metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(η5-cyclo­penta­dien­yl)bis­­(2,4,6-tri­methyl­phenyl­tellurolato)zirconium(IV)

aSchool of Chemistry, University of Southampton, Southampton SO17 1BJ, England
*Correspondence e-mail: m.webster@soton.ac.uk

(Received 2 April 2008; accepted 7 April 2008; online 16 April 2008)

The structure of the title compound, [Zr(C5H5)2(C9H11Te)2], consists of a zirconium(IV) centre bonded to two η5-coord­inated cyclo­penta­dienyl groups and two mesityltellurolate ligands; the discrete mol­ecule has crystallographic twofold rotation symmetry. The structural parameters compared with those in [(η5-Me5Cp)2Zr(TePh)2] [Howard, Trnka & Parkin (1995[Howard, W. A., Trnka, T. M. & Parkin, G. (1995). Inorg. Chem. 34, 5900-5909.]). Inorg. Chem. 34, 5900–5909] show that the greater steric demands of the bulky mesityl substituents are accommodated by widening Te—Zr—Te (∼8°) and by more acute Zr—Te—C (∼5°) angles, although the Zr—Te distances are essentially the same. The crystal studied exhibited some inversion twinning.

Related literature

For a review, see: Arnold (1995[Arnold, J. (1995). Prog. Inorg. Chem. 43, 353-417.]). For related structures, see: Christou et al. (1993[Christou, V., Wuller, S. P. & Arnold, J. (1993). J. Am. Chem. Soc. 115, 10545-10552.]); Hector et al. (2008[Hector, A. L., Levason, W., Reid, G., Reid, S. D. & Webster, M. (2008). In preparation.]); Howard et al. (1995[Howard, W. A., Trnka, T. M. & Parkin, G. (1995). Inorg. Chem. 34, 5900-5909.]); Sato & Yoshida (1974[Sato, M. & Yoshida, T. (1974). J. Organomet. Chem. 87, 2117-2122.]).

[Scheme 1]

Experimental

Crystal data
  • [Zr(C5H5)2(C9H11Te)2]

  • Mr = 714.96

  • Orthorhombic, A b a 2

  • a = 9.0483 (15) Å

  • b = 21.881 (6) Å

  • c = 13.806 (4) Å

  • V = 2733.3 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.51 mm−1

  • T = 120 (2) K

  • 0.20 × 0.10 × 0.02 mm

Data collection
  • Bruker Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.758, Tmax = 0.951

  • 9201 measured reflections

  • 3046 independent reflections

  • 2444 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.087

  • S = 1.05

  • 3046 reflections

  • 145 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.50 e Å−3

  • Δρmin = −1.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1405 Friedel pairs

  • Flack parameter: 0.14 (5)

Table 1
Selected geometric parameters (Å, °)

Zr1—C1 2.519 (8)
Zr1—C2 2.519 (7)
Zr1—C3 2.455 (7)
Zr1—C4 2.470 (7)
Zr1—C5 2.504 (8)
Zr1—Te1 2.8694 (10)
Te1—C6 2.150 (7)
Te1—Zr1—Te1i 105.34 (5)
C6—Te1—Zr1 108.06 (16)
Zr1—Te1—C6—C7 77.0 (5)
Zr1—Te1—C6—C11 −103.8 (5)
Te1i—Zr1—Te1—C6 −79.80 (19)
Symmetry code: (i) -x+1, -y+1, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]) and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: COLLECT and DENZO; data reduction: COLLECT and DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thiolate ligands (RS-) form complexes with most metals and metalloids in the Periodic Table. In contrast, much less is known about corresponding selenolates (RSe-), and few tellurolate (RTe-) complexes have been characterized in detail (Arnold, 1995). The latter include [(η5-Me5Cp)2Zr(TePh)2] prepared from [(η5-Me5Cp)2Zr(CO)2], PhOH and Ph2Te2, (Howard et al., 1995) and [(η5-Cp)2Zr(TePh)2] prepared from [(η5-Cp)2ZrCl2] and PhTeLi, (Sato & Yoshida, 1974). We have recently characterized a range of complexes of Ti, Zr and Hf (M) of type [(η5-Cp)2M(SetBu)2] and shown that these complexes serve as single-source precursors for LPCVD (low pressure chemical vapour deposition) of MSe2 films (Hector et al., 2008), but that the corresponding t-butyltellurolates decompose to deposit elemental tellurium. During attempts to improve the stability of the tellurato-complexes, we obtained crystals of the title complex which we now report.

Red crystals of the title compound (I) were obtained in poor yield by reaction of [(η5-Cp)2ZrCl2] with (Me3C6H2)TeMgBr in anhydrous THF solution. The discrete molecule has 2-fold crystallographic symmetry, and shows the typical metallocene geometry with η5-coordinated Cp rings (Zr—C 2.455 (7)–2.519 (8) Å, 2.49 (3) Å (av)) rather shorter than those in [(η5-Me5Cp)2Zr(TePh)2] (2.56 (5) Å (av)) (Howard et al., 1995), but similar to those in the silyltellurolate [(η5-Cp)2Zr{TeSi(SiMe3)3}2] (2.50 (1) Å (av)) (Christou et al., 1993). The Zr—Te distances in [(η5-Cp)2Zr{TeSi(SiMe3)3}2] (2.866 (1) Å), [(η5-Cp)2Zr(TeC6H2Me3)2] (2.869 (1) Å), and [(η5-Me5Cp)2Zr(TePh)2] (2.87 (2) Å) are very similar as are the Te—C distances in the last two compounds (2.150 (7) and 2.12 (2) Å respectively). A more notable difference is in the Te—Zr—Te and Zr—Te—C angles between [(η5-Cp)2Zr(TeC6H2Me3)2] and [(η5-Me5Cp)2Zr(TePh)2] with Te—Zr—Te 105.34 (5) ° versus 97.2 (1) °, and Zr—Te—C 108.06 (16) ° versus 113.1 (7) °, consistent with the greater steric effects of the mesityl groups.

Related literature top

For a review, see: Arnold (1995). For related structures, see: Christou et al. (1993); Hector et al. (2008); Howard et al. (1995); Sato & Yoshida (1974).

Experimental top

To a stirred suspension of Mg turnings (66 mg, 2.72 mmol) in THF (30 ml) was added MesBr (56 mg, 2.82 mmol). The resulting mixture was stirred for 2 h, after which the Grignard was transferred by cannula to a suspension of freshly ground Te powder (300 mg, 2.35 mmol) in THF (10 ml). The mixture turned orange and was stirred for 1 h. Cp2ZrCl2 (345 mg, 1.18 mmol) was dissolved in THF (10 ml) and the Grignard solution added dropwise by cannula, during which time the solution turned red. The reaction was allowed to proceed overnight. The volatiles were removed in vacuo, the residue extracted with CH2Cl2 (20 ml) and filtered through celite. The solvent was removed under reduced pressure, the residue crystallized from Et2O to produce a small number of red crystals. 125Te{1H} NMR (CH2Cl2/CDCl3, 300 K): δTe = 887 p.p.m.

Refinement top

H atoms were placed in calculated positions [C—H = 0.95 (aromatic and Cp) and 0.98 Å (methyl)]. Uiso(H) values for methyl H atoms were set at 1.5Ueq(C) of the bonded C, and the rest at 1.2Ueq(C). Racemic twinning was allowed in the final refinement. The number of Friedel pairs measured is 1405.

Computing details top

Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell refinement: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The discrete molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity. Symmetry operation: a = 1 - x, 1 - y, z.
Bis(η5-cyclopentadienyl)bis(2,4,6-trimethylphenyltellurolato)zirconium(IV) top
Crystal data top
[Zr(C5H5)2(C9H11Te)2]F(000) = 1376
Mr = 714.96Dx = 1.737 Mg m3
Orthorhombic, Aba2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: A 2 -2acCell parameters from 7078 reflections
a = 9.0483 (15) Åθ = 2.9–27.5°
b = 21.881 (6) ŵ = 2.51 mm1
c = 13.806 (4) ÅT = 120 K
V = 2733.3 (12) Å3Plate, red
Z = 40.20 × 0.10 × 0.02 mm
Data collection top
Bruker Nonius KappaCCD
diffractometer
3046 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2444 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ϕ and ω scansθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 911
Tmin = 0.758, Tmax = 0.951k = 2826
9201 measured reflectionsl = 1716
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0276P)2 + 1.8865P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3046 reflectionsΔρmax = 1.50 e Å3
145 parametersΔρmin = 1.16 e Å3
1 restraintAbsolute structure: Flack (1983), 1405 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.14 (5)
Crystal data top
[Zr(C5H5)2(C9H11Te)2]V = 2733.3 (12) Å3
Mr = 714.96Z = 4
Orthorhombic, Aba2Mo Kα radiation
a = 9.0483 (15) ŵ = 2.51 mm1
b = 21.881 (6) ÅT = 120 K
c = 13.806 (4) Å0.20 × 0.10 × 0.02 mm
Data collection top
Bruker Nonius KappaCCD
diffractometer
3046 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2444 reflections with I > 2σ(I)
Tmin = 0.758, Tmax = 0.951Rint = 0.059
9201 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.087Δρmax = 1.50 e Å3
S = 1.05Δρmin = 1.16 e Å3
3046 reflectionsAbsolute structure: Flack (1983), 1405 Friedel pairs
145 parametersAbsolute structure parameter: 0.14 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zr10.50000.50000.06403 (8)0.01613 (16)
Te10.74620 (4)0.522546 (15)0.06201 (7)0.02158 (12)
C10.4387 (14)0.6120 (4)0.0508 (8)0.066 (3)
H10.43890.63550.00700.079*
C20.3184 (8)0.5854 (4)0.0922 (6)0.043 (2)
H20.22080.58690.06700.052*
C30.3574 (7)0.5607 (3)0.1807 (6)0.0324 (16)
H30.29150.54530.22840.039*
C40.5054 (9)0.5768 (3)0.1952 (7)0.051 (2)
H40.55780.57260.25440.062*
C50.5545 (11)0.6072 (4)0.1164 (10)0.067 (4)
H50.64750.62710.11100.081*
C60.7316 (6)0.6154 (3)0.1121 (5)0.0222 (14)
C70.6309 (7)0.6307 (3)0.1845 (4)0.0221 (16)
C80.6241 (7)0.6926 (3)0.2140 (6)0.0278 (15)
H80.55450.70390.26240.033*
C90.7141 (8)0.7370 (4)0.1756 (6)0.0293 (19)
C100.8146 (8)0.7201 (3)0.1041 (6)0.0312 (17)
H100.87730.75020.07640.037*
C110.8248 (6)0.6597 (3)0.0723 (6)0.0261 (14)
C120.5339 (7)0.5842 (3)0.2340 (5)0.0296 (17)
H12A0.47870.56110.18520.044*
H12B0.46440.60520.27710.044*
H12C0.59550.55620.27190.044*
C130.6987 (9)0.8020 (4)0.2084 (7)0.041 (2)
H13A0.59760.81610.19610.062*
H13B0.76850.82780.17270.062*
H13C0.71980.80460.27790.062*
C140.9425 (8)0.6443 (4)0.0014 (6)0.0388 (19)
H14A0.89580.63520.06380.058*
H14B0.99840.60850.02070.058*
H14C1.00970.67910.00880.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.0179 (3)0.0137 (3)0.0168 (3)0.0028 (3)0.0000.000
Te10.02085 (18)0.01997 (19)0.0239 (2)0.00485 (15)0.00464 (18)0.0039 (2)
C10.139 (10)0.024 (4)0.035 (7)0.037 (5)0.038 (7)0.002 (4)
C20.033 (4)0.041 (5)0.055 (7)0.022 (3)0.023 (4)0.028 (4)
C30.049 (4)0.014 (3)0.035 (4)0.002 (3)0.028 (4)0.003 (3)
C40.065 (5)0.039 (4)0.050 (6)0.032 (4)0.032 (6)0.034 (4)
C50.060 (6)0.016 (5)0.126 (11)0.014 (4)0.053 (7)0.028 (6)
C60.022 (3)0.022 (3)0.022 (4)0.006 (2)0.004 (3)0.006 (3)
C70.023 (3)0.026 (4)0.017 (4)0.002 (3)0.003 (2)0.008 (3)
C80.024 (3)0.023 (4)0.036 (4)0.003 (3)0.002 (3)0.009 (3)
C90.025 (4)0.031 (5)0.032 (5)0.002 (3)0.002 (3)0.013 (4)
C100.032 (4)0.028 (4)0.033 (5)0.007 (3)0.003 (3)0.007 (3)
C110.019 (3)0.027 (3)0.032 (4)0.003 (2)0.002 (3)0.002 (3)
C120.037 (4)0.028 (4)0.023 (4)0.002 (3)0.002 (3)0.004 (3)
C130.039 (4)0.030 (5)0.055 (6)0.003 (4)0.001 (4)0.013 (4)
C140.033 (4)0.044 (5)0.040 (5)0.010 (3)0.016 (3)0.015 (4)
Geometric parameters (Å, º) top
Zr1—C12.519 (8)C5—H50.9500
Zr1—C22.519 (7)C6—C71.393 (9)
Zr1—C32.455 (7)C6—C111.398 (9)
Zr1—C42.470 (7)C7—C81.415 (9)
Zr1—C52.504 (8)C7—C121.507 (9)
Zr1—C3i2.455 (7)C8—C91.375 (11)
Zr1—C4i2.470 (7)C8—H80.9500
Zr1—C5i2.504 (8)C9—C101.393 (11)
Zr1—C2i2.519 (7)C9—C131.499 (12)
Zr1—C1i2.519 (8)C10—C111.395 (9)
Zr1—Te12.8694 (10)C10—H100.9500
Zr1—Te1i2.8694 (10)C11—C141.512 (9)
Te1—C62.150 (7)C12—H12A0.9800
C1—C21.360 (13)C12—H12B0.9800
C1—C51.390 (15)C12—H12C0.9800
C1—H10.9500C13—H13A0.9800
C2—C31.382 (12)C13—H13B0.9800
C2—H20.9500C13—H13C0.9800
C3—C41.399 (10)C14—H14A0.9800
C3—H30.9500C14—H14B0.9800
C4—C51.350 (13)C14—H14C0.9800
C4—H40.9500
C3—Zr1—C3i98.0 (4)C2—C1—C5107.3 (9)
C3—Zr1—C4i82.9 (3)C2—C1—Zr174.3 (5)
C3i—Zr1—C4i33.0 (2)C5—C1—Zr173.3 (6)
C3—Zr1—C433.0 (2)C2—C1—H1125.9
C3i—Zr1—C482.9 (3)C5—C1—H1125.9
C4i—Zr1—C485.7 (5)Zr1—C1—H1125.9
C3—Zr1—C5i102.3 (4)C1—C2—C3109.6 (7)
C3i—Zr1—C5i53.6 (2)C1—C2—Zr174.3 (4)
C4i—Zr1—C5i31.5 (3)C3—C2—Zr171.3 (4)
C4—Zr1—C5i115.4 (5)C1—C2—H2125.1
C3—Zr1—C553.6 (2)C3—C2—H2125.1
C3i—Zr1—C5102.3 (4)Zr1—C2—H2125.1
C4i—Zr1—C5115.4 (5)C2—C3—C4105.8 (7)
C4—Zr1—C531.5 (3)C2—C3—Zr176.4 (4)
C5i—Zr1—C5146.4 (6)C4—C3—Zr174.1 (4)
C3—Zr1—C2i130.0 (3)C2—C3—H3126.3
C3i—Zr1—C2i32.2 (3)C4—C3—H3126.3
C4i—Zr1—C2i52.8 (2)Zr1—C3—H3126.3
C4—Zr1—C2i112.2 (3)C5—C4—C3108.9 (8)
C5i—Zr1—C2i52.3 (3)C5—C4—Zr175.6 (5)
C5—Zr1—C2i121.5 (3)C3—C4—Zr172.9 (4)
C3—Zr1—C232.2 (3)C5—C4—H4125.2
C3i—Zr1—C2130.0 (3)C3—C4—H4125.2
C4i—Zr1—C2112.2 (3)Zr1—C4—H4125.2
C4—Zr1—C252.8 (2)C4—C5—C1108.3 (8)
C5i—Zr1—C2121.5 (3)C4—C5—Zr172.9 (5)
C5—Zr1—C252.3 (3)C1—C5—Zr174.5 (6)
C2i—Zr1—C2162.2 (4)C4—C5—H5125.6
C3—Zr1—C1i133.6 (3)C1—C5—H5125.6
C3i—Zr1—C1i53.5 (3)Zr1—C5—H5125.6
C4i—Zr1—C1i52.8 (3)C7—C6—C11120.6 (6)
C4—Zr1—C1i135.3 (3)C7—C6—Te1119.9 (5)
C5i—Zr1—C1i32.1 (3)C11—C6—Te1119.5 (5)
C5—Zr1—C1i152.7 (3)C6—C7—C8117.7 (6)
C2i—Zr1—C1i31.3 (3)C6—C7—C12123.0 (6)
C2—Zr1—C1i151.2 (3)C8—C7—C12119.3 (6)
C3—Zr1—C153.5 (3)C9—C8—C7122.6 (7)
C3i—Zr1—C1133.6 (3)C9—C8—H8118.7
C4i—Zr1—C1135.3 (3)C7—C8—H8118.7
C4—Zr1—C152.8 (3)C8—C9—C10118.2 (7)
C5i—Zr1—C1152.7 (3)C8—C9—C13119.9 (7)
C5—Zr1—C132.1 (3)C10—C9—C13121.8 (8)
C2i—Zr1—C1151.2 (3)C9—C10—C11121.2 (7)
C2—Zr1—C131.3 (3)C9—C10—H10119.4
C1i—Zr1—C1171.7 (5)C11—C10—H10119.4
C3—Zr1—Te1135.49 (14)C10—C11—C6119.6 (6)
C3i—Zr1—Te194.75 (19)C10—C11—C14118.1 (6)
C4i—Zr1—Te1125.22 (16)C6—C11—C14122.3 (6)
C4—Zr1—Te1108.2 (2)C7—C12—H12A109.5
C5i—Zr1—Te1119.3 (3)C7—C12—H12B109.5
C5—Zr1—Te182.0 (2)H12A—C12—H12B109.5
C2i—Zr1—Te173.43 (16)C7—C12—H12C109.5
C2—Zr1—Te1118.2 (2)H12A—C12—H12C109.5
C1i—Zr1—Te187.3 (3)H12B—C12—H12C109.5
C1—Zr1—Te187.7 (3)C9—C13—H13A109.5
C3—Zr1—Te1i94.75 (19)C9—C13—H13B109.5
C3i—Zr1—Te1i135.49 (14)H13A—C13—H13B109.5
C4i—Zr1—Te1i108.2 (2)C9—C13—H13C109.5
C4—Zr1—Te1i125.22 (16)H13A—C13—H13C109.5
C5i—Zr1—Te1i82.0 (2)H13B—C13—H13C109.5
C5—Zr1—Te1i119.3 (3)C11—C14—H14A109.5
C2i—Zr1—Te1i118.2 (2)C11—C14—H14B109.5
C2—Zr1—Te1i73.43 (16)H14A—C14—H14B109.5
C1i—Zr1—Te1i87.7 (3)C11—C14—H14C109.5
C1—Zr1—Te1i87.3 (3)H14A—C14—H14C109.5
Te1—Zr1—Te1i105.34 (5)H14B—C14—H14C109.5
C6—Te1—Zr1108.06 (16)
Zr1—Te1—C6—C777.0 (5)Te1i—Zr1—Te1—C679.80 (19)
Zr1—Te1—C6—C11103.8 (5)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Zr(C5H5)2(C9H11Te)2]
Mr714.96
Crystal system, space groupOrthorhombic, Aba2
Temperature (K)120
a, b, c (Å)9.0483 (15), 21.881 (6), 13.806 (4)
V3)2733.3 (12)
Z4
Radiation typeMo Kα
µ (mm1)2.51
Crystal size (mm)0.20 × 0.10 × 0.02
Data collection
DiffractometerBruker Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.758, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
9201, 3046, 2444
Rint0.059
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.087, 1.05
No. of reflections3046
No. of parameters145
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.50, 1.16
Absolute structureFlack (1983), 1405 Friedel pairs
Absolute structure parameter0.14 (5)

Computer programs: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) top
Zr1—C12.519 (8)Zr1—C52.504 (8)
Zr1—C22.519 (7)Zr1—Te12.8694 (10)
Zr1—C32.455 (7)Te1—C62.150 (7)
Zr1—C42.470 (7)
Te1—Zr1—Te1i105.34 (5)C7—C6—C11120.6 (6)
C6—Te1—Zr1108.06 (16)
Zr1—Te1—C6—C777.0 (5)Te1i—Zr1—Te1—C679.80 (19)
Zr1—Te1—C6—C11103.8 (5)
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authors thank the EPSRC for support (grant EP/C001176/1) and for access to the Chemical Database Service at Daresbury Laboratory.

References

First citationArnold, J. (1995). Prog. Inorg. Chem. 43, 353–417.  CrossRef CAS Web of Science Google Scholar
First citationChristou, V., Wuller, S. P. & Arnold, J. (1993). J. Am. Chem. Soc. 115, 10545–10552.  CSD CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHector, A. L., Levason, W., Reid, G., Reid, S. D. & Webster, M. (2008). In preparation.  Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHoward, W. A., Trnka, T. M. & Parkin, G. (1995). Inorg. Chem. 34, 5900–5909.  CrossRef CAS Web of Science Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSato, M. & Yoshida, T. (1974). J. Organomet. Chem. 87, 2117–2122.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds