A—H23A0.9600C23B—H23F0.9600
C23A—H23B0.9600C24B—H24D0.9600
C23A—H23C0.9600C24B—H24E0.9600
C24A—H24A0.9600C24B—H24F0.9600
C24A—H24B0.9600C25B—C27B1.522 (5)
C24A—H24C0.9600C25B—C26B1.537 (5)
C25A—C28A1.522 (5)C25B—C28B1.540 (6)
C25A—C26A1.528 (5)C26B—H26D0.9600
C25A—C27A1.545 (5)C26B—H26E0.9600
C26A—H26A0.9600C26B—H26F0.9600
C26A—H26B0.9600C27B—H27D0.9600
C26A—H26C0.9600C27B—H27E0.9600
C27A—H27A0.9600C27B—H27F0.9600
C27A—H27B0.9600C28B—H28D0.9600
C27A—H27C0.9600C28B—H28E0.9600
C28A—H28A0.9600C28B—H28F0.9600
C28A—H28B0.9600C29B—H29D0.9600
C28A—H28C0.9600C29B—H29E0.9600
Mn1B—O2B1.865 (2)C29B—H29F0.9600
Mn1B—O1B1.882 (2)
O1A—Mn1A—O2A91.85 (10)O2B—Mn1B—N2B92.16 (11)
O1A—Mn1A—N2A171.88 (12)O1B—Mn1B—N2B171.75 (11)
O2A—Mn1A—N2A92.91 (11)N1B—Mn1B—N2B81.67 (12)
O1A—Mn1A—N1A92.10 (11)O2B—Mn1B—O3B88.18 (11)
O2A—Mn1A—N1A170.09 (12)O1B—Mn1B—O3B89.86 (11)
N2A—Mn1A—N1A82.19 (12)N1B—Mn1B—O3B83.42 (11)
O1A—Mn1A—O1WA90.91 (10)N2B—Mn1B—O3B84.42 (11)
O2A—Mn1A—O1WA86.48 (10)O2B—Mn1B—Cl1B95.77 (8)
N2A—Mn1A—O1WA82.82 (11)O1B—Mn1B—Cl1B97.12 (9)
N1A—Mn1A—O1WA84.37 (11)N1B—Mn1B—Cl1B91.90 (9)
O1A—Mn1A—Cl1A96.40 (9)N2B—Mn1B—Cl1B88.18 (9)
O2A—Mn1A—Cl1A99.22 (8)O3B—Mn1B—Cl1B171.74 (8)
N2A—Mn1A—Cl1A89.33 (9)C1B—O1B—Mn1B131.2 (2)
N1A—Mn1A—Cl1A89.37 (9)C20B—O2B—Mn1B131.5 (2)
O1WA—Mn1A—Cl1A170.55 (7)C29B—O3B—Mn1B130.4 (3)
C1A—O1A—Mn1A132.0 (2)C29B—O3B—H1O3118.3
C20A—O2A—Mn1A130.3 (2)Mn1B—O3B—H1O3111.2
Mn1A—O1WA—H1WA136.5C7B—N1B—C8B121.3 (3)
Mn1A—O1WA—H2WA113.8C7B—N1B—Mn1B124.7 (2)
H1WA—O1WA—H2WA107.7C8B—N1B—Mn1B114.0 (2)
C7A—N1A—C8A121.9 (3)C14B—N2B—C13B122.2 (3)
C7A—N1A—Mn1A124.2 (2)C14B—N2B—Mn1B124.5 (2)
C8A—N1A—Mn1A113.8 (2)C13B—N2B—Mn1B113.3 (2)
C14A—N2A—C13A122.1 (3)O1B—C1B—C6B122.1 (3)
C14A—N2A—Mn1A124.2 (2)O1B—C1B—C2B119.7 (3)
C13A—N2A—Mn1A113.7 (2)C6B—C1B—C2B118.2 (3)
O1A—C1A—C6A121.0 (3)C3B—C2B—C1B117.8 (3)
O1A—C1A—C2A119.5 (3)C3B—C2B—C21B121.4 (3)
C6A—C1A—C2A119.5 (3)C1B—C2B—C21B120.8 (3)
C3A—C2A—C1A117.0 (3)C4B—C3B—C2B123.7 (3)
C3A—C2A—C21A122.2 (3)C4B—C3B—H3BA118.2
C1A—C2A—C21A120.8 (3)C2B—C3B—H3BA118.2
C2A—C3A—C4A123.9 (4)C5B—C4B—C3B118.9 (4)
C2A—C3A—H3AA118.0C5B—C4B—H4BA120.5
C4A—C3A—H3AA118.0C3B—C4B—H4BA120.5
C5A—C4A—C3A119.1 (4)C4B—C5B—C6B120.3 (4)
C5A—C4A—H4AA120.4C4B—C5B—H5BA119.8
C3A—C4A—H4AA120.4C6B—C5B—H5BA119.8
C4A—C5A—C6A120.7 (3)C5B—C6B—C1B121.1 (3)
C4A—C5A—H5AA119.6C5B—C6B—C7B116.0 (3)
C6A—C5A—H5AA119.6C1B—C6B—C7B122.9 (3)
C5A—C6A—C1A119.5 (3)N1B—C7B—C6B126.8 (3)
C5A—C6A—C7A116.9 (3)N1B—C7B—H7BA116.6
C1A—C6A—C7A123.5 (3)C6B—C7B—H7BA116.6
N1A—C7A—C6A126.6 (3)C9B—C8B—C13B120.6 (3)
N1A—C7A—H7AA116.7C9B—C8B—N1B125.0 (3)
C6A—C7A—H7AA116.7C13B—C8B—N1B114.5 (3)
C9A—C8A—C13A120.0 (3)C10B—C9B—C8B119.2 (4)
C9A—C8A—N1A125.4 (3)C10B—C9B—H9BA120.4
C13A—C8A—N1A114.6 (3)C8B—C9B—H9BA120.4
C8A—C9A—C10A119.7 (4)C9B—C10B—C11B120.3 (3)
C8A—C9A—H9AA120.2C9B—C10B—H10B119.9
C10A—C9A—H9AA120.2C11B—C10B—H10B119.9
C9A—C10A—C11A120.3 (4)C12B—C11B—C10B120.5 (3)
C9A—C10A—H10A119.9C12B—C11B—H11B119.8
C11A—C10A—H10A119.9C10B—C11B—H11B119.8
C12A—C11A—C10A120.8 (4)C11B—C12B—C13B120.4 (4)
C12A—C11A—H11A119.6C11B—C12B—H12B119.8
C10A—C11A—H11A119.6C13B—C12B—H12B119.8
C11A—C12A—C13A119.8 (4)C12B—C13B—C8B119.1 (3)
C11A—C12A—H12A120.1C12B—C13B—N2B125.4 (3)
C13A—C12A—H12A120.1C8B—C13B—N2B115.5 (3)
C12A—C13A—C8A119.4 (3)N2B—C14B—C15B126.1 (3)
C12A—C13A—N2A125.8 (3)N2B—C14B—H14B117.0
C8A—C13A—N2A114.9 (3)C15B—C14B—H14B117.0
N2A—C14A—C15A126.3 (3)C16B—C15B—C14B116.7 (3)
N2A—C14A—H14A116.9C16B—C15B—C20B119.0 (3)
C15A—C14A—H14A116.9C14B—C15B—C20B124.3 (3)
C16A—C15A—C14A116.9 (3)C17B—C16B—C15B121.5 (3)
C16A—C15A—C20A119.1 (3)C17B—C16B—H16B119.3
C14A—C15A—C20A124.0 (3)C15B—C16B—H16B119.3
C17A—C16A—C15A120.5 (3)C16B—C17B—C18B119.2 (4)
C17A—C16A—H16A119.7C16B—C17B—H17B120.4
C15A—C16A—H16A119.7C18B—C17B—H17B120.4
C16A—C17A—C18A119.3 (3)C19B—C18B—C17B123.2 (3)
C16A—C17A—H17A120.3C19B—C18B—H18B118.4
C18A—C17A—H17A120.3C17B—C18B—H18B118.4
C19A—C18A—C17A123.5 (3)C18B—C19B—C20B117.6 (3)
C19A—C18A—H18A118.3C18B—C19B—C25B121.3 (3)
C17A—C18A—H18A118.3C20B—C19B—C25B121.1 (3)
C18A—C19A—C20A116.9 (3)O2B—C20B—C15B121.3 (3)
C18A—C19A—C25A121.8 (3)O2B—C20B—C19B119.2 (3)
C20A—C19A—C25A121.2 (3)C15B—C20B—C19B119.5 (3)
O2A—C20A—C19A118.8 (3)C24B—C21B—C22B108.1 (3)
O2A—C20A—C15A121.1 (3)C24B—C21B—C23B110.6 (3)
C19A—C20A—C15A120.1 (3)C22B—C21B—C23B107.3 (3)
C23A—C21A—C22A107.6 (4)C24B—C21B—C2B108.5 (3)
C23A—C21A—C2A109.5 (3)C22B—C21B—C2B111.6 (3)
C22A—C21A—C2A111.7 (3)C23B—C21B—C2B110.9 (3)
C23A—C21A—C24A110.1 (4)C21B—C22B—H22D109.5
C22A—C21A—C24A107.7 (3)C21B—C22B—H22E109.5
C2A—C21A—C24A110.2 (3)H22D—C22B—H22E109.5
C21A—C22A—H22A109.5C21B—C22B—H22F109.5
C21A—C22A—H22B109.5H22D—C22B—H22F109.5
H22A—C22A—H22B109.5H22E—C22B—H22F109.5
C21A—C22A—H22C109.5C21B—C23B—H23D109.5
H22A—C22A—H22C109.5C21B—C23B—H23E109.5
H22B—C22A—H22C109.5H23D—C23B—H23E109.5
C21A—C23A—H23A109.5C21B—C23B—H23F109.5
C21A—C23A—H23B109.5H23D—C23B—H23F109.5
H23A—C23A—H23B109.5H23E—C23B—H23F109.5
C21A—C23A—H23C109.5C21B—C24B—H24D109.5
H23A—C23A—H23C109.5C21B—C24B—H24E109.5
H23B—C23A—H23C109.5H24D—C24B—H24E109.5
C21A—C24A—H24A109.5C21B—C24B—H24F109.5
C21A—C24A—H24B109.5H24D—C24B—H24F109.5
H24A—C24A—H24B109.5H24E—C24B—H24F109.5
C21A—C24A—H24C109.5C27B—C25B—C19B112.2 (3)
H24A—C24A—H24C109.5C27B—C25B—C26B107.5 (3)
H24B—C24A—H24C109.5C19B—C25B—C26B109.5 (3)
C28A—C25A—C26A109.4 (3)C27B—C25B—C28B107.4 (3)
C28A—C25A—C19A109.7 (3)C19B—C25B—C28B109.8 (3)
C26A—C25A—C19A111.8 (3)C26B—C25B—C28B110.3 (3)
C28A—C25A—C27A107.0 (3)C25B—C26B—H26D109.5
C26A—C25A—C27A107.3 (3)C25B—C26B—H26E109.5
C19A—C25A—C27A111.5 (3)H26D—C26B—H26E109.5
C25A—C26A—H26A109.5C25B—C26B—H26F109.5
C25A—C26A—H26B109.5H26D—C26B—H26F109.5
H26A—C26A—H26B109.5H26E—C26B—H26F109.5
C25A—C26A—H26C109.5C25B—C27B—H27D109.5
H26A—C26A—H26C109.5C25B—C27B—H27E109.5
H26B—C26A—H26C109.5H27D—C27B—H27E109.5
C25A—C27A—H27A109.5C25B—C27B—H27F109.5
C25A—C27A—H27B109.5H27D—C27B—H27F109.5
H27A—C27A—H27B109.5H27E—C27B—H27F109.5
C25A—C27A—H27C109.5C25B—C28B—H28D109.5
H27A—C27A—H27C109.5C25B—C28B—H28E109.5
H27B—C27A—H27C109.5H28D—C28B—H28E109.5
C25A—C28A—H28A109.5C25B—C28B—H28F109.5
C25A—C28A—H28B109.5H28D—C28B—H28F109.5
H28A—C28A—H28B109.5H28E—C28B—H28F109.5
C25A—C28A—H28C109.5O3B—C29B—H29D109.5
H28A—C28A—H28C109.5O3B—C29B—H29E109.5
H28B—C28A—H28C109.5H29D—C29B—H29E109.5
O2B—Mn1B—O1B93.60 (10)O3B—C29B—H29F109.5
O2B—Mn1B—N1B170.00 (11)H29D—C29B—H29F109.5
O1B—Mn1B—N1B91.79 (11)H29E—C29B—H29F109.5
O2A—Mn1A—O1A—C1A171.6 (3)O1B—Mn1B—O2B—C20B169.9 (3)
N1A—Mn1A—O1A—C1A0.7 (3)N1B—Mn1B—O2B—C20B47.5 (8)
O1WA—Mn1A—O1A—C1A85.1 (3)N2B—Mn1B—O2B—C20B4.1 (3)
Cl1A—Mn1A—O1A—C1A88.9 (3)O3B—Mn1B—O2B—C20B80.2 (3)
O1A—Mn1A—O2A—C20A165.3 (3)Cl1B—Mn1B—O2B—C20B92.5 (3)
N2A—Mn1A—O2A—C20A8.2 (3)O2B—Mn1B—O3B—C29B28.2 (4)
O1WA—Mn1A—O2A—C20A74.5 (3)O1B—Mn1B—O3B—C29B65.4 (4)
Cl1A—Mn1A—O2A—C20A98.0 (3)N1B—Mn1B—O3B—C29B157.3 (4)
O1A—Mn1A—N1A—C7A5.4 (3)N2B—Mn1B—O3B—C29B120.5 (4)
N2A—Mn1A—N1A—C7A168.8 (3)O2B—Mn1B—N1B—C7B116.6 (6)
O1WA—Mn1A—N1A—C7A85.3 (3)O1B—Mn1B—N1B—C7B6.0 (3)
Cl1A—Mn1A—N1A—C7A101.8 (3)N2B—Mn1B—N1B—C7B168.9 (3)
O1A—Mn1A—N1A—C8A177.4 (2)O3B—Mn1B—N1B—C7B83.6 (3)
N2A—Mn1A—N1A—C8A8.4 (2)Cl1B—Mn1B—N1B—C7B103.2 (3)
O1WA—Mn1A—N1A—C8A91.9 (2)O2B—Mn1B—N1B—C8B61.4 (8)
Cl1A—Mn1A—N1A—C8A81.0 (2)O1B—Mn1B—N1B—C8B176.0 (3)
O2A—Mn1A—N2A—C14A1.6 (3)N2B—Mn1B—N1B—C8B9.1 (2)
N1A—Mn1A—N2A—C14A172.9 (3)O3B—Mn1B—N1B—C8B94.4 (3)
O1WA—Mn1A—N2A—C14A87.7 (3)Cl1B—Mn1B—N1B—C8B78.8 (2)
Cl1A—Mn1A—N2A—C14A97.6 (3)O2B—Mn1B—N2B—C14B3.6 (3)
O2A—Mn1A—N2A—C13A178.6 (2)N1B—Mn1B—N2B—C14B168.5 (3)
N1A—Mn1A—N2A—C13A7.2 (2)O3B—Mn1B—N2B—C14B84.3 (3)
O1WA—Mn1A—N2A—C13A92.5 (2)Cl1B—Mn1B—N2B—C14B99.3 (3)
Cl1A—Mn1A—N2A—C13A82.2 (2)O2B—Mn1B—N2B—C13B179.1 (2)
Mn1A—O1A—C1A—C6A6.9 (5)N1B—Mn1B—N2B—C13B8.8 (2)
Mn1A—O1A—C1A—C2A173.2 (3)O3B—Mn1B—N2B—C13B93.0 (2)
O1A—C1A—C2A—C3A174.9 (3)Cl1B—Mn1B—N2B—C13B83.3 (2)
C6A—C1A—C2A—C3A5.0 (5)Mn1B—O1B—C1B—C6B7.2 (6)
O1A—C1A—C2A—C21A5.1 (6)Mn1B—O1B—C1B—C2B172.8 (3)
C6A—C1A—C2A—C21A175.0 (4)O1B—C1B—C2B—C3B178.1 (3)
C1A—C2A—C3A—C4A2.9 (6)C6B—C1B—C2B—C3B1.9 (6)
C21A—C2A—C3A—C4A177.1 (4)O1B—C1B—C2B—C21B3.4 (6)
C2A—C3A—C4A—C5A0.2 (6)C6B—C1B—C2B—C21B176.6 (3)
