metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m743-m744

Butane-1,4-di­ammonium bis­­(pyridine-2,6-di­carboxyl­ato)cuprate(II) trihydrate

aFaculty of Chemistry, Tarbiat Moallem University, 49 Mofateh Avenue, Tehran, Iran, and bDepartment of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
*Correspondence e-mail: haghabozorg@yahoo.com

(Received 14 April 2008; accepted 24 April 2008; online 30 April 2008)

In the title compound, (C4H14N2)[Cu(C7H3NO4)2]·3H2O or (bdaH2)[Cu(pydc)2]·3H2O (where bda is butane-1,4-diamine and pydcH2 is pyridine-2,6-dicarboxylic acid), the CuII atom is coordinated by four O atoms [Cu—O = 2.0557 (16)–2.3194 (16) Å] and two N atoms [Cu—N = 1.9185 (18) and 1.9638 (18) Å] from two chelating rings of the pydc2− anions, which act as tridentate ligands. The geometry of the resulting CuN2O4 coordination can be described as distorted octa­hedral. The the two pydc2− fragments are almost perpendicular to one another [77.51 (11)°]. To balance the charges, two centrosymmetric protonated butane-1,4-diammonium, (bdaH2)2+ cations are present. In the crystal structure, extensive O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds [DA = 2.720 (2)–3.446 (3) Å], ion pairing, C—O⋯π [O⋯π = 3.099 (2) Å] and ππ stacking inter­actions between the pydc2− rings [centroid–centroid distance = 3.5334 (15) Å] contribute to the formation of a three-dimensional supra­molecular structure.

Related literature

For related literature, see: Aghabozorg et al. (2006[Aghabozorg, H., Ghadermazi, M., Manteghi, F. & Nakhjavan, N. (2006). Z. Anorg. Allg. Chem. 632, 2058-2064.], 2008a,b,c[Aghabozorg, H., Motyeian, E., Soleimannejad, J., Ghadermazi, M. & Attar Gharamaleki, J. (2008c). Acta Cryst. E64, m252-m253.]).

[Scheme 1]

Experimental

Crystal data
  • (C4H14N2)[Cu(C7H3NO4)2]·3H2O

  • Mr = 537.97

  • Triclinic, [P \overline 1]

  • a = 8.0931 (13) Å

  • b = 11.4017 (19) Å

  • c = 12.977 (2) Å

  • α = 71.632 (5)°

  • β = 89.195 (5)°

  • γ = 72.892 (5)°

  • V = 1082.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.08 mm−1

  • T = 100 (2) K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.775, Tmax = 0.815

  • 10991 measured reflections

  • 5185 independent reflections

  • 4097 reflections with I > 2/s(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.092

  • S = 1.01

  • 5185 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O3i 0.85 1.91 2.725 (2) 160
O1W—H1WB⋯O6ii 0.85 1.89 2.720 (2) 167
O2W—H2WA⋯O1Wiii 0.85 1.94 2.771 (2) 165
O2W—H2WB⋯O2 0.85 1.98 2.828 (2) 174
O3W—H3WA⋯O1Wiii 0.85 2.03 2.874 (3) 171
O3W—H3WB⋯O2 0.85 1.97 2.779 (3) 158
N1S—H1NA⋯O4 0.91 1.90 2.804 (3) 171
N1S—H1NB⋯O7iv 0.83 2.55 3.112 (3) 126
N1S—H1NB⋯O8iv 0.83 2.04 2.865 (2) 176
N1S—H1NC⋯O2Wv 0.84 2.28 2.895 (3) 131
N1S—H1NC⋯O4vi 0.84 2.28 2.981 (3) 141
N2S—H2NA⋯O3Wiv 0.79 1.95 2.730 (3) 166
N2S—H2NB⋯O5 0.86 2.31 3.149 (3) 164
N2S—H2NB⋯O6 0.86 2.31 3.001 (3) 138
N2S—H2NC⋯O2W 0.87 2.00 2.867 (3) 173
C10—H10A⋯O3vii 0.95 2.58 3.446 (3) 151
C11—H11A⋯O1viii 0.95 2.46 3.139 (3) 128
C3S—H3SA⋯O8ix 0.99 2.54 3.178 (3) 122
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y, z+1; (iii) -x+1, -y+2, -z+1; (iv) x-1, y, z; (v) x, y-1, z; (vi) -x+1, -y, -z+1; (vii) -x+1, -y+1, -z; (viii) -x+2, -y+1, -z; (ix) x-1, y+1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In order to study the hydrogen-bonding patterns in proton-transfer compounds, our research group has selected pyridine-2,6-dicarboxylic acid (pydcH2) and 1,10-phenanthroline-2,9-dicarboxylic acid (phendcH2) as proton donors, and piperazine (pipz), creatinine (creat) and 1,10-phenanthroline (phen) as proton acceptors. This has resulted in the formation of new proton-transfer systems, such as (pipzH2)(pydc) (Aghabozorg et al., 2006). In this regard, we have so far synthesized several metal organic complexes (Aghabozorg, et al., 2008a; 2008b, 2008c).

The molecular structure of the title compound is shown in Fig. 1. Hydrogen bond geometries are given in Table 1. The CuII atom is six-coordinated by two pyridine-2,6-dicarboxylate, or pydc2- anions; i.e. each pydc2- anion is coordinated through one pyridine N atom and two carboxylate O atoms. Atoms N1 and N2 of two pydc2- fragments occupy the axial positions, while atoms O1, O3, O5 and O7 form the equatorial plane. The N1–Cu1–N2 angle [177.14 (8)°] deviates slightly from linearity. Therefore, the geometry of the resulting CuN2O4 coordination can be described as distorted octahedral. The Cu1–O1 and Cu1–O3 bond distances [2.2824 (17) and 2.3194 (16) Å, respectively] are longer than the other metal-ligand bonds, perhaps due to the pseudo Jahn-Teller effect. The bond angles O1–Cu1–O5 and O3–Cu1–O7 are 87.02 (6)° and 89.89 (6)°, respectively, and the O5–Cu1–O1–C1 and O7–Cu1–O3–C7 torsion angles are 90.51 (15)°and 93.33 (15)°, respectively. The angle between the two mean planes passing through the pydc2- cations is 77.51 (11)°, indicating that these two units are almost perpendicular to one another. Furthermore, the bond angles O1–Cu1–O3 [153.33 (6)°] and O5–Cu1–O7 [159.68 (6)°] indicate that the four carboxylate groups of the two dianions are oriented in a flattened tetrahedral arrangement around the CuII atom.

In the crystal structure of the title complex there are three water molecules of crystallization, and two centrosymmetric butane-1,4-diammonium cations present as counter-ions. The spaces between two layers of [Cu(pydc)2]2– dianions are filled with (bnH2)2+ cations and water molecules (Fig. 2). There are also π-π stacking interactions between the aromatic rings of the coordinated pydc2- dianions, with distances of 3.5334 (15) Å for Cg1···Cg1 [2-x, 1 - y, -z]. There are also C–O···π stacking interactions between the carbonyl groups of the pyridine-2,6-dicarboxylate groups and the pyridine ring of symmetry related dications, with an O···π distance of 3.099 (2) Å (measured to the center of the pyridine ring) for C8–O6···Cg1 (1 - x, 1 - y, -z) [Cg1 is the centroid for the (N2,C9—C13) ring] (see Fig. 3).

In the crystal structure there are O–H···O, N–H···O and C–H···O hydrogen bonds, with D···A distances ranging from 2.720 (2) to 3.446 (3) Å, which result in the formation of a supramolecular structure (Fig. 4). Ion pairing, ππ and C–O···π stacking interactions are also effective in the crystal packing.

Related literature top

For related literature, see: Aghabozorg et al. (2006, 2008a, 2008b, 2008c).

Experimental top

A mixture of an aqueous solution (30 ml) of the proton transfer compound (bdaH2)(pydc) (100 mg, 0.4 mmol) and copper(II) chloride dihydrate (30 mg, 0.2 mmol) were stirred at room temperature. Blue crystals of the title compound were obtained after four weeks at room temperature.

Refinement top

The hydrogen atoms of the water molecules and the NH groups were located in difference Fourier syntheses. The C-bound H-atoms were included in calculated positions. All the hydrogen atoms were treated as riding atoms: O—H = 0.85, N—H = 0.79 - 0.91, C—H = 0.95 - 0.99 Å with Uiso(H) = 1.2 or 1.5Ueq(parent O, N or C atom).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Atoms marked with a and b are related by the symmetry codes (-x, -y, -z + 1) and (-x + 1, -y + 2, -z), respectively. Hydrogen bonds are shown as dashedlines. Hydrogen atoms are not involved in the hydrogen bonding are omitted for clarity.
[Figure 2] Fig. 2. A layered packing diagram of the title compound. The space between the two layers of [Cu(pydc)2]2– anions is filled with a layer of (bdaH2)2+ cations and water molecules.
[Figure 3] Fig. 3. A view of the π-π stacking interactions, between the aromatic rings of the pydc2- dianions with distances of 3.5334 (15) for Cg1···Cg1 [2-x, 1 - y, -z], and the C—O···π stacking interactions, between the carbonyl groups of the pyridine-2,6-dicarboxylate groups and the pydc2- fragments: distance O···π is 3.099 (2) Å for C8—O6···Cg1 (1 - x, 1 - y, -z) [Cg1 is the centroid for ring (N2,C9—C13)].
[Figure 4] Fig. 4. The crystal packing of the title compound, viewed along the a axis, with the hydrogen bonds shown as dashed lines.
Butane-1,4-diammonium bis(pyridine-2,6-dicarboxylato)cuprate(II) trihydrate top
Crystal data top
(C4H14N2)[Cu(C7H3NO4)2]·3H2OZ = 2
Mr = 537.97F(000) = 558
Triclinic, P1Dx = 1.651 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0931 (13) ÅCell parameters from 657 reflections
b = 11.4017 (19) Åθ = 3–30°
c = 12.977 (2) ŵ = 1.08 mm1
α = 71.632 (5)°T = 100 K
β = 89.195 (5)°Prism, blue
γ = 72.892 (5)°0.25 × 0.20 × 0.20 mm
V = 1082.1 (3) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5185 independent reflections
Radiation source: fine-focus sealed tube4097 reflections with I > 2/s(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 28.0°, θmin = 1.7°
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
h = 1010
Tmin = 0.775, Tmax = 0.815k = 1515
10991 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.046P)2 + 0.23P]
where P = (Fo2 + 2Fc2)/3
5185 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
(C4H14N2)[Cu(C7H3NO4)2]·3H2Oγ = 72.892 (5)°
Mr = 537.97V = 1082.1 (3) Å3
Triclinic, P1Z = 2
a = 8.0931 (13) ÅMo Kα radiation
b = 11.4017 (19) ŵ = 1.08 mm1
c = 12.977 (2) ÅT = 100 K
α = 71.632 (5)°0.25 × 0.20 × 0.20 mm
β = 89.195 (5)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5185 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
4097 reflections with I > 2/s(I)
Tmin = 0.775, Tmax = 0.815Rint = 0.035
10991 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.01Δρmax = 0.43 e Å3
5185 reflectionsΔρmin = 0.50 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.75989 (4)0.45400 (3)0.24669 (2)0.00985 (9)
N10.7337 (2)0.44458 (18)0.39951 (15)0.0101 (4)
N20.7825 (2)0.45531 (18)0.09900 (14)0.0100 (4)
O10.8798 (2)0.60585 (16)0.26295 (13)0.0140 (3)
O20.8552 (2)0.72368 (15)0.37585 (13)0.0132 (3)
O30.6132 (2)0.30200 (16)0.31081 (12)0.0149 (3)
O40.5355 (2)0.19437 (15)0.47134 (13)0.0140 (3)
O50.5403 (2)0.60836 (15)0.16832 (12)0.0131 (3)
O60.4101 (2)0.72403 (15)0.00191 (13)0.0140 (3)
O70.9888 (2)0.30660 (15)0.26742 (12)0.0138 (3)
O81.1597 (2)0.18855 (16)0.17599 (13)0.0160 (4)
C10.8456 (3)0.6277 (2)0.35079 (18)0.0107 (4)
C20.7821 (3)0.5280 (2)0.43635 (17)0.0095 (4)
C30.7693 (3)0.5226 (2)0.54446 (18)0.0114 (4)
H3A0.80290.58250.56990.014*
C40.7071 (3)0.4291 (2)0.61469 (18)0.0125 (5)
H4A0.70020.42260.68930.015*
C50.6547 (3)0.3445 (2)0.57476 (17)0.0115 (4)
H5A0.61080.27990.62150.014*
C60.6676 (3)0.3563 (2)0.46554 (17)0.0098 (4)
C70.6003 (3)0.2760 (2)0.41193 (18)0.0106 (4)
C80.5269 (3)0.6347 (2)0.06519 (18)0.0109 (4)
C90.6692 (3)0.5474 (2)0.02072 (18)0.0104 (4)
C100.6882 (3)0.5581 (2)0.08775 (18)0.0118 (4)
H10A0.60830.62440.14410.014*
C110.8295 (3)0.4675 (2)0.11138 (18)0.0113 (4)
H11A0.84690.47230.18500.014*
C120.9442 (3)0.3708 (2)0.02782 (18)0.0119 (4)
H12A1.03930.30830.04320.014*
C130.9168 (3)0.3674 (2)0.07877 (18)0.0101 (4)
C141.0324 (3)0.2783 (2)0.18158 (18)0.0111 (4)
O1W0.3016 (2)0.87914 (15)0.79263 (13)0.0169 (4)
H1WA0.32650.83810.74720.020*
H1WB0.31970.82980.85860.020*
O2W0.5445 (2)0.92612 (16)0.28473 (13)0.0167 (4)
H2WA0.58910.98440.25010.020*
H2WB0.63360.86140.31290.020*
O3W0.9924 (2)0.89746 (17)0.22672 (15)0.0242 (4)
H3WA0.91340.96870.21880.029*
H3WB0.95430.83460.25930.029*
N1S0.3148 (2)0.08444 (18)0.39577 (15)0.0125 (4)
H1NA0.38270.12730.41370.015*
H1NB0.26870.11870.33240.015*
H1NC0.38000.00950.40380.015*
C1S0.1856 (3)0.0767 (2)0.47831 (18)0.0120 (4)
H1SA0.12160.16520.47850.014*
H1SB0.24660.02640.55160.014*
C2S0.0584 (3)0.0125 (2)0.45404 (18)0.0119 (4)
H2SA0.12320.07080.44370.014*
H2SB0.01370.06900.38550.014*
N2S0.3056 (3)0.89178 (19)0.14406 (16)0.0151 (4)
H2NA0.22350.88230.17570.018*
H2NB0.36070.81770.13790.018*
H2NC0.37140.90170.19090.018*
C3S0.2648 (3)0.9975 (2)0.03651 (18)0.0139 (5)
H3SA0.16231.06880.04050.017*
H3SB0.23510.96360.01990.017*
C4S0.4156 (3)1.0503 (2)0.00368 (19)0.0146 (5)
H4SA0.43741.09090.05710.017*
H4SB0.38201.11930.06810.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01106 (15)0.01085 (14)0.00716 (13)0.00274 (10)0.00140 (10)0.00287 (10)
N10.0097 (9)0.0090 (9)0.0113 (9)0.0023 (7)0.0021 (7)0.0034 (7)
N20.0120 (10)0.0099 (9)0.0085 (9)0.0045 (8)0.0018 (7)0.0028 (7)
O10.0172 (9)0.0154 (8)0.0119 (8)0.0077 (7)0.0050 (6)0.0056 (7)
O20.0139 (8)0.0107 (8)0.0163 (8)0.0051 (6)0.0013 (6)0.0050 (7)
O30.0213 (9)0.0158 (8)0.0099 (8)0.0087 (7)0.0021 (6)0.0047 (7)
O40.0144 (8)0.0129 (8)0.0143 (8)0.0063 (7)0.0013 (6)0.0022 (7)
O50.0133 (8)0.0150 (8)0.0113 (8)0.0035 (7)0.0014 (6)0.0056 (7)
O60.0142 (8)0.0113 (8)0.0141 (8)0.0027 (7)0.0003 (6)0.0018 (6)
O70.0157 (9)0.0129 (8)0.0100 (8)0.0017 (7)0.0003 (6)0.0022 (6)
O80.0146 (9)0.0150 (8)0.0145 (8)0.0008 (7)0.0002 (7)0.0044 (7)
C10.0063 (10)0.0110 (11)0.0126 (10)0.0008 (8)0.0014 (8)0.0023 (9)
C20.0058 (10)0.0096 (10)0.0117 (10)0.0017 (8)0.0005 (8)0.0023 (8)
C30.0101 (11)0.0128 (11)0.0120 (10)0.0025 (9)0.0004 (8)0.0059 (9)
C40.0114 (11)0.0166 (12)0.0078 (10)0.0018 (9)0.0002 (8)0.0040 (9)
C50.0112 (11)0.0129 (11)0.0080 (10)0.0036 (9)0.0004 (8)0.0004 (9)
C60.0076 (10)0.0084 (10)0.0111 (10)0.0002 (8)0.0007 (8)0.0024 (8)
C70.0088 (11)0.0077 (10)0.0138 (11)0.0004 (8)0.0007 (8)0.0036 (9)
C80.0114 (11)0.0105 (11)0.0134 (10)0.0068 (9)0.0024 (8)0.0044 (9)
C90.0113 (11)0.0088 (10)0.0122 (10)0.0055 (9)0.0011 (8)0.0027 (9)
C100.0106 (11)0.0149 (11)0.0097 (10)0.0063 (9)0.0002 (8)0.0016 (9)
C110.0133 (11)0.0147 (11)0.0087 (10)0.0079 (9)0.0021 (8)0.0041 (9)
C120.0106 (11)0.0147 (11)0.0136 (11)0.0062 (9)0.0023 (9)0.0068 (9)
C130.0111 (11)0.0093 (10)0.0120 (10)0.0057 (9)0.0033 (8)0.0041 (9)
C140.0118 (11)0.0109 (11)0.0108 (10)0.0049 (9)0.0020 (8)0.0026 (9)
O1W0.0249 (10)0.0128 (8)0.0112 (8)0.0028 (7)0.0002 (7)0.0044 (7)
O2W0.0137 (8)0.0155 (9)0.0175 (8)0.0026 (7)0.0012 (7)0.0027 (7)
O3W0.0194 (10)0.0143 (9)0.0338 (11)0.0049 (7)0.0123 (8)0.0016 (8)
N1S0.0115 (10)0.0126 (10)0.0122 (9)0.0017 (8)0.0018 (7)0.0042 (8)
C1S0.0128 (11)0.0138 (11)0.0101 (10)0.0047 (9)0.0025 (8)0.0044 (9)
C2S0.0113 (11)0.0116 (11)0.0121 (11)0.0044 (9)0.0003 (9)0.0022 (9)
N2S0.0150 (10)0.0154 (10)0.0182 (10)0.0070 (8)0.0073 (8)0.0079 (8)
C3S0.0135 (11)0.0163 (12)0.0135 (11)0.0056 (9)0.0025 (9)0.0060 (9)
C4S0.0154 (12)0.0142 (12)0.0145 (11)0.0064 (10)0.0036 (9)0.0036 (9)
Geometric parameters (Å, º) top
Cu1—N21.9185 (18)C11—C121.388 (3)
Cu1—N11.9638 (18)C11—H11A0.9500
Cu1—O72.0557 (16)C12—C131.388 (3)
Cu1—O52.0909 (16)C12—H12A0.9500
Cu1—O12.2824 (17)C13—C141.519 (3)
Cu1—O32.3194 (16)O1W—H1WA0.8500
N1—C61.339 (3)O1W—H1WB0.8500
N1—C21.341 (3)O2W—H2WA0.8500
N2—C91.328 (3)O2W—H2WB0.8500
N2—C131.331 (3)O3W—H3WA0.8500
O1—C11.252 (3)O3W—H3WB0.8499
O2—C11.259 (3)N1S—C1S1.487 (3)
O3—C71.261 (3)N1S—H1NA0.9103
O4—C71.249 (3)N1S—H1NB0.8297
O5—C81.275 (3)N1S—H1NC0.8359
O6—C81.238 (3)C1S—C2S1.514 (3)
O7—C141.272 (3)C1S—H1SA0.9900
O8—C141.240 (3)C1S—H1SB0.9900
C1—C21.524 (3)C2S—C2Si1.520 (4)
C2—C31.389 (3)C2S—H2SA0.9900
C3—C41.383 (3)C2S—H2SB0.9900
C3—H3A0.9500N2S—C3S1.493 (3)
C4—C51.393 (3)N2S—H2NA0.7927
C4—H4A0.9500N2S—H2NB0.8595
C5—C61.386 (3)N2S—H2NC0.8687
C5—H5A0.9500C3S—C4S1.513 (3)
C6—C71.525 (3)C3S—H3SA0.9900
C8—C91.523 (3)C3S—H3SB0.9900
C9—C101.385 (3)C4S—C4Sii1.529 (5)
C10—C111.401 (3)C4S—H4SA0.9900
C10—H10A0.9500C4S—H4SB0.9900
N2—Cu1—N1177.14 (8)C9—C10—H10A121.2
N2—Cu1—O780.03 (7)C11—C10—H10A121.2
N1—Cu1—O799.13 (7)C12—C11—C10120.3 (2)
N2—Cu1—O579.73 (7)C12—C11—H11A119.8
N1—Cu1—O5101.17 (7)C10—C11—H11A119.8
O7—Cu1—O5159.68 (6)C11—C12—C13118.5 (2)
N2—Cu1—O1105.55 (7)C11—C12—H12A120.8
N1—Cu1—O177.25 (7)C13—C12—H12A120.8
O7—Cu1—O196.69 (6)N2—C13—C12120.0 (2)
O5—Cu1—O187.02 (6)N2—C13—C14112.18 (19)
N2—Cu1—O3101.03 (7)C12—C13—C14127.6 (2)
N1—Cu1—O376.20 (7)O8—C14—O7125.7 (2)
O7—Cu1—O389.89 (6)O8—C14—C13119.51 (19)
O5—Cu1—O395.71 (6)O7—C14—C13114.77 (19)
O1—Cu1—O3153.33 (6)H1WA—O1W—H1WB113.4
C6—N1—C2120.69 (19)H2WA—O2W—H2WB102.3
C6—N1—Cu1120.25 (15)H3WA—O3W—H3WB109.4
C2—N1—Cu1119.06 (15)C1S—N1S—H1NA105.8
C9—N2—C13122.70 (19)C1S—N1S—H1NB112.6
C9—N2—Cu1118.88 (15)H1NA—N1S—H1NB113.5
C13—N2—Cu1118.33 (15)C1S—N1S—H1NC108.8
C1—O1—Cu1110.18 (14)H1NA—N1S—H1NC106.0
C7—O3—Cu1111.42 (14)H1NB—N1S—H1NC109.8
C8—O5—Cu1113.58 (14)N1S—C1S—C2S110.98 (18)
C14—O7—Cu1114.42 (14)N1S—C1S—H1SA109.4
O1—C1—O2127.4 (2)C2S—C1S—H1SA109.4
O1—C1—C2116.34 (19)N1S—C1S—H1SB109.4
O2—C1—C2116.26 (19)C2S—C1S—H1SB109.4
N1—C2—C3120.8 (2)H1SA—C1S—H1SB108.0
N1—C2—C1114.97 (19)C1S—C2S—C2Si111.3 (2)
C3—C2—C1124.2 (2)C1S—C2S—H2SA109.4
C4—C3—C2119.2 (2)C2Si—C2S—H2SA109.4
C4—C3—H3A120.4C1S—C2S—H2SB109.4
C2—C3—H3A120.4C2Si—C2S—H2SB109.4
C3—C4—C5119.3 (2)H2SA—C2S—H2SB108.0
C3—C4—H4A120.4C3S—N2S—H2NA114.7
C5—C4—H4A120.4C3S—N2S—H2NB112.1
C6—C5—C4118.8 (2)H2NA—N2S—H2NB106.2
C6—C5—H5A120.6C3S—N2S—H2NC114.7
C4—C5—H5A120.6H2NA—N2S—H2NC103.8
N1—C6—C5121.1 (2)H2NB—N2S—H2NC104.4
N1—C6—C7115.97 (19)N2S—C3S—C4S111.92 (19)
C5—C6—C7122.8 (2)N2S—C3S—H3SA109.2
O4—C7—O3127.0 (2)C4S—C3S—H3SA109.2
O4—C7—C6117.28 (19)N2S—C3S—H3SB109.2
O3—C7—C6115.65 (19)C4S—C3S—H3SB109.2
O6—C8—O5124.9 (2)H3SA—C3S—H3SB107.9
O6—C8—C9119.90 (19)C3S—C4S—C4Sii114.9 (2)
O5—C8—C9115.19 (19)C3S—C4S—H4SA108.5
N2—C9—C10120.8 (2)C4Sii—C4S—H4SA108.5
N2—C9—C8112.45 (19)C3S—C4S—H4SB108.5
C10—C9—C8126.7 (2)C4Sii—C4S—H4SB108.5
C9—C10—C11117.6 (2)H4SA—C4S—H4SB107.5
O7—Cu1—N1—C681.46 (17)O2—C1—C2—C313.7 (3)
O5—Cu1—N1—C699.36 (17)N1—C2—C3—C40.6 (3)
O1—Cu1—N1—C6176.32 (17)C1—C2—C3—C4178.9 (2)
O3—Cu1—N1—C66.16 (16)C2—C3—C4—C51.6 (3)
O7—Cu1—N1—C298.84 (17)C3—C4—C5—C60.4 (3)
O5—Cu1—N1—C280.34 (17)C2—N1—C6—C53.0 (3)
O1—Cu1—N1—C23.98 (16)Cu1—N1—C6—C5177.32 (16)
O3—Cu1—N1—C2173.54 (17)C2—N1—C6—C7174.02 (19)
O7—Cu1—N2—C9174.36 (18)Cu1—N1—C6—C75.7 (3)
O5—Cu1—N2—C93.84 (16)C4—C5—C6—N11.9 (3)
O1—Cu1—N2—C980.12 (17)C4—C5—C6—C7174.9 (2)
O3—Cu1—N2—C997.72 (17)Cu1—O3—C7—O4176.69 (18)
O7—Cu1—N2—C132.25 (16)Cu1—O3—C7—C65.0 (2)
O5—Cu1—N2—C13179.55 (18)N1—C6—C7—O4178.90 (19)
O1—Cu1—N2—C1396.49 (17)C5—C6—C7—O41.9 (3)
O3—Cu1—N2—C1385.67 (17)N1—C6—C7—O30.4 (3)
N2—Cu1—O1—C1168.99 (15)C5—C6—C7—O3176.5 (2)
N1—Cu1—O1—C111.65 (14)Cu1—O5—C8—O6178.08 (18)
O7—Cu1—O1—C1109.54 (15)Cu1—O5—C8—C91.4 (2)
O5—Cu1—O1—C190.51 (15)C13—N2—C9—C101.4 (3)
O3—Cu1—O1—C16.3 (2)Cu1—N2—C9—C10175.04 (16)
N2—Cu1—O3—C7173.14 (15)C13—N2—C9—C8179.42 (19)
N1—Cu1—O3—C76.11 (15)Cu1—N2—C9—C84.1 (2)
O7—Cu1—O3—C793.33 (15)O6—C8—C9—N2178.9 (2)
O5—Cu1—O3—C7106.24 (15)O5—C8—C9—N21.6 (3)
O1—Cu1—O3—C711.5 (2)O6—C8—C9—C102.0 (3)
N2—Cu1—O5—C82.76 (15)O5—C8—C9—C10177.6 (2)
N1—Cu1—O5—C8179.99 (15)N2—C9—C10—C110.8 (3)
O7—Cu1—O5—C82.3 (3)C8—C9—C10—C11179.8 (2)
O1—Cu1—O5—C8103.63 (15)C9—C10—C11—C120.4 (3)
O3—Cu1—O5—C8102.98 (15)C10—C11—C12—C130.9 (3)
N2—Cu1—O7—C144.61 (15)C9—N2—C13—C120.9 (3)
N1—Cu1—O7—C14172.61 (16)Cu1—N2—C13—C12175.62 (16)
O5—Cu1—O7—C149.7 (3)C9—N2—C13—C14176.52 (19)
O1—Cu1—O7—C14109.29 (15)Cu1—N2—C13—C140.0 (2)
O3—Cu1—O7—C1496.61 (15)C11—C12—C13—N20.3 (3)
Cu1—O1—C1—O2162.50 (19)C11—C12—C13—C14174.6 (2)
Cu1—O1—C1—C216.3 (2)Cu1—O7—C14—O8175.90 (19)
C6—N1—C2—C31.7 (3)Cu1—O7—C14—C135.8 (2)
Cu1—N1—C2—C3178.56 (16)N2—C13—C14—O8177.6 (2)
C6—N1—C2—C1176.78 (18)C12—C13—C14—O87.2 (4)
Cu1—N1—C2—C12.9 (2)N2—C13—C14—O74.0 (3)
O1—C1—C2—N114.2 (3)C12—C13—C14—O7171.2 (2)
O2—C1—C2—N1164.77 (19)N1S—C1S—C2S—C2Si172.2 (2)
O1—C1—C2—C3167.4 (2)N2S—C3S—C4S—C4Sii57.8 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3iii0.851.912.725 (2)160
O1W—H1WB···O6iv0.851.892.720 (2)167
O2W—H2WA···O1Wv0.851.942.771 (2)165
O2W—H2WB···O20.851.982.828 (2)174
O3W—H3WA···O1Wv0.852.032.874 (3)171
O3W—H3WB···O20.851.972.779 (3)158
N1S—H1NA···O40.911.902.804 (3)171
N1S—H1NB···O7vi0.832.553.112 (3)126
N1S—H1NB···O8vi0.832.042.865 (2)176
N1S—H1NC···O2Wvii0.842.282.895 (3)131
N1S—H1NC···O4viii0.842.282.981 (3)141
N2S—H2NA···O3Wvi0.791.952.730 (3)166
N2S—H2NB···O50.862.313.149 (3)164
N2S—H2NB···O60.862.313.001 (3)138
N2S—H2NC···O2W0.872.002.867 (3)173
C10—H10A···O3ix0.952.583.446 (3)151
C11—H11A···O1x0.952.463.139 (3)128
C3S—H3SA···O8xi0.992.543.178 (3)122
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x, y, z+1; (v) x+1, y+2, z+1; (vi) x1, y, z; (vii) x, y1, z; (viii) x+1, y, z+1; (ix) x+1, y+1, z; (x) x+2, y+1, z; (xi) x1, y+1, z.

Experimental details

Crystal data
Chemical formula(C4H14N2)[Cu(C7H3NO4)2]·3H2O
Mr537.97
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.0931 (13), 11.4017 (19), 12.977 (2)
α, β, γ (°)71.632 (5), 89.195 (5), 72.892 (5)
V3)1082.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(APEX2; Bruker, 2005)
Tmin, Tmax0.775, 0.815
No. of measured, independent and
observed [I > 2/s(I)] reflections
10991, 5185, 4097
Rint0.035
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.092, 1.01
No. of reflections5185
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.50

Computer programs: APEX2 (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Selected torsion angles (º) top
O5—Cu1—O1—C190.51 (15)O7—Cu1—O3—C793.33 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3i0.851.912.725 (2)160
O1W—H1WB···O6ii0.851.892.720 (2)167
O2W—H2WA···O1Wiii0.851.942.771 (2)165
O2W—H2WB···O20.851.982.828 (2)174
O3W—H3WA···O1Wiii0.852.032.874 (3)171
O3W—H3WB···O20.851.972.779 (3)158
N1S—H1NA···O40.911.902.804 (3)171
N1S—H1NB···O7iv0.832.553.112 (3)126
N1S—H1NB···O8iv0.832.042.865 (2)176
N1S—H1NC···O2Wv0.842.282.895 (3)131
N1S—H1NC···O4vi0.842.282.981 (3)141
N2S—H2NA···O3Wiv0.791.952.730 (3)166
N2S—H2NB···O50.862.313.149 (3)164
N2S—H2NB···O60.862.313.001 (3)138
N2S—H2NC···O2W0.872.002.867 (3)173
C10—H10A···O3vii0.952.583.446 (3)151
C11—H11A···O1viii0.952.463.139 (3)128
C3S—H3SA···O8ix0.992.543.178 (3)122
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x+1, y+2, z+1; (iv) x1, y, z; (v) x, y1, z; (vi) x+1, y, z+1; (vii) x+1, y+1, z; (viii) x+2, y+1, z; (ix) x1, y+1, z.
 

Acknowledgements

Financial support from Tarbiat Moallem University is gratefully acknowledged.

References

First citationAghabozorg, H., Attar Gharamaleki, J., Daneshvar, S., Ghadermazi, M. & Khavasi, H. R. (2008a). Acta Cryst. E64, m187–m188.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Ghadermazi, M., Manteghi, F. & Nakhjavan, N. (2006). Z. Anorg. Allg. Chem. 632, 2058–2064.  Web of Science CSD CrossRef CAS Google Scholar
First citationAghabozorg, H., Motyeian, E., Soleimannejad, J., Ghadermazi, M. & Attar Gharamaleki, J. (2008b). Acta Cryst. E64, m252–m253.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Motyeian, E., Soleimannejad, J., Ghadermazi, M. & Attar Gharamaleki, J. (2008c). Acta Cryst. E64, m252–m253.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m743-m744
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds