metal-organic compounds
Butane-1,4-diammonium bis(pyridine-2,6-dicarboxylato)cuprate(II) trihydrate
aFaculty of Chemistry, Tarbiat Moallem University, 49 Mofateh Avenue, Tehran, Iran, and bDepartment of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
*Correspondence e-mail: haghabozorg@yahoo.com
In the title compound, (C4H14N2)[Cu(C7H3NO4)2]·3H2O or (bdaH2)[Cu(pydc)2]·3H2O (where bda is butane-1,4-diamine and pydcH2 is pyridine-2,6-dicarboxylic acid), the CuII atom is coordinated by four O atoms [Cu—O = 2.0557 (16)–2.3194 (16) Å] and two N atoms [Cu—N = 1.9185 (18) and 1.9638 (18) Å] from two chelating rings of the pydc2− anions, which act as tridentate ligands. The geometry of the resulting CuN2O4 coordination can be described as distorted octahedral. The the two pydc2− fragments are almost perpendicular to one another [77.51 (11)°]. To balance the charges, two centrosymmetric protonated butane-1,4-diammonium, (bdaH2)2+ cations are present. In the extensive O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds [D⋯A = 2.720 (2)–3.446 (3) Å], ion pairing, C—O⋯π [O⋯π = 3.099 (2) Å] and π–π stacking interactions between the pydc2− rings [centroid–centroid distance = 3.5334 (15) Å] contribute to the formation of a three-dimensional supramolecular structure.
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808011938/su2053sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808011938/su2053Isup2.hkl
A mixture of an aqueous solution (30 ml) of the proton transfer compound (bdaH2)(pydc) (100 mg, 0.4 mmol) and copper(II) chloride dihydrate (30 mg, 0.2 mmol) were stirred at room temperature. Blue crystals of the title compound were obtained after four weeks at room temperature.
The hydrogen atoms of the water molecules and the NH groups were located in difference Fourier syntheses. The C-bound H-atoms were included in calculated positions. All the hydrogen atoms were treated as riding atoms: O—H = 0.85, N—H = 0.79 - 0.91, C—H = 0.95 - 0.99 Å with Uiso(H) = 1.2 or 1.5Ueq(parent O, N or C atom).
Data collection: APEX2 (Bruker, 2005); cell
APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Atoms marked with a and b are related by the symmetry codes (-x, -y, -z + 1) and (-x + 1, -y + 2, -z), respectively. Hydrogen bonds are shown as dashedlines. Hydrogen atoms are not involved in the hydrogen bonding are omitted for clarity. | |
Fig. 2. A layered packing diagram of the title compound. The space between the two layers of [Cu(pydc)2]2– anions is filled with a layer of (bdaH2)2+ cations and water molecules. | |
Fig. 3. A view of the π-π stacking interactions, between the aromatic rings of the pydc2- dianions with distances of 3.5334 (15) for Cg1···Cg1 [2-x, 1 - y, -z], and the C—O···π stacking interactions, between the carbonyl groups of the pyridine-2,6-dicarboxylate groups and the pydc2- fragments: distance O···π is 3.099 (2) Å for C8—O6···Cg1 (1 - x, 1 - y, -z) [Cg1 is the centroid for ring (N2,C9—C13)]. | |
Fig. 4. The crystal packing of the title compound, viewed along the a axis, with the hydrogen bonds shown as dashed lines. |
(C4H14N2)[Cu(C7H3NO4)2]·3H2O | Z = 2 |
Mr = 537.97 | F(000) = 558 |
Triclinic, P1 | Dx = 1.651 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.0931 (13) Å | Cell parameters from 657 reflections |
b = 11.4017 (19) Å | θ = 3–30° |
c = 12.977 (2) Å | µ = 1.08 mm−1 |
α = 71.632 (5)° | T = 100 K |
β = 89.195 (5)° | Prism, blue |
γ = 72.892 (5)° | 0.25 × 0.20 × 0.20 mm |
V = 1082.1 (3) Å3 |
Bruker SMART APEXII CCD area-detector diffractometer | 5185 independent reflections |
Radiation source: fine-focus sealed tube | 4097 reflections with I > 2/s(I) |
Graphite monochromator | Rint = 0.035 |
ϕ and ω scans | θmax = 28.0°, θmin = 1.7° |
Absorption correction: multi-scan (APEX2; Bruker, 2005) | h = −10→10 |
Tmin = 0.775, Tmax = 0.815 | k = −15→15 |
10991 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.046P)2 + 0.23P] where P = (Fo2 + 2Fc2)/3 |
5185 reflections | (Δ/σ)max = 0.001 |
307 parameters | Δρmax = 0.43 e Å−3 |
0 restraints | Δρmin = −0.50 e Å−3 |
(C4H14N2)[Cu(C7H3NO4)2]·3H2O | γ = 72.892 (5)° |
Mr = 537.97 | V = 1082.1 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.0931 (13) Å | Mo Kα radiation |
b = 11.4017 (19) Å | µ = 1.08 mm−1 |
c = 12.977 (2) Å | T = 100 K |
α = 71.632 (5)° | 0.25 × 0.20 × 0.20 mm |
β = 89.195 (5)° |
Bruker SMART APEXII CCD area-detector diffractometer | 5185 independent reflections |
Absorption correction: multi-scan (APEX2; Bruker, 2005) | 4097 reflections with I > 2/s(I) |
Tmin = 0.775, Tmax = 0.815 | Rint = 0.035 |
10991 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.43 e Å−3 |
5185 reflections | Δρmin = −0.50 e Å−3 |
307 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.75989 (4) | 0.45400 (3) | 0.24669 (2) | 0.00985 (9) | |
N1 | 0.7337 (2) | 0.44458 (18) | 0.39951 (15) | 0.0101 (4) | |
N2 | 0.7825 (2) | 0.45531 (18) | 0.09900 (14) | 0.0100 (4) | |
O1 | 0.8798 (2) | 0.60585 (16) | 0.26295 (13) | 0.0140 (3) | |
O2 | 0.8552 (2) | 0.72368 (15) | 0.37585 (13) | 0.0132 (3) | |
O3 | 0.6132 (2) | 0.30200 (16) | 0.31081 (12) | 0.0149 (3) | |
O4 | 0.5355 (2) | 0.19437 (15) | 0.47134 (13) | 0.0140 (3) | |
O5 | 0.5403 (2) | 0.60836 (15) | 0.16832 (12) | 0.0131 (3) | |
O6 | 0.4101 (2) | 0.72403 (15) | 0.00191 (13) | 0.0140 (3) | |
O7 | 0.9888 (2) | 0.30660 (15) | 0.26742 (12) | 0.0138 (3) | |
O8 | 1.1597 (2) | 0.18855 (16) | 0.17599 (13) | 0.0160 (4) | |
C1 | 0.8456 (3) | 0.6277 (2) | 0.35079 (18) | 0.0107 (4) | |
C2 | 0.7821 (3) | 0.5280 (2) | 0.43635 (17) | 0.0095 (4) | |
C3 | 0.7693 (3) | 0.5226 (2) | 0.54446 (18) | 0.0114 (4) | |
H3A | 0.8029 | 0.5825 | 0.5699 | 0.014* | |
C4 | 0.7071 (3) | 0.4291 (2) | 0.61469 (18) | 0.0125 (5) | |
H4A | 0.7002 | 0.4226 | 0.6893 | 0.015* | |
C5 | 0.6547 (3) | 0.3445 (2) | 0.57476 (17) | 0.0115 (4) | |
H5A | 0.6108 | 0.2799 | 0.6215 | 0.014* | |
C6 | 0.6676 (3) | 0.3563 (2) | 0.46554 (17) | 0.0098 (4) | |
C7 | 0.6003 (3) | 0.2760 (2) | 0.41193 (18) | 0.0106 (4) | |
C8 | 0.5269 (3) | 0.6347 (2) | 0.06519 (18) | 0.0109 (4) | |
C9 | 0.6692 (3) | 0.5474 (2) | 0.02072 (18) | 0.0104 (4) | |
C10 | 0.6882 (3) | 0.5581 (2) | −0.08775 (18) | 0.0118 (4) | |
H10A | 0.6083 | 0.6244 | −0.1441 | 0.014* | |
C11 | 0.8295 (3) | 0.4675 (2) | −0.11138 (18) | 0.0113 (4) | |
H11A | 0.8469 | 0.4723 | −0.1850 | 0.014* | |
C12 | 0.9442 (3) | 0.3708 (2) | −0.02782 (18) | 0.0119 (4) | |
H12A | 1.0393 | 0.3083 | −0.0432 | 0.014* | |
C13 | 0.9168 (3) | 0.3674 (2) | 0.07877 (18) | 0.0101 (4) | |
C14 | 1.0324 (3) | 0.2783 (2) | 0.18158 (18) | 0.0111 (4) | |
O1W | 0.3016 (2) | 0.87914 (15) | 0.79263 (13) | 0.0169 (4) | |
H1WA | 0.3265 | 0.8381 | 0.7472 | 0.020* | |
H1WB | 0.3197 | 0.8298 | 0.8586 | 0.020* | |
O2W | 0.5445 (2) | 0.92612 (16) | 0.28473 (13) | 0.0167 (4) | |
H2WA | 0.5891 | 0.9844 | 0.2501 | 0.020* | |
H2WB | 0.6336 | 0.8614 | 0.3129 | 0.020* | |
O3W | 0.9924 (2) | 0.89746 (17) | 0.22672 (15) | 0.0242 (4) | |
H3WA | 0.9134 | 0.9687 | 0.2188 | 0.029* | |
H3WB | 0.9543 | 0.8346 | 0.2593 | 0.029* | |
N1S | 0.3148 (2) | 0.08444 (18) | 0.39577 (15) | 0.0125 (4) | |
H1NA | 0.3827 | 0.1273 | 0.4137 | 0.015* | |
H1NB | 0.2687 | 0.1187 | 0.3324 | 0.015* | |
H1NC | 0.3800 | 0.0095 | 0.4038 | 0.015* | |
C1S | 0.1856 (3) | 0.0767 (2) | 0.47831 (18) | 0.0120 (4) | |
H1SA | 0.1216 | 0.1652 | 0.4785 | 0.014* | |
H1SB | 0.2466 | 0.0264 | 0.5516 | 0.014* | |
C2S | 0.0584 (3) | 0.0125 (2) | 0.45404 (18) | 0.0119 (4) | |
H2SA | 0.1232 | −0.0708 | 0.4437 | 0.014* | |
H2SB | −0.0137 | 0.0690 | 0.3855 | 0.014* | |
N2S | 0.3056 (3) | 0.89178 (19) | 0.14406 (16) | 0.0151 (4) | |
H2NA | 0.2235 | 0.8823 | 0.1757 | 0.018* | |
H2NB | 0.3607 | 0.8177 | 0.1379 | 0.018* | |
H2NC | 0.3714 | 0.9017 | 0.1909 | 0.018* | |
C3S | 0.2648 (3) | 0.9975 (2) | 0.03651 (18) | 0.0139 (5) | |
H3SA | 0.1623 | 1.0688 | 0.0405 | 0.017* | |
H3SB | 0.2351 | 0.9636 | −0.0199 | 0.017* | |
C4S | 0.4156 (3) | 1.0503 (2) | 0.00368 (19) | 0.0146 (5) | |
H4SA | 0.4374 | 1.0909 | 0.0571 | 0.017* | |
H4SB | 0.3820 | 1.1193 | −0.0681 | 0.017* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01106 (15) | 0.01085 (14) | 0.00716 (13) | −0.00274 (10) | 0.00140 (10) | −0.00287 (10) |
N1 | 0.0097 (9) | 0.0090 (9) | 0.0113 (9) | −0.0023 (7) | 0.0021 (7) | −0.0034 (7) |
N2 | 0.0120 (10) | 0.0099 (9) | 0.0085 (9) | −0.0045 (8) | 0.0018 (7) | −0.0028 (7) |
O1 | 0.0172 (9) | 0.0154 (8) | 0.0119 (8) | −0.0077 (7) | 0.0050 (6) | −0.0056 (7) |
O2 | 0.0139 (8) | 0.0107 (8) | 0.0163 (8) | −0.0051 (6) | 0.0013 (6) | −0.0050 (7) |
O3 | 0.0213 (9) | 0.0158 (8) | 0.0099 (8) | −0.0087 (7) | 0.0021 (6) | −0.0047 (7) |
O4 | 0.0144 (8) | 0.0129 (8) | 0.0143 (8) | −0.0063 (7) | 0.0013 (6) | −0.0022 (7) |
O5 | 0.0133 (8) | 0.0150 (8) | 0.0113 (8) | −0.0035 (7) | 0.0014 (6) | −0.0056 (7) |
O6 | 0.0142 (8) | 0.0113 (8) | 0.0141 (8) | −0.0027 (7) | 0.0003 (6) | −0.0018 (6) |
O7 | 0.0157 (9) | 0.0129 (8) | 0.0100 (8) | −0.0017 (7) | −0.0003 (6) | −0.0022 (6) |
O8 | 0.0146 (9) | 0.0150 (8) | 0.0145 (8) | 0.0008 (7) | −0.0002 (7) | −0.0044 (7) |
C1 | 0.0063 (10) | 0.0110 (11) | 0.0126 (10) | −0.0008 (8) | −0.0014 (8) | −0.0023 (9) |
C2 | 0.0058 (10) | 0.0096 (10) | 0.0117 (10) | −0.0017 (8) | 0.0005 (8) | −0.0023 (8) |
C3 | 0.0101 (11) | 0.0128 (11) | 0.0120 (10) | −0.0025 (9) | 0.0004 (8) | −0.0059 (9) |
C4 | 0.0114 (11) | 0.0166 (12) | 0.0078 (10) | −0.0018 (9) | −0.0002 (8) | −0.0040 (9) |
C5 | 0.0112 (11) | 0.0129 (11) | 0.0080 (10) | −0.0036 (9) | 0.0004 (8) | −0.0004 (9) |
C6 | 0.0076 (10) | 0.0084 (10) | 0.0111 (10) | −0.0002 (8) | 0.0007 (8) | −0.0024 (8) |
C7 | 0.0088 (11) | 0.0077 (10) | 0.0138 (11) | −0.0004 (8) | −0.0007 (8) | −0.0036 (9) |
C8 | 0.0114 (11) | 0.0105 (11) | 0.0134 (10) | −0.0068 (9) | 0.0024 (8) | −0.0044 (9) |
C9 | 0.0113 (11) | 0.0088 (10) | 0.0122 (10) | −0.0055 (9) | 0.0011 (8) | −0.0027 (9) |
C10 | 0.0106 (11) | 0.0149 (11) | 0.0097 (10) | −0.0063 (9) | −0.0002 (8) | −0.0016 (9) |
C11 | 0.0133 (11) | 0.0147 (11) | 0.0087 (10) | −0.0079 (9) | 0.0021 (8) | −0.0041 (9) |
C12 | 0.0106 (11) | 0.0147 (11) | 0.0136 (11) | −0.0062 (9) | 0.0023 (9) | −0.0068 (9) |
C13 | 0.0111 (11) | 0.0093 (10) | 0.0120 (10) | −0.0057 (9) | 0.0033 (8) | −0.0041 (9) |
C14 | 0.0118 (11) | 0.0109 (11) | 0.0108 (10) | −0.0049 (9) | 0.0020 (8) | −0.0026 (9) |
O1W | 0.0249 (10) | 0.0128 (8) | 0.0112 (8) | −0.0028 (7) | 0.0002 (7) | −0.0044 (7) |
O2W | 0.0137 (8) | 0.0155 (9) | 0.0175 (8) | −0.0026 (7) | 0.0012 (7) | −0.0027 (7) |
O3W | 0.0194 (10) | 0.0143 (9) | 0.0338 (11) | −0.0049 (7) | 0.0123 (8) | −0.0016 (8) |
N1S | 0.0115 (10) | 0.0126 (10) | 0.0122 (9) | −0.0017 (8) | −0.0018 (7) | −0.0042 (8) |
C1S | 0.0128 (11) | 0.0138 (11) | 0.0101 (10) | −0.0047 (9) | 0.0025 (8) | −0.0044 (9) |
C2S | 0.0113 (11) | 0.0116 (11) | 0.0121 (11) | −0.0044 (9) | 0.0003 (9) | −0.0022 (9) |
N2S | 0.0150 (10) | 0.0154 (10) | 0.0182 (10) | −0.0070 (8) | 0.0073 (8) | −0.0079 (8) |
C3S | 0.0135 (11) | 0.0163 (12) | 0.0135 (11) | −0.0056 (9) | 0.0025 (9) | −0.0060 (9) |
C4S | 0.0154 (12) | 0.0142 (12) | 0.0145 (11) | −0.0064 (10) | 0.0036 (9) | −0.0036 (9) |
Cu1—N2 | 1.9185 (18) | C11—C12 | 1.388 (3) |
Cu1—N1 | 1.9638 (18) | C11—H11A | 0.9500 |
Cu1—O7 | 2.0557 (16) | C12—C13 | 1.388 (3) |
Cu1—O5 | 2.0909 (16) | C12—H12A | 0.9500 |
Cu1—O1 | 2.2824 (17) | C13—C14 | 1.519 (3) |
Cu1—O3 | 2.3194 (16) | O1W—H1WA | 0.8500 |
N1—C6 | 1.339 (3) | O1W—H1WB | 0.8500 |
N1—C2 | 1.341 (3) | O2W—H2WA | 0.8500 |
N2—C9 | 1.328 (3) | O2W—H2WB | 0.8500 |
N2—C13 | 1.331 (3) | O3W—H3WA | 0.8500 |
O1—C1 | 1.252 (3) | O3W—H3WB | 0.8499 |
O2—C1 | 1.259 (3) | N1S—C1S | 1.487 (3) |
O3—C7 | 1.261 (3) | N1S—H1NA | 0.9103 |
O4—C7 | 1.249 (3) | N1S—H1NB | 0.8297 |
O5—C8 | 1.275 (3) | N1S—H1NC | 0.8359 |
O6—C8 | 1.238 (3) | C1S—C2S | 1.514 (3) |
O7—C14 | 1.272 (3) | C1S—H1SA | 0.9900 |
O8—C14 | 1.240 (3) | C1S—H1SB | 0.9900 |
C1—C2 | 1.524 (3) | C2S—C2Si | 1.520 (4) |
C2—C3 | 1.389 (3) | C2S—H2SA | 0.9900 |
C3—C4 | 1.383 (3) | C2S—H2SB | 0.9900 |
C3—H3A | 0.9500 | N2S—C3S | 1.493 (3) |
C4—C5 | 1.393 (3) | N2S—H2NA | 0.7927 |
C4—H4A | 0.9500 | N2S—H2NB | 0.8595 |
C5—C6 | 1.386 (3) | N2S—H2NC | 0.8687 |
C5—H5A | 0.9500 | C3S—C4S | 1.513 (3) |
C6—C7 | 1.525 (3) | C3S—H3SA | 0.9900 |
C8—C9 | 1.523 (3) | C3S—H3SB | 0.9900 |
C9—C10 | 1.385 (3) | C4S—C4Sii | 1.529 (5) |
C10—C11 | 1.401 (3) | C4S—H4SA | 0.9900 |
C10—H10A | 0.9500 | C4S—H4SB | 0.9900 |
N2—Cu1—N1 | 177.14 (8) | C9—C10—H10A | 121.2 |
N2—Cu1—O7 | 80.03 (7) | C11—C10—H10A | 121.2 |
N1—Cu1—O7 | 99.13 (7) | C12—C11—C10 | 120.3 (2) |
N2—Cu1—O5 | 79.73 (7) | C12—C11—H11A | 119.8 |
N1—Cu1—O5 | 101.17 (7) | C10—C11—H11A | 119.8 |
O7—Cu1—O5 | 159.68 (6) | C11—C12—C13 | 118.5 (2) |
N2—Cu1—O1 | 105.55 (7) | C11—C12—H12A | 120.8 |
N1—Cu1—O1 | 77.25 (7) | C13—C12—H12A | 120.8 |
O7—Cu1—O1 | 96.69 (6) | N2—C13—C12 | 120.0 (2) |
O5—Cu1—O1 | 87.02 (6) | N2—C13—C14 | 112.18 (19) |
N2—Cu1—O3 | 101.03 (7) | C12—C13—C14 | 127.6 (2) |
N1—Cu1—O3 | 76.20 (7) | O8—C14—O7 | 125.7 (2) |
O7—Cu1—O3 | 89.89 (6) | O8—C14—C13 | 119.51 (19) |
O5—Cu1—O3 | 95.71 (6) | O7—C14—C13 | 114.77 (19) |
O1—Cu1—O3 | 153.33 (6) | H1WA—O1W—H1WB | 113.4 |
C6—N1—C2 | 120.69 (19) | H2WA—O2W—H2WB | 102.3 |
C6—N1—Cu1 | 120.25 (15) | H3WA—O3W—H3WB | 109.4 |
C2—N1—Cu1 | 119.06 (15) | C1S—N1S—H1NA | 105.8 |
C9—N2—C13 | 122.70 (19) | C1S—N1S—H1NB | 112.6 |
C9—N2—Cu1 | 118.88 (15) | H1NA—N1S—H1NB | 113.5 |
C13—N2—Cu1 | 118.33 (15) | C1S—N1S—H1NC | 108.8 |
C1—O1—Cu1 | 110.18 (14) | H1NA—N1S—H1NC | 106.0 |
C7—O3—Cu1 | 111.42 (14) | H1NB—N1S—H1NC | 109.8 |
C8—O5—Cu1 | 113.58 (14) | N1S—C1S—C2S | 110.98 (18) |
C14—O7—Cu1 | 114.42 (14) | N1S—C1S—H1SA | 109.4 |
O1—C1—O2 | 127.4 (2) | C2S—C1S—H1SA | 109.4 |
O1—C1—C2 | 116.34 (19) | N1S—C1S—H1SB | 109.4 |
O2—C1—C2 | 116.26 (19) | C2S—C1S—H1SB | 109.4 |
N1—C2—C3 | 120.8 (2) | H1SA—C1S—H1SB | 108.0 |
N1—C2—C1 | 114.97 (19) | C1S—C2S—C2Si | 111.3 (2) |
C3—C2—C1 | 124.2 (2) | C1S—C2S—H2SA | 109.4 |
C4—C3—C2 | 119.2 (2) | C2Si—C2S—H2SA | 109.4 |
C4—C3—H3A | 120.4 | C1S—C2S—H2SB | 109.4 |
C2—C3—H3A | 120.4 | C2Si—C2S—H2SB | 109.4 |
C3—C4—C5 | 119.3 (2) | H2SA—C2S—H2SB | 108.0 |
C3—C4—H4A | 120.4 | C3S—N2S—H2NA | 114.7 |
C5—C4—H4A | 120.4 | C3S—N2S—H2NB | 112.1 |
C6—C5—C4 | 118.8 (2) | H2NA—N2S—H2NB | 106.2 |
C6—C5—H5A | 120.6 | C3S—N2S—H2NC | 114.7 |
C4—C5—H5A | 120.6 | H2NA—N2S—H2NC | 103.8 |
N1—C6—C5 | 121.1 (2) | H2NB—N2S—H2NC | 104.4 |
N1—C6—C7 | 115.97 (19) | N2S—C3S—C4S | 111.92 (19) |
C5—C6—C7 | 122.8 (2) | N2S—C3S—H3SA | 109.2 |
O4—C7—O3 | 127.0 (2) | C4S—C3S—H3SA | 109.2 |
O4—C7—C6 | 117.28 (19) | N2S—C3S—H3SB | 109.2 |
O3—C7—C6 | 115.65 (19) | C4S—C3S—H3SB | 109.2 |
O6—C8—O5 | 124.9 (2) | H3SA—C3S—H3SB | 107.9 |
O6—C8—C9 | 119.90 (19) | C3S—C4S—C4Sii | 114.9 (2) |
O5—C8—C9 | 115.19 (19) | C3S—C4S—H4SA | 108.5 |
N2—C9—C10 | 120.8 (2) | C4Sii—C4S—H4SA | 108.5 |
N2—C9—C8 | 112.45 (19) | C3S—C4S—H4SB | 108.5 |
C10—C9—C8 | 126.7 (2) | C4Sii—C4S—H4SB | 108.5 |
C9—C10—C11 | 117.6 (2) | H4SA—C4S—H4SB | 107.5 |
O7—Cu1—N1—C6 | −81.46 (17) | O2—C1—C2—C3 | −13.7 (3) |
O5—Cu1—N1—C6 | 99.36 (17) | N1—C2—C3—C4 | 0.6 (3) |
O1—Cu1—N1—C6 | −176.32 (17) | C1—C2—C3—C4 | 178.9 (2) |
O3—Cu1—N1—C6 | 6.16 (16) | C2—C3—C4—C5 | −1.6 (3) |
O7—Cu1—N1—C2 | 98.84 (17) | C3—C4—C5—C6 | 0.4 (3) |
O5—Cu1—N1—C2 | −80.34 (17) | C2—N1—C6—C5 | −3.0 (3) |
O1—Cu1—N1—C2 | 3.98 (16) | Cu1—N1—C6—C5 | 177.32 (16) |
O3—Cu1—N1—C2 | −173.54 (17) | C2—N1—C6—C7 | 174.02 (19) |
O7—Cu1—N2—C9 | −174.36 (18) | Cu1—N1—C6—C7 | −5.7 (3) |
O5—Cu1—N2—C9 | 3.84 (16) | C4—C5—C6—N1 | 1.9 (3) |
O1—Cu1—N2—C9 | −80.12 (17) | C4—C5—C6—C7 | −174.9 (2) |
O3—Cu1—N2—C9 | 97.72 (17) | Cu1—O3—C7—O4 | −176.69 (18) |
O7—Cu1—N2—C13 | 2.25 (16) | Cu1—O3—C7—C6 | 5.0 (2) |
O5—Cu1—N2—C13 | −179.55 (18) | N1—C6—C7—O4 | −178.90 (19) |
O1—Cu1—N2—C13 | 96.49 (17) | C5—C6—C7—O4 | −1.9 (3) |
O3—Cu1—N2—C13 | −85.67 (17) | N1—C6—C7—O3 | −0.4 (3) |
N2—Cu1—O1—C1 | 168.99 (15) | C5—C6—C7—O3 | 176.5 (2) |
N1—Cu1—O1—C1 | −11.65 (14) | Cu1—O5—C8—O6 | −178.08 (18) |
O7—Cu1—O1—C1 | −109.54 (15) | Cu1—O5—C8—C9 | 1.4 (2) |
O5—Cu1—O1—C1 | 90.51 (15) | C13—N2—C9—C10 | −1.4 (3) |
O3—Cu1—O1—C1 | −6.3 (2) | Cu1—N2—C9—C10 | 175.04 (16) |
N2—Cu1—O3—C7 | 173.14 (15) | C13—N2—C9—C8 | 179.42 (19) |
N1—Cu1—O3—C7 | −6.11 (15) | Cu1—N2—C9—C8 | −4.1 (2) |
O7—Cu1—O3—C7 | 93.33 (15) | O6—C8—C9—N2 | −178.9 (2) |
O5—Cu1—O3—C7 | −106.24 (15) | O5—C8—C9—N2 | 1.6 (3) |
O1—Cu1—O3—C7 | −11.5 (2) | O6—C8—C9—C10 | 2.0 (3) |
N2—Cu1—O5—C8 | −2.76 (15) | O5—C8—C9—C10 | −177.6 (2) |
N1—Cu1—O5—C8 | −179.99 (15) | N2—C9—C10—C11 | 0.8 (3) |
O7—Cu1—O5—C8 | 2.3 (3) | C8—C9—C10—C11 | 179.8 (2) |
O1—Cu1—O5—C8 | 103.63 (15) | C9—C10—C11—C12 | 0.4 (3) |
O3—Cu1—O5—C8 | −102.98 (15) | C10—C11—C12—C13 | −0.9 (3) |
N2—Cu1—O7—C14 | −4.61 (15) | C9—N2—C13—C12 | 0.9 (3) |
N1—Cu1—O7—C14 | 172.61 (16) | Cu1—N2—C13—C12 | −175.62 (16) |
O5—Cu1—O7—C14 | −9.7 (3) | C9—N2—C13—C14 | 176.52 (19) |
O1—Cu1—O7—C14 | −109.29 (15) | Cu1—N2—C13—C14 | 0.0 (2) |
O3—Cu1—O7—C14 | 96.61 (15) | C11—C12—C13—N2 | 0.3 (3) |
Cu1—O1—C1—O2 | −162.50 (19) | C11—C12—C13—C14 | −174.6 (2) |
Cu1—O1—C1—C2 | 16.3 (2) | Cu1—O7—C14—O8 | −175.90 (19) |
C6—N1—C2—C3 | 1.7 (3) | Cu1—O7—C14—C13 | 5.8 (2) |
Cu1—N1—C2—C3 | −178.56 (16) | N2—C13—C14—O8 | 177.6 (2) |
C6—N1—C2—C1 | −176.78 (18) | C12—C13—C14—O8 | −7.2 (4) |
Cu1—N1—C2—C1 | 2.9 (2) | N2—C13—C14—O7 | −4.0 (3) |
O1—C1—C2—N1 | −14.2 (3) | C12—C13—C14—O7 | 171.2 (2) |
O2—C1—C2—N1 | 164.77 (19) | N1S—C1S—C2S—C2Si | 172.2 (2) |
O1—C1—C2—C3 | 167.4 (2) | N2S—C3S—C4S—C4Sii | 57.8 (3) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y+2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O3iii | 0.85 | 1.91 | 2.725 (2) | 160 |
O1W—H1WB···O6iv | 0.85 | 1.89 | 2.720 (2) | 167 |
O2W—H2WA···O1Wv | 0.85 | 1.94 | 2.771 (2) | 165 |
O2W—H2WB···O2 | 0.85 | 1.98 | 2.828 (2) | 174 |
O3W—H3WA···O1Wv | 0.85 | 2.03 | 2.874 (3) | 171 |
O3W—H3WB···O2 | 0.85 | 1.97 | 2.779 (3) | 158 |
N1S—H1NA···O4 | 0.91 | 1.90 | 2.804 (3) | 171 |
N1S—H1NB···O7vi | 0.83 | 2.55 | 3.112 (3) | 126 |
N1S—H1NB···O8vi | 0.83 | 2.04 | 2.865 (2) | 176 |
N1S—H1NC···O2Wvii | 0.84 | 2.28 | 2.895 (3) | 131 |
N1S—H1NC···O4viii | 0.84 | 2.28 | 2.981 (3) | 141 |
N2S—H2NA···O3Wvi | 0.79 | 1.95 | 2.730 (3) | 166 |
N2S—H2NB···O5 | 0.86 | 2.31 | 3.149 (3) | 164 |
N2S—H2NB···O6 | 0.86 | 2.31 | 3.001 (3) | 138 |
N2S—H2NC···O2W | 0.87 | 2.00 | 2.867 (3) | 173 |
C10—H10A···O3ix | 0.95 | 2.58 | 3.446 (3) | 151 |
C11—H11A···O1x | 0.95 | 2.46 | 3.139 (3) | 128 |
C3S—H3SA···O8xi | 0.99 | 2.54 | 3.178 (3) | 122 |
Symmetry codes: (iii) −x+1, −y+1, −z+1; (iv) x, y, z+1; (v) −x+1, −y+2, −z+1; (vi) x−1, y, z; (vii) x, y−1, z; (viii) −x+1, −y, −z+1; (ix) −x+1, −y+1, −z; (x) −x+2, −y+1, −z; (xi) x−1, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | (C4H14N2)[Cu(C7H3NO4)2]·3H2O |
Mr | 537.97 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 8.0931 (13), 11.4017 (19), 12.977 (2) |
α, β, γ (°) | 71.632 (5), 89.195 (5), 72.892 (5) |
V (Å3) | 1082.1 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.08 |
Crystal size (mm) | 0.25 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (APEX2; Bruker, 2005) |
Tmin, Tmax | 0.775, 0.815 |
No. of measured, independent and observed [I > 2/s(I)] reflections | 10991, 5185, 4097 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.661 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.092, 1.01 |
No. of reflections | 5185 |
No. of parameters | 307 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.43, −0.50 |
Computer programs: APEX2 (Bruker, 2005), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O3i | 0.85 | 1.91 | 2.725 (2) | 160 |
O1W—H1WB···O6ii | 0.85 | 1.89 | 2.720 (2) | 167 |
O2W—H2WA···O1Wiii | 0.85 | 1.94 | 2.771 (2) | 165 |
O2W—H2WB···O2 | 0.85 | 1.98 | 2.828 (2) | 174 |
O3W—H3WA···O1Wiii | 0.85 | 2.03 | 2.874 (3) | 171 |
O3W—H3WB···O2 | 0.85 | 1.97 | 2.779 (3) | 158 |
N1S—H1NA···O4 | 0.91 | 1.90 | 2.804 (3) | 171 |
N1S—H1NB···O7iv | 0.83 | 2.55 | 3.112 (3) | 126 |
N1S—H1NB···O8iv | 0.83 | 2.04 | 2.865 (2) | 176 |
N1S—H1NC···O2Wv | 0.84 | 2.28 | 2.895 (3) | 131 |
N1S—H1NC···O4vi | 0.84 | 2.28 | 2.981 (3) | 141 |
N2S—H2NA···O3Wiv | 0.79 | 1.95 | 2.730 (3) | 166 |
N2S—H2NB···O5 | 0.86 | 2.31 | 3.149 (3) | 164 |
N2S—H2NB···O6 | 0.86 | 2.31 | 3.001 (3) | 138 |
N2S—H2NC···O2W | 0.87 | 2.00 | 2.867 (3) | 173 |
C10—H10A···O3vii | 0.95 | 2.58 | 3.446 (3) | 151 |
C11—H11A···O1viii | 0.95 | 2.46 | 3.139 (3) | 128 |
C3S—H3SA···O8ix | 0.99 | 2.54 | 3.178 (3) | 122 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y, z+1; (iii) −x+1, −y+2, −z+1; (iv) x−1, y, z; (v) x, y−1, z; (vi) −x+1, −y, −z+1; (vii) −x+1, −y+1, −z; (viii) −x+2, −y+1, −z; (ix) x−1, y+1, z. |
Acknowledgements
Financial support from Tarbiat Moallem University is gratefully acknowledged.
References
Aghabozorg, H., Attar Gharamaleki, J., Daneshvar, S., Ghadermazi, M. & Khavasi, H. R. (2008a). Acta Cryst. E64, m187–m188. Web of Science CSD CrossRef IUCr Journals Google Scholar
Aghabozorg, H., Ghadermazi, M., Manteghi, F. & Nakhjavan, N. (2006). Z. Anorg. Allg. Chem. 632, 2058–2064. Web of Science CSD CrossRef CAS Google Scholar
Aghabozorg, H., Motyeian, E., Soleimannejad, J., Ghadermazi, M. & Attar Gharamaleki, J. (2008b). Acta Cryst. E64, m252–m253. Web of Science CSD CrossRef IUCr Journals Google Scholar
Aghabozorg, H., Motyeian, E., Soleimannejad, J., Ghadermazi, M. & Attar Gharamaleki, J. (2008c). Acta Cryst. E64, m252–m253. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In order to study the hydrogen-bonding patterns in proton-transfer compounds, our research group has selected pyridine-2,6-dicarboxylic acid (pydcH2) and 1,10-phenanthroline-2,9-dicarboxylic acid (phendcH2) as proton donors, and piperazine (pipz), creatinine (creat) and 1,10-phenanthroline (phen) as proton acceptors. This has resulted in the formation of new proton-transfer systems, such as (pipzH2)(pydc) (Aghabozorg et al., 2006). In this regard, we have so far synthesized several metal organic complexes (Aghabozorg, et al., 2008a; 2008b, 2008c).
The molecular structure of the title compound is shown in Fig. 1. Hydrogen bond geometries are given in Table 1. The CuII atom is six-coordinated by two pyridine-2,6-dicarboxylate, or pydc2- anions; i.e. each pydc2- anion is coordinated through one pyridine N atom and two carboxylate O atoms. Atoms N1 and N2 of two pydc2- fragments occupy the axial positions, while atoms O1, O3, O5 and O7 form the equatorial plane. The N1–Cu1–N2 angle [177.14 (8)°] deviates slightly from linearity. Therefore, the geometry of the resulting CuN2O4 coordination can be described as distorted octahedral. The Cu1–O1 and Cu1–O3 bond distances [2.2824 (17) and 2.3194 (16) Å, respectively] are longer than the other metal-ligand bonds, perhaps due to the pseudo Jahn-Teller effect. The bond angles O1–Cu1–O5 and O3–Cu1–O7 are 87.02 (6)° and 89.89 (6)°, respectively, and the O5–Cu1–O1–C1 and O7–Cu1–O3–C7 torsion angles are 90.51 (15)°and 93.33 (15)°, respectively. The angle between the two mean planes passing through the pydc2- cations is 77.51 (11)°, indicating that these two units are almost perpendicular to one another. Furthermore, the bond angles O1–Cu1–O3 [153.33 (6)°] and O5–Cu1–O7 [159.68 (6)°] indicate that the four carboxylate groups of the two dianions are oriented in a flattened tetrahedral arrangement around the CuII atom.
In the crystal structure of the title complex there are three water molecules of crystallization, and two centrosymmetric butane-1,4-diammonium cations present as counter-ions. The spaces between two layers of [Cu(pydc)2]2– dianions are filled with (bnH2)2+ cations and water molecules (Fig. 2). There are also π-π stacking interactions between the aromatic rings of the coordinated pydc2- dianions, with distances of 3.5334 (15) Å for Cg1···Cg1 [2-x, 1 - y, -z]. There are also C–O···π stacking interactions between the carbonyl groups of the pyridine-2,6-dicarboxylate groups and the pyridine ring of symmetry related dications, with an O···π distance of 3.099 (2) Å (measured to the center of the pyridine ring) for C8–O6···Cg1 (1 - x, 1 - y, -z) [Cg1 is the centroid for the (N2,C9—C13) ring] (see Fig. 3).
In the crystal structure there are O–H···O, N–H···O and C–H···O hydrogen bonds, with D···A distances ranging from 2.720 (2) to 3.446 (3) Å, which result in the formation of a supramolecular structure (Fig. 4). Ion pairing, π–π and C–O···π stacking interactions are also effective in the crystal packing.