C3A—C4A—C5A—C6A1.3 (6)C1B—C2B—C3B—C4B0.4 (6)
C4A—C5A—C6A—C1A0.8 (6)C21B—C2B—C3B—C4B178.1 (4)
C4A—C5A—C6A—C7A175.7 (3)C2B—C3B—C4B—C5B0.9 (6)
O1A—C1A—C6A—C5A175.8 (3)C3B—C4B—C5B—C6B0.8 (6)
C2A—C1A—C6A—C5A4.0 (5)C4B—C5B—C6B—C1B0.7 (6)
O1A—C1A—C6A—C7A7.9 (6)C4B—C5B—C6B—C7B179.0 (4)
C2A—C1A—C6A—C7A172.2 (4)O1B—C1B—C6B—C5B177.9 (4)
C8A—N1A—C7A—C6A177.3 (3)C2B—C1B—C6B—C5B2.1 (6)
Mn1A—N1A—C7A—C6A5.7 (5)O1B—C1B—C6B—C7B0.2 (6)
C5A—C6A—C7A—N1A177.8 (4)C2B—C1B—C6B—C7B179.9 (4)
C1A—C6A—C7A—N1A1.4 (6)C8B—N1B—C7B—C6B179.9 (4)
C7A—N1A—C8A—C9A10.7 (6)Mn1B—N1B—C7B—C6B2.3 (6)
Mn1A—N1A—C8A—C9A172.0 (3)C5B—C6B—C7B—N1B179.8 (4)
C7A—N1A—C8A—C13A169.2 (3)C1B—C6B—C7B—N1B2.1 (6)
Mn1A—N1A—C8A—C13A8.1 (4)C7B—N1B—C8B—C9B10.6 (6)
C13A—C8A—C9A—C10A1.0 (6)Mn1B—N1B—C8B—C9B171.3 (3)
N1A—C8A—C9A—C10A178.8 (4)C7B—N1B—C8B—C13B170.3 (3)
C8A—C9A—C10A—C11A0.1 (6)Mn1B—N1B—C8B—C13B7.8 (4)
C9A—C10A—C11A—C12A0.7 (6)C13B—C8B—C9B—C10B0.8 (6)
C10A—C11A—C12A—C13A0.4 (6)N1B—C8B—C9B—C10B179.8 (4)
C11A—C12A—C13A—C8A0.6 (5)C8B—C9B—C10B—C11B0.3 (6)
C11A—C12A—C13A—N2A178.6 (3)C9B—C10B—C11B—C12B0.1 (6)
C9A—C8A—C13A—C12A1.3 (5)C10B—C11B—C12B—C13B0.0 (6)
N1A—C8A—C13A—C12A178.6 (3)C11B—C12B—C13B—C8B0.5 (6)
C9A—C8A—C13A—N2A178.0 (3)C11B—C12B—C13B—N2B179.2 (3)
N1A—C8A—C13A—N2A2.1 (5)C9B—C8B—C13B—C12B0.8 (6)
C14A—N2A—C13A—C12A5.4 (6)N1B—C8B—C13B—C12B180.0 (3)
Mn1A—N2A—C13A—C12A174.4 (3)C9B—C8B—C13B—N2B178.8 (3)
C14A—N2A—C13A—C8A175.3 (3)N1B—C8B—C13B—N2B0.4 (5)
Mn1A—N2A—C13A—C8A4.9 (4)C14B—N2B—C13B—C12B10.1 (6)
C13A—N2A—C14A—C15A175.1 (3)Mn1B—N2B—C13B—C12B172.5 (3)
Mn1A—N2A—C14A—C15A5.1 (5)C14B—N2B—C13B—C8B170.3 (3)
N2A—C14A—C15A—C16A177.7 (4)Mn1B—N2B—C13B—C8B7.1 (4)
N2A—C14A—C15A—C20A0.0 (6)C13B—N2B—C14B—C15B179.1 (3)
C14A—C15A—C16A—C17A175.7 (4)Mn1B—N2B—C14B—C15B2.0 (5)
C20A—C15A—C16A—C17A2.1 (6)N2B—C14B—C15B—C16B179.4 (4)
C15A—C16A—C17A—C18A3.2 (6)N2B—C14B—C15B—C20B0.8 (6)
C16A—C17A—C18A—C19A2.7 (6)C14B—C15B—C16B—C17B179.3 (4)
C17A—C18A—C19A—C20A3.0 (6)C20B—C15B—C16B—C17B0.8 (6)
C17A—C18A—C19A—C25A172.9 (4)C15B—C16B—C17B—C18B1.6 (6)
Mn1A—O2A—C20A—C19A165.3 (3)C16B—C17B—C18B—C19B0.8 (6)
Mn1A—O2A—C20A—C15A14.3 (5)C17B—C18B—C19B—C20B0.8 (6)
C18A—C19A—C20A—O2A172.2 (3)C17B—C18B—C19B—C25B178.9 (4)
C25A—C19A—C20A—O2A11.8 (5)Mn1B—O2B—C20B—C15B2.8 (5)
C18A—C19A—C20A—C15A8.2 (5)Mn1B—O2B—C20B—C19B177.6 (2)
C25A—C19A—C20A—C15A167.7 (3)C16B—C15B—C20B—O2B179.5 (3)
C16A—C15A—C20A—O2A172.5 (3)C14B—C15B—C20B—O2B0.6 (6)
C14A—C15A—C20A—O2A9.8 (6)C16B—C15B—C20B—C19B0.8 (5)
C16A—C15A—C20A—C19A7.9 (5)C14B—C15B—C20B—C19B179.1 (3)
C14A—C15A—C20A—C19A169.7 (3)C18B—C19B—C20B—O2B178.8 (3)
C3A—C2A—C21A—C23A121.2 (4)C25B—C19B—C20B—O2B1.5 (5)
C1A—C2A—C21A—C23A58.8 (5)C18B—C19B—C20B—C15B1.6 (5)
C3A—C2A—C21A—C22A2.1 (6)C25B—C19B—C20B—C15B178.1 (3)
C1A—C2A—C21A—C22A177.9 (4)C3B—C2B—C21B—C24B117.2 (4)
C3A—C2A—C21A—C24A117.5 (4)C1B—C2B—C21B—C24B61.2 (5)
C1A—C2A—C21A—C24A62.5 (5)C3B—C2B—C21B—C22B1.7 (5)
C18A—C19A—C25A—C28A121.5 (4)C1B—C2B—C21B—C22B179.9 (4)
C20A—C19A—C25A—C28A54.2 (5)C3B—C2B—C21B—C23B121.2 (4)
C18A—C19A—C25A—C26A117.0 (4)C1B—C2B—C21B—C23B60.4 (5)
C20A—C19A—C25A—C26A67.3 (5)C18B—C19B—C25B—C27B0.6 (5)
C18A—C19A—C25A—C27A3.1 (5)C20B—C19B—C25B—C27B179.8 (3)
C20A—C19A—C25A—C27A172.6 (3)C18B—C19B—C25B—C26B118.8 (4)
O2B—Mn1B—O1B—C1B162.8 (3)C20B—C19B—C25B—C26B60.9 (5)
N1B—Mn1B—O1B—C1B8.8 (3)C18B—C19B—C25B—C28B119.9 (4)
O3B—Mn1B—O1B—C1B74.6 (3)C20B—C19B—C25B—C28B60.4 (4)
Cl1B—Mn1B—O1B—C1B100.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1WA—H2WA···Cl1B0.852.283.113 (3)167
O3B—H1O3···Cl1Ai1.002.063.026 (3)163
C5A—H5AA···O1WAii0.932.553.463 (5)169
C4B—H4BA···Cl1Aii0.932.793.528 (4)137
C12B—H12B···Cl1Aiii0.932.733.646 (4)170
C23A—H23C···O1A0.962.342.984 (6)124
C23B—H23E···O1B0.962.352.983 (5)123
C24A—H24C···O1A0.962.342.975 (5)123
C24B—H24E···O1B0.962.363.010 (5)124
C26A—H26A···O2A0.962.453.041 (5)119
C26B—H26E···O2B0.962.352.998 (5)124
C28A—H28A···O2A0.962.342.977 (5)124
C28B—H28F···O2B0.962.342.968 (5)122
C14B—H14B···Cg1iv0.933.233.690 (4)113
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x+2, y, z.

Experimental details

Crystal data
Chemical formula[Mn(C28H30N2O2)Cl(H2O)][Mn(C28H30N2O2)Cl(CH4O)]
Mr1083.92
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)13.1080 (3), 13.8794 (3), 14.6085 (3)
α, β, γ (°)95.177 (1), 99.996 (1), 95.639 (1)
V3)2589.08 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.38 × 0.33 × 0.03
Data collection
DiffractometerBruker SMART APEX2 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.791, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
37620, 10108, 6163
Rint0.076
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.147, 1.03
No. of reflections10108
No. of parameters653
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.52

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1WA—H2WA···Cl1B0.852.28063.113 (3)167
O3B—H1O3···Cl1Ai1.002.05643.026 (3)163
C5A—H5AA···O1WAii0.932.54683.463 (5)169
C4B—H4BA···Cl1Aii0.932.79183.528 (4)137
C12B—H12B···Cl1Aiii0.932.72623.646 (4)170
C23A—H23C···O1A0.962.33662.984 (6)124
C23B—H23E···O1B0.962.34622.983 (5)123
C24A—H24C···O1A0.962.34232.975 (5)123
C24B—H24E···O1B0.962.36333.010 (5)124
C26A—H26A···O2A0.962.45233.041 (5)119
C26B—H26E···O2B0.962.34932.998 (5)124
C28A—H28A···O2A0.962.33742.977 (5)124
C28B—H28F···O2B0.962.34172.968 (5)122
C14B—H14B···Cg1iv0.933.23223.690 (4)113
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x+2, y, z.
 

Footnotes

On study leave from International University of Africa, Sudan. E-mail: nasertaha90@hotmail.com.

§Additional correspondence author; e-mail: suchada.c@psu.ac.th.

Acknowledgements

The authors thank the Malaysian Government, Ministry of Science, Technology and Innovation (MOSTI) and Universiti Sains Malaysia for the E-Science Fund research grant (PKIMIA/613308) and facilities. The International University of Africa (Sudan) is acknowledged for providing study leave to NEE. The authors also thank Universiti Sains Malaysia for the Fundamental Research Grant Scheme (FRGS) grant No. 203/PFIZIK/671064.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDixit, P. S. & Srinivasan, K. (1988). Inorg. Chem. 27, 4507–4509.  CrossRef CAS Web of Science Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, m124–m125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, m3193–m3194.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGlatzel, P., Bergmann, U., Yano, J., Visser, H., Robblee, J. H., Gu, W., de Groot, F. M. F., Christou, G., Pecoraro, V. L., Cramer, S. P. & Yachandra, V. K. (2004). J. Am. Chem. Soc. 126, 9946–9959.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHabibi, M. H., Askari, E., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, m2905–m2906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, Z., Yuan, M., Pan, F., Gao, S., Zhang, D. & Zhu, D. (2006). Inorg. Chem. 45, 3538–3548.  Web of Science CSD CrossRef PubMed Google Scholar
First citationMitra, K., Biswas, S., Lucas, C. R. & Adhikary, B. (2006). Inorg. Chim. Acta, 359, 1997–2003.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStallings, W. C., Pattridge, K. A., Strong, R. K. & Ludwig, M. L. (1985). J. Biol. Chem. 260, 16424–16432.  CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m626-m627
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds